您的当前位置:首页正文

Analysis of the numerical effects of parallelism on a parallel genetic algorithm

2022-08-24 来源:步旅网
AnalysisoftheNumericalEffectsofParallelismonaParallelGeneticAlgorithm

WilliamE.HartSandiaNationalLabsP.O.Box5800,MS1110Albuquerque,NM87185wehart@cs.sandia.gov

Abstract

Thispaperexaminestheeffectsofrelaxedsynchroniza-tiononboththenumericalandparallelefficiencyofparallelgeneticalgorithms(GAs).Wedescribeacoarse-graingeo-graphicallystructuredparallelgeneticalgorithm.Ourex-perimentsprovidepreliminaryevidencethatasynchronousversionsofthesealgorithmshavealowerruntimethansyn-chronousGAs.Ouranalysisshowsthatthisimprovementisdueto(1)decreasedsynchronizationcostsand(2)highnumericalefficiency(e.g.fewerfunctionevaluations)fortheasynchronousGAs.ThisanalysisincludesacritiqueoftheutilityoftraditionalparallelperformancemeasuresforparallelGAs.

ScottBadenRichardK.BelewComputerScience&Eng’g.Dept.

U.C.SanDiegoLaJolla,CA92093baden,rik@cs.ucsd.edu

ScottKohnDept.ChemistryU.C.SanDiegoLaJolla,CA92093skohn@chem.ucsd.edu

1.Introduction

Geneticalgorithms(GAs)arestochasticsearchalgo-rithmsthathavebeensuccessfullyappliedtoavarietyofoptimizationproblems[5].Unlikemostotheroptimizationprocedures,GAsmaintainapopulationofindividuals(setofsolutions)thatarecompetitivelyselectedtogeneratenewcandidatesfortheglobaloptima.ParallelGAshavebeendevelopedforavarietyofparallelarchitectures[4,7,14].TheseGAshavebeenusedtosolveavarietyofdifficultoptimizationproblems,andthealgorithmicmodificationsneededtoefficientlyparallelizeGAshaveprovidedinsightintothedynamicsofGAs’search[6].

Severalargumentsarecommonlyusedtojustifyparal-lelisminGAs.First,parallelismcanreducethecostoffunctionevaluations,whichmaydwarfothercostsinthe

ScottBadenandScottKohnweresupportedbyONRcontractN00014-93-1-0152.AUCSDSchoolofEngineeringBlockGrantprovideddevel-opmenttimefortheIntelParagonlocatedattheSanDiegoSupercomputerCenter.BillHartwaswassupportedbytheAppliedMathematicalSciencesprogram,U.S.DepartmentofEnergy,OfficeofEnergyResearch,andthisworkwaspartiallyperformedatSandiaNationalLaboratories,operatedfortheU.S.DepartmentofEnergyundercontractNo.DE-AC04-94AL85000.

optimizationprocess.Second,parallelismenablestheuseoflargerpopulationsizes.Empiricalevidencesuggeststhatlargepopulationsizesareneededtoreliablysolvecertaintypesofdifficultoptimizationproblems.Here,parallelismisusedtodistributethecostoftheadditionalfunctioneval-uationsneededforthelargepopulationsize.

AnotherargumentusedtojustifyparallelisminGAsisthatparallelGAsimprovethequalityofthesolutionfound.SerialGAshavebeenobservedto“prematurelyconverge”tononoptimalsolutions.ManyparallelGAsaredesignedinsuchawaythatcompetitiveselectionislocalizedbe-tweensubsetsofthetotalpopulation.AconsequenceofthislocalizationisthatparallelGAsoftenreliablyconvergetooptimalsolutions.

ThelasttwoargumentsforparallelisminGAsconcerntheobservedsuperiornumericalperformanceoftheseGAs.GordonandWhitley[6]makeasimilarobservationandarguethatthealgorithmicstructureofparallelGAsisofinterest,independentfromtheirimplementationonapartic-ularpieceofhardware.TheyexperimentallycomparedtheperformanceofseveralparallelGAs,allofwhichwereem-ulatedonasequentialarchitecture.TheyobservedthattheemulationsofparallelGAswereoftenmoreefficientthanmanyserialGAs.

ThispapercomplementstheworkofGordonandWhitleybycarefullyexaminingtheeffectsofrelaxedsynchroniza-tiononboththenumericalefficiencyandparallelefficiencyofaparallelGA.Numericalefficiencymeasuresthenu-mericalcostsassociatedwiththeGA,whiletheparalleleffi-ciencymeasuresthecostsassociatedwiththeparallelizationoftheGA.WedemonstratethatasynchronousparallelGAscanhavealowerruntimethansynchronousparallelGAs.Further,weshowthatthisimprovementinperformanceispartlyduetoanimprovementinthenumericalefficiencyoftheasynchronousparallelGA.Althoughauthorshaveob-servedthatasynchronousparallelGAstypicallyhavehighhardwareutilizationoftheprocessors,toourknowledgeouranalysisisthefirsttodistinguishbetweenhardwareutiliza-tionandcomputationeffortinparallelGAs.

2

Background

2.1

GeneticAlgorithms

ThispaperconsidersGAsthatminimizefunctionsoftheform:R,whereisacompactsubsetofR.Theaimistofindsuchthatthethsolutioninthepopulationatminiteration,so.LetbeR.Figure1describesthegeneralprocessaGA.

Competitiveselectiondetermineswhichsolutionsinthecurrentpopulationwillbeusedtogeneratesolutionsforthenextiteration.Astandardselectionmechanismispro-portionalselection,whichstochasticallyselectsindividualwithprobability,whereisthethindividualandisthefitnessoftheindividual-thevalueoftheobjectivefunctionat.ThisselectionmethodassumesthattheGAismaximizingandthat

0forall,butitcanbeeasilymodifiedtoperform

selectionwhenminimizingorwhenthefitnessesarenega-tive.Arelatedselectionmechanismisrankselectionwhichstochasticallyselectswithaprobabilitythatislinearly

relatedtotherankof

inthepopulation.Initializepopulation(withrandomlygeneratedsolutions)

Repeat

12EvaluatesolutionsinthepopulationPerformcompetitiveselectionApplygeneticoperators

Untilconvergencecriteriasatisfied

Figure1.Pseudo-codeforageneticalgo-rithm.

Newindividualsaregeneratedbyapplyinggeneticoper-atorsthattakeoneormoreindividualsfromthepopulationandgenerateoneormorenewindividuals.Thetwooper-atorscommonlyusedinGAsaremutationandcrossover.Figure2illustratesthetypesofnewsolutionsgeneratedbythesetwooperators.Crossovercombinespiecesoftwoso-lutionstogenerateanewsolution,anditistypicallyappliedwithhighfrequency.Mutationmakesasmallchangetoasolution,anditistypicallyusedwithlowfrequency.Forexample,mutationmightaddanormallydistributedrandomvaluetoasingledimensionofasolution.

2.2

GeographicallyStructuredGeneticAlgo-rithms

GAscanbedistinguishedbythemannerinwhichcom-petitiveselectionisperformed.GeographicallystructuredGAs(GSGAs)performastructuredselectioninwhichsolu-tionscompeteagainstafixedsubsetofthepopulationthat

2.7 1.2 7.4 0.5 9.62.7 1.2 5.5 0.5 9.6 (a)3.4 8.7 5.5 9.0 1.72.7 1.2 7.4 4.6 0.8 (b)2.1 6.7 9.9 4.6 0.82.1 8.7 5.5 9.0 0.2 (c)Figure2.Examplesofhowmutationand

crossovergenerateasolutions.Coloredbarsillustratewhatsubsectionsofthesolutionsarepiecedtogetherandmodified:(a)solu-tiongeneratedbymutation,(b)solutiongen-eratedbycrossover,and(c)solutiongener-atedbybothmutationandcrossover.

partiallyoverlapswithsubsetsusedbyotherindividuals.Thusthecrossoveroperatorisappliedtotwoindividualsselectedfromasubsetofthepopulation.PanmicticGAsperformaglobalcompetitiveselectionthatallowsanypairofindividualstobeselectedforthecrossoveroperator.AnexampleofpanmicticGAsarethosethatuseproportionalselection.

ParallelGSGAsaretypicallyimplementedasfinegrainalgorithmsinwhicheachprocessorisresponsibleforevalu-atingandprocessingasingleindividual.AmongfinegrainGSGAs,twoclassesofalgorithmscanbedistinguished:GSGAsdesignedforMIMDarchitectures[7]andGSGAsdesignedforSIMDarchitectures[4,11,14].Themethodofstructuringthecompetitiveselectiondiffersbetweenthesetwoclassesbasedondifferencesinthehardwarethatareexploitedbythesealgorithmstoachievehighutilization.Forexample,themostcommonmethodofstructuringthecompetitiveselectionforSIMDfinegrainGSGAsusesatoroidalgridliketheoneinFigure3[4,11,14].Everyindividualinthepopulationisassignedtoalocationonthegridinanarbitrarymanner.

Thegridisusedtodeterminesubsetsofsolutionsthatcompeteforalocationonthegrid.Therearedistinctno-tionsoflocalitywithrespecttothepopulationgridandthesearchspace;neighborsonthegridmayrepresentsolutionsthatarequitedifferent.Twomethodshavebeenusedtode-terminethesesubsetsofsolutionsinGSGAs:(1)fixedsizeneighborhoodshavebeenusedtodefinethesetofindividu-alsaboutagivenpointonthegrid,(2)randomwalkshavebeenusedtostochasticallysampleneighboringlocationsonthegrid.Forexample,thedashedlinesadjacenttopointAinFigure3indicateasubsetofindividualsthatmightcom-petetoreplacetheindividualatpointA.ThissubsetiscalledtheneighborhoodofpointA.ThedashedlinesadjacenttopointBillustratethetoroidalnatureofneighborhoodson

ABFigure3.AtwodimensionalgridusedbyGS-GAstodefinepopulationsubsets.

thisgrid.WecallaneighborhoodlikethatshowninFig-ure3aNEWSneighborhood,sinceitonlyusesneighborstotheNorth,East,WestandSouth.

Recently,Hart[8]hasdescribedacoarsegraindesignforparallelGSGAs.LikeSIMDGSGAs,thisparallelGAusesatwo-dimensionaltoroidalgridthatisdistributedacrossthesetofavailableprocessors.Thuseachprocessortypicallyprocessesasetofsolutionsthatislocatedonasubgridoftheentiregrid.Communicationofgridelementsisper-formedtoupdatetheneighborhoodsofindividualswhoseneighborhoodsspantwo(ormore)processors.

3

Methods

3.1

ParallelDesignofCoarse-GrainGSGAs

CoarsegrainGSGAsuseatoroidal,two-dimensionalpopulationgridthatisdistributedacrossprocessors.WeexamineGSGAsusingHPF-styleblockdecompositions[2].Communicationbetweenprocessorsisrequiredto(1)per-formselectionandrecombination,and(2)checkforter-minationsignals.Becausethegridistoroidal,periodicboundaryconditionsarerequired.Hence,everyprocessorcommunicateswiththesamenumberofprocessors.Eachprocessormayterminateindependentlybysatisfyingater-minationcriterion(e.g.,byexceedingaspecifiedtimelimitorfindingasolutionwithaspecifiedfitness).Communica-tionisrequiredtoterminatealloftheprocessorswhenanyofthemsatisfytheterminationcriterion.

Performingselectionandrecombinationatagivenlo-cationonthegridrequiresaccesstothefitnessandgeno-typesofneighboringindividuals,whichmaybelocatedonotherprocessors.Fixedsizeneighborhoodsareusedinourcoarse-grainGSGAs,whichletsuspredeterminethesizeoftheborderregionsthatneedtobecommunicatedbetweenprocessors.Thenumberofborderregionsthatneedtobecommunicateddependsonthestructureoftheneighbor-hoods.

CoarsegrainGSGAscanbedistinguishedbythemannerinwhichinterprocesscommunicationisperformed:(glob-ally)synchronizedorasynchronous.SynchronizedGSGAsguaranteethatallborderregionsforalloftheprocessorshavebeencommunicatedbeforeanyoftheprocessorscanproceedinthenextiteration.Bycomparison,theasyn-chronousalgorithmdoesnotrequirethatallborderregionsbefilledpriortostartingthenextiteration[3].AsynchronousGSGAswillprobablyhaveahigherutilizationoftheparal-lelhardware,butprocessorsmayfrequentlybeusingborderregionsthatareinconsistentwiththestateoftheneighboringprocessors.

3.2

ExperimentalDesign

TheGSGAsusedinourexperimentsaresimilartothethosedescribedbyHart[8].Mutationwasperformedbyaddingavaluefromanormallydistributedrandomvari-abletoacoordinateofasolution.Weusedaminimalneighborhoodthatincludedthetwoimmediateneighborsalongeachdimensionofthepopulationgrid(seeFigure3).Thecrossoverratewas0.8andthemutationratewas0.01.Rankselectionwasusedtocompetitivelyselectindividualswithineachneighborhood.FollowingGordonandWhit-ley[6],weusethebestindividualintheneighborhoodasoneoftheparentswhenperformingcrossover.Additionalcheckswereaddedtoavoidrepeatingafunctionevaluationonindividualsthatwerenotmodifiedbythecrossoverormutationoperations.

CommunicationinourparallelGSGAswascodedus-ingLPARX[10].LPARXprovidesdistributed2Dgridclassesthathandleblockcopiesandglobalsynchronization.LPARXwasextendedtocreatelabeledblockcopiesthatareusedtoperformasynchronouscommunication.

Thefunctionthatisoptimizedinourexperimentsisthetwo-dimensionalmolecularconformationproblemdescribedbyJudsonetal.[9].Thisproblemcon-cernsamoleculecomposedofachainofidenticalatomsthatareconnectedwithrigidrodsoflengthone.TheenergyofthemoleculeismodeledvanderWallsforces.Theenergy01equation1

12usedbyJudsonetal.is

26

,where22.Theanglesrepresentthebond

anglesforamolecule,whichcanbeusedtocalculatethe

coordinates

and(seeHart[8]).Amoleculewith37atomswasusedinourexperiments,whichrequires35bondanglestospecifyitsconformationalspace.Theoptimalconformationhasanenergyofapproximately983.

TheGSGAswererunonSandiaNationalLaboratories’1824nodeIntelParagonundertheSUNMOSoperatingsys-tem.Ourreportedresultsareaveragesover20trialswithdifferentseedsfortherandomnumbergenerator.Unlessotherwisespecified,allexperimentswereterminatedwhen

asolutionwithenergy

700wasfound.

4PerformanceAnalysis

ThereareseveralpropertiesofparallelGAsthatmaketheevaluationoftheirperformanceparticularlychallenging.RandomizationGAsarerandomizedalgorithmsthatrelyonrandomnumbergeneratorstodeterminestepsthatthetheymake.ConsequentlytheresultsofaparallelGAfortwodifferentsetsofprocessorsarenotstrictlycompara-blebecausethenumberofprocessorsaffectsthesequenceofalgorithmicstepsusedbythealgorithm.However,weconjecturethattheexpectedperformanceofsynchronizedparallelGAsshouldnotbeaffected.TheexpectedbehaviorofsynchronousparallelGAsdoesnotdependupontheran-domnumbergeneratorsthemselves,butonthedistributionofsearchbehaviorsthattheyinduce.Thisdistributionisindependentofthewayinwhichtherandomizationispro-vided.ItalsoseemsreasonablethatasynchronousparallelGAsarenotaffectedbythedifferentrandomnumbergen-erators,butinthiscasethedelaysininterprocessorcommu-nicationmayinfluencetheexpectedperformanceofparallelGAsinsubtleways.

TerminationCriteriaAweaknessofGAsisthelackofastoppingcriteriathatcanreliablyterminatethealgorithmnearalocalorglobaloptimum.Consequently,researcherstypicallyterminateGAsafterafixednumberofiterationsorwhenthedistributionofsolutionsinthepopulationap-pearstohaveconvergednearasinglepoint(totalconver-gencetypicallyneveroccursduetotheeffectsofmutation).TheserulesterminateGAswithsolutionswhosefitnessesvary.Consequently,researcherstypicallyreportthemeanandstandarddeviationofthefitnessesofthebestindividualsfound.

Performancemeasuresforparallelalgorithmsaretypi-callydefinedintermsofthecostrequiredtofindasolu-tionwithagivenaccuracy.ThustheperformanceanalysistypicallyperformedforGAsisinconsistentwiththeperfor-mancemeasuresusedforparallelalgorithms.ToanalyzetheperformanceofparallelGAsitisnecessarytorunthealgorithmuntilagivenaccuracyisachievedsincethisistheonlywayofcomparingresultswhenthenumberofiterationvarieswiththenumberofprocessors.

SynchronizationAninterestingfeatureofmanyparal-lelGAsisthatstrictlyspeaking,synchronizationisnotre-quired.Thereasonisthatthesearchperformedbyeachpro-cessorcanproceedindependentofthesearchesperformed

Thethresholdof-70.0isdifficulttoachieve.InJudson’sexperiments,thisaccuracylevelwasachievedinlessthan25%ofhisrandomtrialsafter1.5millionfunctionevaluations.

bytheotherprocessors.Theroleofcommunicationissim-plytopreventprocessorsfromsearching“bad”partsofthespacefortoolong.Aprocessorthatissearchingabadpartofthespacewilleventuallyreceiveindividualsfromotherprocessorsthatarerelativelysuperior,therebyleadingtheprocessortobeginsearchingintheneighborhoodofthenewindividuals.Consequently,asynchronousparallelGAsworkwell.ThisimpliesthatagoodperformancemeasureforparallelGAsshouldbeabletocomparetheperformanceofasynchronousandsynchronousalgorithms.

PerformanceMeasuresTheselectionofaperformancemeasureforparallelGAsisclearlyinfluencedbytheprevi-ousobservations.Forexample,theso-called“grind”mea-suresappeartohavelimiteduseforparallelGAs.Grindmeasurestaketheratiobetweenthetotaltimeusedbyapar-allelalgorithmandthenumberofiterations(orsomeotherconvenientalgorithmicunit).ThismeasurefailsbecausethecostperiterationofparallelGAscanvarydramaticallyasthecomputationprogresses.

Acommonlyappliedperformancemeasureisthe

speedup1

,where1istheruntimeforthebestsequentialGAand

istheruntimeforprocessorsfromthestartofexecutionuntilthelastprocessorhaster-minated.TherandomizationofparallelGAscomplicatesthecalculationoftheseperformancemeasuresbecausethesequenceofalgorithmicstepsvariesbetweenasequentialimplementationofthealgorithmanditsparallelimplemen-tation.Further,thevalueof1isdifficulttodetermineforasynchronousGAs.

Althoughthethespeedupmeasureisnotimmediatelyapplicable,theruntimecanbeusedtoprovidearelativecomparisonbetweenthespeedupsoftwoalgorithms.If1

and2arethespeedupsfortwoalgorithms,then1

2

ifandonlyif12

.Thusistheultimatemeasureofperformanceforthesealgorithms.

5ExperimentalAnalysis

OurexperimentalanalysisexaminesthenumericalandparallelefficiencyforparallelGSGAs.Inparticular,weexaminetheeffectthatsynchronizationhasonbothparallelandnumericalefficiency.Ourexperimentscomparetheperformanceofsynchronousandasynchronouscoarse-grainGSGAsusinga160x160toroidalpopulationgrid.

Figure4showstheexpectedruntime,

,fortheparallelGSGAswiththepopulationgridsubdividedamong41664and256processors.AcomparisonofthetwocurvesinFigures4ashowsthattheasynchronousGSGAsterminatemorequicklythansynchronousGSGAs,andcon-sequentlyhaveahigherspeedup.Sincethepopulationsize

Errorbarsinallfiguresshow90%confidenceintervalsforthedata.

remainsfixedasthenumberofprocessorschanges,theseresultsmaybecomparablefordifferentprocessorsizesifourconjectureconcerningtheeffectofrandomizationinSection4istrue.Wetestedthisconjecturebycomparingthedistributionofthetotalnumberoffunctionevaluationsusedonallprocessorsforeachoftheprocessorsize,usingamethodofmultiplecomparisons(theGHprocedure[16]).Thistestconfirmedthatexpectedperformanceofthesyn-chronizedparallelGAsisnotaffectedbyrandomizationwitha5%confidencelevel.

103SyncASync]PTE[10210141664256P(a)

8.0000E3SyncASync7.0000E3]6.0000E3p Tp[E5.0000E34.0000E33.0000E341664256P(b)

Figure4.Performanceofsynchronousandasynchronouscoarse-grainGSGAs:(a)plot

of

and(b)plotof.Figure4bshowsthatasthenumberofprocessorsin-creases,theruntimedecreasesalmostlinearlyfortheasyn-chronousGSGAsanddecreasessublinearlyforsynchronous

GSGAs.Figure5agraphsthecommunicationoverhead,

,thefractionofthetotaltimespentinthecommu-nicationsubroutine(includingloadimbalancecostsduetodifferentexecutiontimesamongtheprocessors).ThisgraphshowsthatsynchronizationcostsareonefactorthataffectsthedifferenceinruntimesforparallelGSGAs.

0.3SyncAsyncdeahr0.2evO noiatcinummCo0.10.041664256P(a)9.0000E5SyncASync8.0000E5snoi7.0000E5atulavE mu6.0000E5N5.0000E54.0000E541664256P(b)

Figure5.TwofactorsaffectingtherelativeruntimesofsynchronousandasynchronousGS-GAs:(a)communicationoverheadand(b)comparisonofthetotalnumberoffunctionevaluationsusedduringoptimization(acrossallprocessors).

ThedifferencebetweentheruntimesofasynchronousandsynchronousGSGAscanalsobeattributedtodiffer-encesinthenumericalefficiencyofthesynchronousandasynchronousalgorithms.Figure5bgraphsthetotalnum-beroffunctionevaluationsusedbyallprocessorsduringtheoptimizationruns.Thisfigureclearlyshowsthattheasyn-chronousGAterminatesafterfewerfunctionevaluationsthanthesynchronousGA.Thetotalnumberoffunctionevaluationsisareasonablemetricforevaluatingnumerical

efficiencyinourexperimentsbecausethefunctionevalua-tionsaccountfor70-90%ofthetotaltimeacrossallproces-sors.AninspectionofourexperimentalresultsshowsthatthereductioninthenumberoffunctionevaluationsshowninFigure5baccountsforasubstantialfractionoftherelativeimprovementbetweenthesynchronousandasynchronousGSGAs.

OnepossibleexplanationoftheimprovedperformanceoftheasynchronousGSGAsisthatthedelayedupdatestotheborderregionscausedbytheasynchronouscommunica-tionactuallyimprovethesearchperformedbytheparallelalgorithm.Intuitively,delayedcommunicationallowseachprocessortosearchlongerwithitscurrentpopulationbe-forebecominginfluencedbythesolutionscommunicatedbyneighboringprocessors.Toevaluatethishypothesis,weexaminedsynchronousGSGAsthatweresynchronizedatdifferentfrequencies.Table1showstheresultsoftheseexperimentswith256processors.

Frequency

124828.712.310.210.50.2610.2170.1940.191NumEval

8.25e53.66e53.07e53.18e5

Table1.Effectsofthefrequencyofsynchro-nizationontheperformanceofsynchronousGSGAs.

Theseresultsshowthatinfrequentsynchronizationde-creasestheruntimeofcoarse-grainGSGAsoverfullysyn-chronizedGSGAs.Thisimprovementcanbeattributedtoimprovementsinboththeparallelandnumericalefficiencyofthealgorithm.Thedecreaseincommunicationoverheadisanaturalconsequenceofadecreaseinthesynchroniza-tionfrequency.Thetotalnumberoffunctionevaluationsexhibitasharpdeclineasthesynchronizationfrequencyisincreased.TheseresultsareconsistentwithresearchonIslandModelGAs(IMGAs)[15],whichdecomposethepopulationintosubpopulations,eachofwhichisprocessedpanmictically.Theresultsconfirmourhypothesisthatde-laysincommunicationcanimprovetheperformanceofpar-allelGAs,andtheyprovideoneexplanationforthesuperiornumericalefficiencyofasynchronousGSGAs.

Finally,weconsiderhowtheperformanceofGSGAsisaffectedbytheaccuracythreshold.Table2showstheruntimeandcommunicationoverheadofGSGAswith256pro-cessors.Thecommunicationoverheadisnearlyconstantastheaccuracythresholdvaries.Theruntimeincreasesastheaccuracyistightened,whichreflectstheincreaseddifficultyoftheoptimizationproblem.Furthermore,thestandardde-viationoftheruntimealsoincreases.Weinterpretthisto

meanthatthereliabilityofthealgorithm’sabilitytoquicklyfindanear-optimalsolutiondecreasesastheaccuracyistightened.

Accuracy

StdDev

Sync-700.26128.71.76-800.29555.94.83Async

-700.07116.32.22-80

0.04926.23.26

Table2.Effectsofperformanceaccuracyoncommunicationoverheadandruntime.

6DiscussionandConclusions

OurempiricalresultsshowthatthenumericalbehaviorofparallelGAscanbeimprovedbyalteringthewaythatcom-municationisimplemented.Thiseffectisindependentofanyreductionsinprocessoridletimeduetoreducedcommu-nicationoverheadorloadimbalance.Wehaveexaminedtworelatedstrategiesforalteringinterprocessorcommunication:(1)asynchronouslydependentupdatesand(2)synchronousupdateswithreducedfrequency.Bothofthesestrategiesdelaytheupdatesofborderregions.OurexperimentsshowthatthistypeofdelayimprovestherateofconvergenceoftheparallelGAs.

BecausetheperformanceofparallelGAsissensitivetothewaythatcommunicationisimplemented,traditionalmeasuresofparallelefficiencyarenotparticularlymean-ingfulforthesealgorithms.Consequently,ouranalysishasusedtheruntimetodistinguishtherelativeperformanceofalgorithms,alongwithmeasurementsthatdistinguishimprovementsinthecommunicationoverheadandthenu-mericalperformance.Inthisstudy,weusedthenumberoffunctionevaluationsasameasureoftherelativenumericalperformanceofGAs.ThisisastandardmetricforGAs,anditisareasonablemeasureofthenumericalperformancewhenthetotalcostoffunctionevaluationsdominatesthetotalcostofthecomputation.

TheanalysisofparallelGAsiscomplicatedbyseveralfactors.BecauseGAsareprobabilistic,asingletrialofthealgorithmisnotparticularlymeaningful.Instead,theexpectedruntimemustbecomputed.Further,theimple-mentationofrandomizationmayvarywiththenumberofprocessors,thoughouranalysisindicatesthatthisisnotafactorthataffectstheexpectedperformanceofthesealgo-rithms.AnotherfactoristhefactthatGAsareonlyproba-bilisticallyguaranteedtoterminate,andtheruntimesmaybehighlyvariableforagivenproblem.Thisvariabilitymay

preventtheperformanceanalysisforverytightaccuracythresholds,sinceprohibitivelylongtrialsmightberequiredtofindnear-optimalsolutions.Inourexperimentstherel-ativeperformanceoftheparallelGSGAswasconsistentatdifferentaccuracythresholds,whichsuggeststhatper-formancecomparisonsbasedonmeasurementswithlooseaccuracythresholdsmayapplyfortighteraccuracythresh-olds.

Givenourcritiqueoftraditionalparallelperformancemeasures,weexpectthatpreviousanalysesofparallelGAswillneedtobereconsidered.Forexample,claimsofsu-perlinearspeedupforparallelGAs[1,12,13]haveusedspeedupmeasuresthatdonotdirectlyrelatethethecom-putationperformedonprocessorsandthecomputationperformedonprocessors.Consequently,themeaningofthistypeofsuperlinearspeedupisnotclear.

OurexperimentsexamineasingleimplementationissueforparallelGAs:theeffectofsynchronizationonthepar-allelandnumericalefficienciesofparallelGAs.Thereareavarietyofotherimplementationissueswhoseeffectsneedtobecarefullyexamined.Theseincludethetopologyofthepopulationgrid,thesizeofthepopulation,andthetypeofneighborhoodsusedtoperformcompetitiveselection.Em-piricalevidenceindicatesthattheseissuescanaffectthenumericalperformanceofGAs.Forexample,largerpopu-lationsizescansometimesimprovetherateofconvergenceofGAs,particularlyfordifficultoptimizationproblems.Whilemanyoftheseissueshavebeenindependentlyex-aminedbyresearchers,acarefulanalysisoftheirinteractionsinparallelGAshasnotbeenconducted.AlthoughwedonotexpectthatasingleformulationofparallelGAswillbebestforsolvingallproblems,thisanalysisisimportantforun-derstandingwhattypesofparallelGAsarelikelytoperformwell.Forexample,ourworkinprogressindicatesthattheshapeofthepopulationgridinteractswiththesynchroniza-tionmethod.Narrowgridsappeartohavebetternumericalperformance,especiallyforasynchronousparallelGAs.

References

[1]T.C.Belding.Thedistributedgeneticalgorithmrevisited.In

L.Eshelman,editor,ProceedingsoftheSixthIntl.Conf.onGeneticAlgorithms,pages114–121,SanMateo,CA,1995.Morgan-Kaufmann.

[2]B.Chapman,P.Mehrotra,andH.Zima.ExtendingHPFfor

advanceddataparallelapplications.Report94-34,ICASE,May1994.

[3]D.ChazanandW.L.Miranker.Chaoticrelaxation.Lin.

AlgebraandApplic,2:199–222,1969.

[4]R.J.CollinsandD.R.Jefferson.Selectioninmassively

parallelgeneticalgorithms.InProcofthefourthIntlConfonGeneticAlgorithms,pages249–256,1991.

[5]D.E.Goldberg.GeneticAlgorithmsinSearch,Optimization,

andMachineLearning.Addison-WesleyPublishingCo.,Inc.,1989.

[6]V.S.GordonandD.Whitley.Serialandparallelgenetic

algorithmsasfunctionoptimizers.InS.Forrest,editor,ProcoftheFifthIntlConfonGeneticAlgorithms,pages177–183,SanMateo,CA,1993.Morgan-Kaufmann.

[7]M.Gorges-Schleuter.Explicitparallelismofgeneticalgo-rithmsthroughpopulationstructures.InParallelProblemSolvingfromNature,pages150–159,1990.

[8]W.E.Hart.AdaptiveGlobalOptimizationwithLocalSearch.

PhDthesis,UniversityofCalifornia,SanDiego,May1994.[9]R.Judson,M.Colvin,J.Meza,A.Huffer,andD.Gutierrez.

Dointelligentconfigurationsearchtechniquesoutperformrandomsearchforlargemolecules?IntlJQuantumChem,pages277–290,1992.

[10]S.R.KohnandS.B.Baden.Arobustparallelprogramming

modelfordynamicnon-uniformscientificcomputations.InProceedingsofthe1994ScalableHighPerformanceCom-putingConference,May1994.

[11]J.M.McInerney.BiologicallyInfluencedAlgorithmsand

ParallelisminNon-LinearOptimization.PhDthesis,Uni-versityofCalifornia,SanDiego,1992.[12]H.M¨uhlenbein,M.Schomisch,andJ.Born.Theparallel

geneticalgorithmasfunctionoptimizer.InR.K.BelewandL.B.Booker,editors,ProcoftheFourthIntlConfonGeneticAlgorithms,pages271–278,SanMateo,CA,1991.Morgan-Kaufmann.

[13]R.Shonkwiler.Parallelgeneticalgorithms.InS.Forrest,

editor,ProceedingsoftheFifthIntl.Conf.onGeneticAl-gorithms,pages199–205,SanMateo,CA,1993.Morgan-Kaufmann.

[14]P.SpiessensandB.Manderick.Amassivelyparallelgenetic

algorithm:Implementationandfirstanalysis.InProcoftheFouthIntlConfonGeneticAlgorithms,pages279–285,1991.

[15]T.Starkweather,D.Whitley,andK.Mathias.Optimization

usingdistributedgeneticalgorithms.InParallelProblemSolvingfromNature,pages176–185,1990.

[16]L.E.Toothaker.MultipleComparisonsforResearchers.

SagesPublications,1991.

因篇幅问题不能全部显示,请点此查看更多更全内容