WilliamE.HartSandiaNationalLabsP.O.Box5800,MS1110Albuquerque,NM87185wehart@cs.sandia.gov
Abstract
Thispaperexaminestheeffectsofrelaxedsynchroniza-tiononboththenumericalandparallelefficiencyofparallelgeneticalgorithms(GAs).Wedescribeacoarse-graingeo-graphicallystructuredparallelgeneticalgorithm.Ourex-perimentsprovidepreliminaryevidencethatasynchronousversionsofthesealgorithmshavealowerruntimethansyn-chronousGAs.Ouranalysisshowsthatthisimprovementisdueto(1)decreasedsynchronizationcostsand(2)highnumericalefficiency(e.g.fewerfunctionevaluations)fortheasynchronousGAs.ThisanalysisincludesacritiqueoftheutilityoftraditionalparallelperformancemeasuresforparallelGAs.
ScottBadenRichardK.BelewComputerScience&Eng’g.Dept.
U.C.SanDiegoLaJolla,CA92093baden,rik@cs.ucsd.edu
ScottKohnDept.ChemistryU.C.SanDiegoLaJolla,CA92093skohn@chem.ucsd.edu
1.Introduction
Geneticalgorithms(GAs)arestochasticsearchalgo-rithmsthathavebeensuccessfullyappliedtoavarietyofoptimizationproblems[5].Unlikemostotheroptimizationprocedures,GAsmaintainapopulationofindividuals(setofsolutions)thatarecompetitivelyselectedtogeneratenewcandidatesfortheglobaloptima.ParallelGAshavebeendevelopedforavarietyofparallelarchitectures[4,7,14].TheseGAshavebeenusedtosolveavarietyofdifficultoptimizationproblems,andthealgorithmicmodificationsneededtoefficientlyparallelizeGAshaveprovidedinsightintothedynamicsofGAs’search[6].
Severalargumentsarecommonlyusedtojustifyparal-lelisminGAs.First,parallelismcanreducethecostoffunctionevaluations,whichmaydwarfothercostsinthe
ScottBadenandScottKohnweresupportedbyONRcontractN00014-93-1-0152.AUCSDSchoolofEngineeringBlockGrantprovideddevel-opmenttimefortheIntelParagonlocatedattheSanDiegoSupercomputerCenter.BillHartwaswassupportedbytheAppliedMathematicalSciencesprogram,U.S.DepartmentofEnergy,OfficeofEnergyResearch,andthisworkwaspartiallyperformedatSandiaNationalLaboratories,operatedfortheU.S.DepartmentofEnergyundercontractNo.DE-AC04-94AL85000.
optimizationprocess.Second,parallelismenablestheuseoflargerpopulationsizes.Empiricalevidencesuggeststhatlargepopulationsizesareneededtoreliablysolvecertaintypesofdifficultoptimizationproblems.Here,parallelismisusedtodistributethecostoftheadditionalfunctioneval-uationsneededforthelargepopulationsize.
AnotherargumentusedtojustifyparallelisminGAsisthatparallelGAsimprovethequalityofthesolutionfound.SerialGAshavebeenobservedto“prematurelyconverge”tononoptimalsolutions.ManyparallelGAsaredesignedinsuchawaythatcompetitiveselectionislocalizedbe-tweensubsetsofthetotalpopulation.AconsequenceofthislocalizationisthatparallelGAsoftenreliablyconvergetooptimalsolutions.
ThelasttwoargumentsforparallelisminGAsconcerntheobservedsuperiornumericalperformanceoftheseGAs.GordonandWhitley[6]makeasimilarobservationandarguethatthealgorithmicstructureofparallelGAsisofinterest,independentfromtheirimplementationonapartic-ularpieceofhardware.TheyexperimentallycomparedtheperformanceofseveralparallelGAs,allofwhichwereem-ulatedonasequentialarchitecture.TheyobservedthattheemulationsofparallelGAswereoftenmoreefficientthanmanyserialGAs.
ThispapercomplementstheworkofGordonandWhitleybycarefullyexaminingtheeffectsofrelaxedsynchroniza-tiononboththenumericalefficiencyandparallelefficiencyofaparallelGA.Numericalefficiencymeasuresthenu-mericalcostsassociatedwiththeGA,whiletheparalleleffi-ciencymeasuresthecostsassociatedwiththeparallelizationoftheGA.WedemonstratethatasynchronousparallelGAscanhavealowerruntimethansynchronousparallelGAs.Further,weshowthatthisimprovementinperformanceispartlyduetoanimprovementinthenumericalefficiencyoftheasynchronousparallelGA.Althoughauthorshaveob-servedthatasynchronousparallelGAstypicallyhavehighhardwareutilizationoftheprocessors,toourknowledgeouranalysisisthefirsttodistinguishbetweenhardwareutiliza-tionandcomputationeffortinparallelGAs.
2
Background
2.1
GeneticAlgorithms
ThispaperconsidersGAsthatminimizefunctionsoftheform:R,whereisacompactsubsetofR.Theaimistofindsuchthatthethsolutioninthepopulationatminiteration,so.LetbeR.Figure1describesthegeneralprocessaGA.
Competitiveselectiondetermineswhichsolutionsinthecurrentpopulationwillbeusedtogeneratesolutionsforthenextiteration.Astandardselectionmechanismispro-portionalselection,whichstochasticallyselectsindividualwithprobability,whereisthethindividualandisthefitnessoftheindividual-thevalueoftheobjectivefunctionat.ThisselectionmethodassumesthattheGAismaximizingandthat
0forall,butitcanbeeasilymodifiedtoperform
selectionwhenminimizingorwhenthefitnessesarenega-tive.Arelatedselectionmechanismisrankselectionwhichstochasticallyselectswithaprobabilitythatislinearly
relatedtotherankof
inthepopulation.Initializepopulation(withrandomlygeneratedsolutions)
Repeat
12EvaluatesolutionsinthepopulationPerformcompetitiveselectionApplygeneticoperators
Untilconvergencecriteriasatisfied
Figure1.Pseudo-codeforageneticalgo-rithm.
Newindividualsaregeneratedbyapplyinggeneticoper-atorsthattakeoneormoreindividualsfromthepopulationandgenerateoneormorenewindividuals.Thetwooper-atorscommonlyusedinGAsaremutationandcrossover.Figure2illustratesthetypesofnewsolutionsgeneratedbythesetwooperators.Crossovercombinespiecesoftwoso-lutionstogenerateanewsolution,anditistypicallyappliedwithhighfrequency.Mutationmakesasmallchangetoasolution,anditistypicallyusedwithlowfrequency.Forexample,mutationmightaddanormallydistributedrandomvaluetoasingledimensionofasolution.
2.2
GeographicallyStructuredGeneticAlgo-rithms
GAscanbedistinguishedbythemannerinwhichcom-petitiveselectionisperformed.GeographicallystructuredGAs(GSGAs)performastructuredselectioninwhichsolu-tionscompeteagainstafixedsubsetofthepopulationthat
2.7 1.2 7.4 0.5 9.62.7 1.2 5.5 0.5 9.6 (a)3.4 8.7 5.5 9.0 1.72.7 1.2 7.4 4.6 0.8 (b)2.1 6.7 9.9 4.6 0.82.1 8.7 5.5 9.0 0.2 (c)Figure2.Examplesofhowmutationand
crossovergenerateasolutions.Coloredbarsillustratewhatsubsectionsofthesolutionsarepiecedtogetherandmodified:(a)solu-tiongeneratedbymutation,(b)solutiongen-eratedbycrossover,and(c)solutiongener-atedbybothmutationandcrossover.
partiallyoverlapswithsubsetsusedbyotherindividuals.Thusthecrossoveroperatorisappliedtotwoindividualsselectedfromasubsetofthepopulation.PanmicticGAsperformaglobalcompetitiveselectionthatallowsanypairofindividualstobeselectedforthecrossoveroperator.AnexampleofpanmicticGAsarethosethatuseproportionalselection.
ParallelGSGAsaretypicallyimplementedasfinegrainalgorithmsinwhicheachprocessorisresponsibleforevalu-atingandprocessingasingleindividual.AmongfinegrainGSGAs,twoclassesofalgorithmscanbedistinguished:GSGAsdesignedforMIMDarchitectures[7]andGSGAsdesignedforSIMDarchitectures[4,11,14].Themethodofstructuringthecompetitiveselectiondiffersbetweenthesetwoclassesbasedondifferencesinthehardwarethatareexploitedbythesealgorithmstoachievehighutilization.Forexample,themostcommonmethodofstructuringthecompetitiveselectionforSIMDfinegrainGSGAsusesatoroidalgridliketheoneinFigure3[4,11,14].Everyindividualinthepopulationisassignedtoalocationonthegridinanarbitrarymanner.
Thegridisusedtodeterminesubsetsofsolutionsthatcompeteforalocationonthegrid.Therearedistinctno-tionsoflocalitywithrespecttothepopulationgridandthesearchspace;neighborsonthegridmayrepresentsolutionsthatarequitedifferent.Twomethodshavebeenusedtode-terminethesesubsetsofsolutionsinGSGAs:(1)fixedsizeneighborhoodshavebeenusedtodefinethesetofindividu-alsaboutagivenpointonthegrid,(2)randomwalkshavebeenusedtostochasticallysampleneighboringlocationsonthegrid.Forexample,thedashedlinesadjacenttopointAinFigure3indicateasubsetofindividualsthatmightcom-petetoreplacetheindividualatpointA.ThissubsetiscalledtheneighborhoodofpointA.ThedashedlinesadjacenttopointBillustratethetoroidalnatureofneighborhoodson
ABFigure3.AtwodimensionalgridusedbyGS-GAstodefinepopulationsubsets.
thisgrid.WecallaneighborhoodlikethatshowninFig-ure3aNEWSneighborhood,sinceitonlyusesneighborstotheNorth,East,WestandSouth.
Recently,Hart[8]hasdescribedacoarsegraindesignforparallelGSGAs.LikeSIMDGSGAs,thisparallelGAusesatwo-dimensionaltoroidalgridthatisdistributedacrossthesetofavailableprocessors.Thuseachprocessortypicallyprocessesasetofsolutionsthatislocatedonasubgridoftheentiregrid.Communicationofgridelementsisper-formedtoupdatetheneighborhoodsofindividualswhoseneighborhoodsspantwo(ormore)processors.
3
Methods
3.1
ParallelDesignofCoarse-GrainGSGAs
CoarsegrainGSGAsuseatoroidal,two-dimensionalpopulationgridthatisdistributedacrossprocessors.WeexamineGSGAsusingHPF-styleblockdecompositions[2].Communicationbetweenprocessorsisrequiredto(1)per-formselectionandrecombination,and(2)checkforter-minationsignals.Becausethegridistoroidal,periodicboundaryconditionsarerequired.Hence,everyprocessorcommunicateswiththesamenumberofprocessors.Eachprocessormayterminateindependentlybysatisfyingater-minationcriterion(e.g.,byexceedingaspecifiedtimelimitorfindingasolutionwithaspecifiedfitness).Communica-tionisrequiredtoterminatealloftheprocessorswhenanyofthemsatisfytheterminationcriterion.
Performingselectionandrecombinationatagivenlo-cationonthegridrequiresaccesstothefitnessandgeno-typesofneighboringindividuals,whichmaybelocatedonotherprocessors.Fixedsizeneighborhoodsareusedinourcoarse-grainGSGAs,whichletsuspredeterminethesizeoftheborderregionsthatneedtobecommunicatedbetweenprocessors.Thenumberofborderregionsthatneedtobecommunicateddependsonthestructureoftheneighbor-hoods.
CoarsegrainGSGAscanbedistinguishedbythemannerinwhichinterprocesscommunicationisperformed:(glob-ally)synchronizedorasynchronous.SynchronizedGSGAsguaranteethatallborderregionsforalloftheprocessorshavebeencommunicatedbeforeanyoftheprocessorscanproceedinthenextiteration.Bycomparison,theasyn-chronousalgorithmdoesnotrequirethatallborderregionsbefilledpriortostartingthenextiteration[3].AsynchronousGSGAswillprobablyhaveahigherutilizationoftheparal-lelhardware,butprocessorsmayfrequentlybeusingborderregionsthatareinconsistentwiththestateoftheneighboringprocessors.
3.2
ExperimentalDesign
TheGSGAsusedinourexperimentsaresimilartothethosedescribedbyHart[8].Mutationwasperformedbyaddingavaluefromanormallydistributedrandomvari-abletoacoordinateofasolution.Weusedaminimalneighborhoodthatincludedthetwoimmediateneighborsalongeachdimensionofthepopulationgrid(seeFigure3).Thecrossoverratewas0.8andthemutationratewas0.01.Rankselectionwasusedtocompetitivelyselectindividualswithineachneighborhood.FollowingGordonandWhit-ley[6],weusethebestindividualintheneighborhoodasoneoftheparentswhenperformingcrossover.Additionalcheckswereaddedtoavoidrepeatingafunctionevaluationonindividualsthatwerenotmodifiedbythecrossoverormutationoperations.
CommunicationinourparallelGSGAswascodedus-ingLPARX[10].LPARXprovidesdistributed2Dgridclassesthathandleblockcopiesandglobalsynchronization.LPARXwasextendedtocreatelabeledblockcopiesthatareusedtoperformasynchronouscommunication.
Thefunctionthatisoptimizedinourexperimentsisthetwo-dimensionalmolecularconformationproblemdescribedbyJudsonetal.[9].Thisproblemcon-cernsamoleculecomposedofachainofidenticalatomsthatareconnectedwithrigidrodsoflengthone.TheenergyofthemoleculeismodeledvanderWallsforces.Theenergy01equation1
12usedbyJudsonetal.is
26
,where22.Theanglesrepresentthebond
anglesforamolecule,whichcanbeusedtocalculatethe
coordinates
and(seeHart[8]).Amoleculewith37atomswasusedinourexperiments,whichrequires35bondanglestospecifyitsconformationalspace.Theoptimalconformationhasanenergyofapproximately983.
TheGSGAswererunonSandiaNationalLaboratories’1824nodeIntelParagonundertheSUNMOSoperatingsys-tem.Ourreportedresultsareaveragesover20trialswithdifferentseedsfortherandomnumbergenerator.Unlessotherwisespecified,allexperimentswereterminatedwhen
asolutionwithenergy
700wasfound.
4PerformanceAnalysis
ThereareseveralpropertiesofparallelGAsthatmaketheevaluationoftheirperformanceparticularlychallenging.RandomizationGAsarerandomizedalgorithmsthatrelyonrandomnumbergeneratorstodeterminestepsthatthetheymake.ConsequentlytheresultsofaparallelGAfortwodifferentsetsofprocessorsarenotstrictlycompara-blebecausethenumberofprocessorsaffectsthesequenceofalgorithmicstepsusedbythealgorithm.However,weconjecturethattheexpectedperformanceofsynchronizedparallelGAsshouldnotbeaffected.TheexpectedbehaviorofsynchronousparallelGAsdoesnotdependupontheran-domnumbergeneratorsthemselves,butonthedistributionofsearchbehaviorsthattheyinduce.Thisdistributionisindependentofthewayinwhichtherandomizationispro-vided.ItalsoseemsreasonablethatasynchronousparallelGAsarenotaffectedbythedifferentrandomnumbergen-erators,butinthiscasethedelaysininterprocessorcommu-nicationmayinfluencetheexpectedperformanceofparallelGAsinsubtleways.
TerminationCriteriaAweaknessofGAsisthelackofastoppingcriteriathatcanreliablyterminatethealgorithmnearalocalorglobaloptimum.Consequently,researcherstypicallyterminateGAsafterafixednumberofiterationsorwhenthedistributionofsolutionsinthepopulationap-pearstohaveconvergednearasinglepoint(totalconver-gencetypicallyneveroccursduetotheeffectsofmutation).TheserulesterminateGAswithsolutionswhosefitnessesvary.Consequently,researcherstypicallyreportthemeanandstandarddeviationofthefitnessesofthebestindividualsfound.
Performancemeasuresforparallelalgorithmsaretypi-callydefinedintermsofthecostrequiredtofindasolu-tionwithagivenaccuracy.ThustheperformanceanalysistypicallyperformedforGAsisinconsistentwiththeperfor-mancemeasuresusedforparallelalgorithms.ToanalyzetheperformanceofparallelGAsitisnecessarytorunthealgorithmuntilagivenaccuracyisachievedsincethisistheonlywayofcomparingresultswhenthenumberofiterationvarieswiththenumberofprocessors.
SynchronizationAninterestingfeatureofmanyparal-lelGAsisthatstrictlyspeaking,synchronizationisnotre-quired.Thereasonisthatthesearchperformedbyeachpro-cessorcanproceedindependentofthesearchesperformed
Thethresholdof-70.0isdifficulttoachieve.InJudson’sexperiments,thisaccuracylevelwasachievedinlessthan25%ofhisrandomtrialsafter1.5millionfunctionevaluations.
bytheotherprocessors.Theroleofcommunicationissim-plytopreventprocessorsfromsearching“bad”partsofthespacefortoolong.Aprocessorthatissearchingabadpartofthespacewilleventuallyreceiveindividualsfromotherprocessorsthatarerelativelysuperior,therebyleadingtheprocessortobeginsearchingintheneighborhoodofthenewindividuals.Consequently,asynchronousparallelGAsworkwell.ThisimpliesthatagoodperformancemeasureforparallelGAsshouldbeabletocomparetheperformanceofasynchronousandsynchronousalgorithms.
PerformanceMeasuresTheselectionofaperformancemeasureforparallelGAsisclearlyinfluencedbytheprevi-ousobservations.Forexample,theso-called“grind”mea-suresappeartohavelimiteduseforparallelGAs.Grindmeasurestaketheratiobetweenthetotaltimeusedbyapar-allelalgorithmandthenumberofiterations(orsomeotherconvenientalgorithmicunit).ThismeasurefailsbecausethecostperiterationofparallelGAscanvarydramaticallyasthecomputationprogresses.
Acommonlyappliedperformancemeasureisthe
speedup1
,where1istheruntimeforthebestsequentialGAand
istheruntimeforprocessorsfromthestartofexecutionuntilthelastprocessorhaster-minated.TherandomizationofparallelGAscomplicatesthecalculationoftheseperformancemeasuresbecausethesequenceofalgorithmicstepsvariesbetweenasequentialimplementationofthealgorithmanditsparallelimplemen-tation.Further,thevalueof1isdifficulttodetermineforasynchronousGAs.
Althoughthethespeedupmeasureisnotimmediatelyapplicable,theruntimecanbeusedtoprovidearelativecomparisonbetweenthespeedupsoftwoalgorithms.If1
and2arethespeedupsfortwoalgorithms,then1
2
ifandonlyif12
.Thusistheultimatemeasureofperformanceforthesealgorithms.
5ExperimentalAnalysis
OurexperimentalanalysisexaminesthenumericalandparallelefficiencyforparallelGSGAs.Inparticular,weexaminetheeffectthatsynchronizationhasonbothparallelandnumericalefficiency.Ourexperimentscomparetheperformanceofsynchronousandasynchronouscoarse-grainGSGAsusinga160x160toroidalpopulationgrid.
Figure4showstheexpectedruntime,
,fortheparallelGSGAswiththepopulationgridsubdividedamong41664and256processors.AcomparisonofthetwocurvesinFigures4ashowsthattheasynchronousGSGAsterminatemorequicklythansynchronousGSGAs,andcon-sequentlyhaveahigherspeedup.Sincethepopulationsize
Errorbarsinallfiguresshow90%confidenceintervalsforthedata.
remainsfixedasthenumberofprocessorschanges,theseresultsmaybecomparablefordifferentprocessorsizesifourconjectureconcerningtheeffectofrandomizationinSection4istrue.Wetestedthisconjecturebycomparingthedistributionofthetotalnumberoffunctionevaluationsusedonallprocessorsforeachoftheprocessorsize,usingamethodofmultiplecomparisons(theGHprocedure[16]).Thistestconfirmedthatexpectedperformanceofthesyn-chronizedparallelGAsisnotaffectedbyrandomizationwitha5%confidencelevel.
103SyncASync]PTE[10210141664256P(a)
8.0000E3SyncASync7.0000E3]6.0000E3p Tp[E5.0000E34.0000E33.0000E341664256P(b)
Figure4.Performanceofsynchronousandasynchronouscoarse-grainGSGAs:(a)plot
of
and(b)plotof.Figure4bshowsthatasthenumberofprocessorsin-creases,theruntimedecreasesalmostlinearlyfortheasyn-chronousGSGAsanddecreasessublinearlyforsynchronous
GSGAs.Figure5agraphsthecommunicationoverhead,
,thefractionofthetotaltimespentinthecommu-nicationsubroutine(includingloadimbalancecostsduetodifferentexecutiontimesamongtheprocessors).ThisgraphshowsthatsynchronizationcostsareonefactorthataffectsthedifferenceinruntimesforparallelGSGAs.
0.3SyncAsyncdeahr0.2evO noiatcinummCo0.10.041664256P(a)9.0000E5SyncASync8.0000E5snoi7.0000E5atulavE mu6.0000E5N5.0000E54.0000E541664256P(b)
Figure5.TwofactorsaffectingtherelativeruntimesofsynchronousandasynchronousGS-GAs:(a)communicationoverheadand(b)comparisonofthetotalnumberoffunctionevaluationsusedduringoptimization(acrossallprocessors).
ThedifferencebetweentheruntimesofasynchronousandsynchronousGSGAscanalsobeattributedtodiffer-encesinthenumericalefficiencyofthesynchronousandasynchronousalgorithms.Figure5bgraphsthetotalnum-beroffunctionevaluationsusedbyallprocessorsduringtheoptimizationruns.Thisfigureclearlyshowsthattheasyn-chronousGAterminatesafterfewerfunctionevaluationsthanthesynchronousGA.Thetotalnumberoffunctionevaluationsisareasonablemetricforevaluatingnumerical
efficiencyinourexperimentsbecausethefunctionevalua-tionsaccountfor70-90%ofthetotaltimeacrossallproces-sors.AninspectionofourexperimentalresultsshowsthatthereductioninthenumberoffunctionevaluationsshowninFigure5baccountsforasubstantialfractionoftherelativeimprovementbetweenthesynchronousandasynchronousGSGAs.
OnepossibleexplanationoftheimprovedperformanceoftheasynchronousGSGAsisthatthedelayedupdatestotheborderregionscausedbytheasynchronouscommunica-tionactuallyimprovethesearchperformedbytheparallelalgorithm.Intuitively,delayedcommunicationallowseachprocessortosearchlongerwithitscurrentpopulationbe-forebecominginfluencedbythesolutionscommunicatedbyneighboringprocessors.Toevaluatethishypothesis,weexaminedsynchronousGSGAsthatweresynchronizedatdifferentfrequencies.Table1showstheresultsoftheseexperimentswith256processors.
Frequency
124828.712.310.210.50.2610.2170.1940.191NumEval
8.25e53.66e53.07e53.18e5
Table1.Effectsofthefrequencyofsynchro-nizationontheperformanceofsynchronousGSGAs.
Theseresultsshowthatinfrequentsynchronizationde-creasestheruntimeofcoarse-grainGSGAsoverfullysyn-chronizedGSGAs.Thisimprovementcanbeattributedtoimprovementsinboththeparallelandnumericalefficiencyofthealgorithm.Thedecreaseincommunicationoverheadisanaturalconsequenceofadecreaseinthesynchroniza-tionfrequency.Thetotalnumberoffunctionevaluationsexhibitasharpdeclineasthesynchronizationfrequencyisincreased.TheseresultsareconsistentwithresearchonIslandModelGAs(IMGAs)[15],whichdecomposethepopulationintosubpopulations,eachofwhichisprocessedpanmictically.Theresultsconfirmourhypothesisthatde-laysincommunicationcanimprovetheperformanceofpar-allelGAs,andtheyprovideoneexplanationforthesuperiornumericalefficiencyofasynchronousGSGAs.
Finally,weconsiderhowtheperformanceofGSGAsisaffectedbytheaccuracythreshold.Table2showstheruntimeandcommunicationoverheadofGSGAswith256pro-cessors.Thecommunicationoverheadisnearlyconstantastheaccuracythresholdvaries.Theruntimeincreasesastheaccuracyistightened,whichreflectstheincreaseddifficultyoftheoptimizationproblem.Furthermore,thestandardde-viationoftheruntimealsoincreases.Weinterpretthisto
meanthatthereliabilityofthealgorithm’sabilitytoquicklyfindanear-optimalsolutiondecreasesastheaccuracyistightened.
Accuracy
StdDev
Sync-700.26128.71.76-800.29555.94.83Async
-700.07116.32.22-80
0.04926.23.26
Table2.Effectsofperformanceaccuracyoncommunicationoverheadandruntime.
6DiscussionandConclusions
OurempiricalresultsshowthatthenumericalbehaviorofparallelGAscanbeimprovedbyalteringthewaythatcom-municationisimplemented.Thiseffectisindependentofanyreductionsinprocessoridletimeduetoreducedcommu-nicationoverheadorloadimbalance.Wehaveexaminedtworelatedstrategiesforalteringinterprocessorcommunication:(1)asynchronouslydependentupdatesand(2)synchronousupdateswithreducedfrequency.Bothofthesestrategiesdelaytheupdatesofborderregions.OurexperimentsshowthatthistypeofdelayimprovestherateofconvergenceoftheparallelGAs.
BecausetheperformanceofparallelGAsissensitivetothewaythatcommunicationisimplemented,traditionalmeasuresofparallelefficiencyarenotparticularlymean-ingfulforthesealgorithms.Consequently,ouranalysishasusedtheruntimetodistinguishtherelativeperformanceofalgorithms,alongwithmeasurementsthatdistinguishimprovementsinthecommunicationoverheadandthenu-mericalperformance.Inthisstudy,weusedthenumberoffunctionevaluationsasameasureoftherelativenumericalperformanceofGAs.ThisisastandardmetricforGAs,anditisareasonablemeasureofthenumericalperformancewhenthetotalcostoffunctionevaluationsdominatesthetotalcostofthecomputation.
TheanalysisofparallelGAsiscomplicatedbyseveralfactors.BecauseGAsareprobabilistic,asingletrialofthealgorithmisnotparticularlymeaningful.Instead,theexpectedruntimemustbecomputed.Further,theimple-mentationofrandomizationmayvarywiththenumberofprocessors,thoughouranalysisindicatesthatthisisnotafactorthataffectstheexpectedperformanceofthesealgo-rithms.AnotherfactoristhefactthatGAsareonlyproba-bilisticallyguaranteedtoterminate,andtheruntimesmaybehighlyvariableforagivenproblem.Thisvariabilitymay
preventtheperformanceanalysisforverytightaccuracythresholds,sinceprohibitivelylongtrialsmightberequiredtofindnear-optimalsolutions.Inourexperimentstherel-ativeperformanceoftheparallelGSGAswasconsistentatdifferentaccuracythresholds,whichsuggeststhatper-formancecomparisonsbasedonmeasurementswithlooseaccuracythresholdsmayapplyfortighteraccuracythresh-olds.
Givenourcritiqueoftraditionalparallelperformancemeasures,weexpectthatpreviousanalysesofparallelGAswillneedtobereconsidered.Forexample,claimsofsu-perlinearspeedupforparallelGAs[1,12,13]haveusedspeedupmeasuresthatdonotdirectlyrelatethethecom-putationperformedonprocessorsandthecomputationperformedonprocessors.Consequently,themeaningofthistypeofsuperlinearspeedupisnotclear.
OurexperimentsexamineasingleimplementationissueforparallelGAs:theeffectofsynchronizationonthepar-allelandnumericalefficienciesofparallelGAs.Thereareavarietyofotherimplementationissueswhoseeffectsneedtobecarefullyexamined.Theseincludethetopologyofthepopulationgrid,thesizeofthepopulation,andthetypeofneighborhoodsusedtoperformcompetitiveselection.Em-piricalevidenceindicatesthattheseissuescanaffectthenumericalperformanceofGAs.Forexample,largerpopu-lationsizescansometimesimprovetherateofconvergenceofGAs,particularlyfordifficultoptimizationproblems.Whilemanyoftheseissueshavebeenindependentlyex-aminedbyresearchers,acarefulanalysisoftheirinteractionsinparallelGAshasnotbeenconducted.AlthoughwedonotexpectthatasingleformulationofparallelGAswillbebestforsolvingallproblems,thisanalysisisimportantforun-derstandingwhattypesofparallelGAsarelikelytoperformwell.Forexample,ourworkinprogressindicatesthattheshapeofthepopulationgridinteractswiththesynchroniza-tionmethod.Narrowgridsappeartohavebetternumericalperformance,especiallyforasynchronousparallelGAs.
References
[1]T.C.Belding.Thedistributedgeneticalgorithmrevisited.In
L.Eshelman,editor,ProceedingsoftheSixthIntl.Conf.onGeneticAlgorithms,pages114–121,SanMateo,CA,1995.Morgan-Kaufmann.
[2]B.Chapman,P.Mehrotra,andH.Zima.ExtendingHPFfor
advanceddataparallelapplications.Report94-34,ICASE,May1994.
[3]D.ChazanandW.L.Miranker.Chaoticrelaxation.Lin.
AlgebraandApplic,2:199–222,1969.
[4]R.J.CollinsandD.R.Jefferson.Selectioninmassively
parallelgeneticalgorithms.InProcofthefourthIntlConfonGeneticAlgorithms,pages249–256,1991.
[5]D.E.Goldberg.GeneticAlgorithmsinSearch,Optimization,
andMachineLearning.Addison-WesleyPublishingCo.,Inc.,1989.
[6]V.S.GordonandD.Whitley.Serialandparallelgenetic
algorithmsasfunctionoptimizers.InS.Forrest,editor,ProcoftheFifthIntlConfonGeneticAlgorithms,pages177–183,SanMateo,CA,1993.Morgan-Kaufmann.
[7]M.Gorges-Schleuter.Explicitparallelismofgeneticalgo-rithmsthroughpopulationstructures.InParallelProblemSolvingfromNature,pages150–159,1990.
[8]W.E.Hart.AdaptiveGlobalOptimizationwithLocalSearch.
PhDthesis,UniversityofCalifornia,SanDiego,May1994.[9]R.Judson,M.Colvin,J.Meza,A.Huffer,andD.Gutierrez.
Dointelligentconfigurationsearchtechniquesoutperformrandomsearchforlargemolecules?IntlJQuantumChem,pages277–290,1992.
[10]S.R.KohnandS.B.Baden.Arobustparallelprogramming
modelfordynamicnon-uniformscientificcomputations.InProceedingsofthe1994ScalableHighPerformanceCom-putingConference,May1994.
[11]J.M.McInerney.BiologicallyInfluencedAlgorithmsand
ParallelisminNon-LinearOptimization.PhDthesis,Uni-versityofCalifornia,SanDiego,1992.[12]H.M¨uhlenbein,M.Schomisch,andJ.Born.Theparallel
geneticalgorithmasfunctionoptimizer.InR.K.BelewandL.B.Booker,editors,ProcoftheFourthIntlConfonGeneticAlgorithms,pages271–278,SanMateo,CA,1991.Morgan-Kaufmann.
[13]R.Shonkwiler.Parallelgeneticalgorithms.InS.Forrest,
editor,ProceedingsoftheFifthIntl.Conf.onGeneticAl-gorithms,pages199–205,SanMateo,CA,1993.Morgan-Kaufmann.
[14]P.SpiessensandB.Manderick.Amassivelyparallelgenetic
algorithm:Implementationandfirstanalysis.InProcoftheFouthIntlConfonGeneticAlgorithms,pages279–285,1991.
[15]T.Starkweather,D.Whitley,andK.Mathias.Optimization
usingdistributedgeneticalgorithms.InParallelProblemSolvingfromNature,pages176–185,1990.
[16]L.E.Toothaker.MultipleComparisonsforResearchers.
SagesPublications,1991.
因篇幅问题不能全部显示,请点此查看更多更全内容