您的当前位置:首页正文

lm2596详细参数

2023-01-22 来源:步旅网
查询LM2596供应商

LM2596SIMPLESWITCHERPowerConverter150kHz3AStep-DownVoltageRegulatorDecember1997

LM2596

SIMPLESWITCHER®PowerConverter150kHz3AStep-DownVoltageRegulator

GeneralDescription

TheLM2596seriesofregulatorsaremonolithicintegratedcircuitsthatprovidealltheactivefunctionsforastep-down(buck)switchingregulator,capableofdrivinga3Aloadwithexcellentlineandloadregulation.Thesedevicesareavail-ableinfixedoutputvoltagesof3.3V,5V,12V,andanadjust-ableoutputversion.

Requiringaminimumnumberofexternalcomponents,theseregulatorsaresimpletouseandincludeinternalfrequencycompensation†,andafixed-frequencyoscillator.

TheLM2596seriesoperatesataswitchingfrequencyof150kHzthusallowingsmallersizedfiltercomponentsthanwhatwouldbeneededwithlowerfrequencyswitchingregu-lators.Availableinastandard5-leadTO-220packagewithseveraldifferentleadbendoptions,anda5-leadTO-263surfacemountpackage.

Astandardseriesofinductorsareavailablefromseveraldif-ferentmanufacturersoptimizedforusewiththeLM2596se-ries.Thisfeaturegreatlysimplifiesthedesignofswitch-modepowersupplies.

Otherfeaturesincludeaguaranteed±4%toleranceonout-putvoltageunderspecifiedinputvoltageandoutputloadconditions,and±15%ontheoscillatorfrequency.Externalshutdownisincluded,featuringtypically80µAstandbycur-rent.Selfprotectionfeaturesincludeatwostagefrequencyreducingcurrentlimitfortheoutputswitchandanovertem-peratureshutdownforcompleteprotectionunderfaultcondi-tions.

Features

n3.3V,5V,12V,andadjustableoutputversions

nAdjustableversionoutputvoltagerange,1.2Vto37V±4%maxoverlineandloadconditionsnAvailableinTO-220andTO-263packagesnGuaranteed3AoutputloadcurrentnInputvoltagerangeupto40V

nRequiresonly4externalcomponents

nExcellentlineandloadregulationspecificationsn150kHzfixedfrequencyinternaloscillatornTTLshutdowncapability

nLowpowerstandbymode,IQtypically80µAnHighefficiency

nUsesreadilyavailablestandardinductors

nThermalshutdownandcurrentlimitprotection

Applications

nSimplehigh-efficiencystep-down(buck)regulatornOn-cardswitchingregulatorsnPositivetonegativeconverter

Note:†PatentNumber5,382,918.

TypicalApplication

(FixedOutputVoltageVersions)

DS012583-1

SIMPLESWITCHER®andSwitchersMadeSimple®areregisteredtrademarksofNationalSemiconductorCorporation.

©1999NationalSemiconductorCorporationDS012583www.national.com

ConnectionDiagramsandOrderingInformation

BentandStaggeredLeads,ThroughHole

Package

5-LeadTO-220(T)

SurfaceMountPackage5-LeadTO-263(S)

DS012583-2

DS012583-3

OrderNumberLM2596T-3.3,LM2596T-5.0,

LM2596T-12orLM2596T-ADJSeeNSPackageNumberT05D

OrderNumberLM2596S-3.3,LM2596S-5.0,

LM2596S-12orLM2596S-ADJSeeNSPackageNumberTS5B

www.national.com2

AbsoluteMaximumRatings(Note1)

IfMilitary/Aerospacespecifieddevicesarerequired,pleasecontacttheNationalSemiconductorSalesOffice/Distributorsforavailabilityandspecifications.MaximumSupplyVoltageON/OFFPinInputVoltageFeedbackPinVoltageOutputVoltagetoGround(SteadyState)PowerDissipation

StorageTemperatureRangeESDSusceptibility

45V

−0.3≤V≤+25V−0.3≤V≤+25V−1V

Internallylimited−65˚Cto+150˚C

HumanBodyModel(Note2)LeadTemperatureSPackage

VaporPhase(60sec.)Infrared(10sec.)

TPackage(Soldering,10sec.)MaximumJunctionTemperature

2kV

+215˚C+245˚C+260˚C+150˚C

OperatingConditions

TemperatureRangeSupplyVoltage

−40˚C≤TJ≤+125˚C

4.5Vto40V

LM2596-3.3

ElectricalCharacteristics

SpecificationswithstandardtypefaceareforTJ=25˚C,andthosewithboldfacetypeapplyoverfullOperatingTempera-tureRange

LM2596-3.3

Symbol

Parameter

Conditions

Typ(Note3)3.3

3.168/3.1353.432/3.465

η

Efficiency

VIN=12V,ILOAD=3A

73

Limit(Note4)

Units(Limits)

SYSTEMPARAMETERS(Note5)TestCircuitFigure1VOUTOutputVoltage

4.75V≤VIN≤40V,0.2A≤ILOAD≤3A

VV(min)V(max)%

LM2596-5.0

ElectricalCharacteristics

SpecificationswithstandardtypefaceareforTJ=25˚C,andthosewithboldfacetypeapplyoverfullOperatingTempera-tureRange

LM2596-5.0

Symbol

Parameter

Conditions

Typ(Note3)5.0

4.800/4.7505.200/5.250

η

Efficiency

VIN=12V,ILOAD=3A

80

Limit(Note4)

Units(Limits)

SYSTEMPARAMETERS(Note5)TestCircuitFigure1VOUTOutputVoltage

7V≤VIN≤40V,0.2A≤ILOAD≤3A

VV(min)V(max)%

LM2596-12

ElectricalCharacteristics

SpecificationswithstandardtypefaceareforTJ=25˚C,andthosewithboldfacetypeapplyoverfullOperatingTempera-tureRange

LM2596-12

Symbol

Parameter

Conditions

Typ(Note3)12.0

11.52/11.4012.48/12.60

η

Efficiency

VIN=12V,ILOAD=3A

90

Limit(Note4)

Units(Limits)

SYSTEMPARAMETERS(Note5)TestCircuitFigure1VOUTOutputVoltage

15V≤VIN≤40V,0.2A≤ILOAD≤3A

VV(min)V(max)%

3www.national.com

LM2596-ADJ

ElectricalCharacteristics

SpecificationswithstandardtypefaceareforTJ=25˚C,andthosewithboldfacetypeapplyoverfullOperatingTempera-tureRange

LM2596-ADJ

Symbol

Parameter

Conditions

Typ(Note3)1.230

1.193/1.1801.267/1.280

η

Efficiency

VIN=12V,VOUT=3V,ILOAD=3A

73

Limit(Note4)

Units(Limits)

SYSTEMPARAMETERS(Note5)TestCircuitFigure1VFBFeedbackVoltage

4.5V≤VIN≤40V,0.2A≤ILOAD≤3AVOUTprogrammedfor3V.CircuitofFigure1VV(min)V(max)%

AllOutputVoltageVersionsElectricalCharacteristics

SpecificationswithstandardtypefaceareforTJ=25˚C,andthosewithboldfacetypeapplyoverfullOperatingTempera-tureRange.Unlessotherwisespecified,VIN=12Vforthe3.3V,5V,andAdjustableversionandVIN=24Vforthe12Vver-sion.ILOAD=500mA

LM2596-XX

Symbol

Parameter

Conditions

Typ(Note3)10

50/100

fOOscillatorFrequency

(Note6)

150

127/110173/173

VSATDCICLSaturationVoltageMaxDutyCycle(ON)MinDutyCycle(OFF)CurrentLimit

IOUT=3A(Notes7,8)(Note8)(Note9)

PeakCurrent(Notes7,8)

1.16

1.4/1.5

10004.5

3.6/3.46.9/7.5

ILOutputLeakageCurrent

Output=0V(Notes7,9)Output=−1V(Note10)(Note9)

ON/OFFpin=5V(OFF)

(Note10)

50

2

30

IQISTBYθJCθJAθJAθJAθJAON/OFFCONTROLTestCircuitFigure1ON/OFFPinLogicInput

VIHVILThresholdVoltage

Low(RegulatorON)High(RegulatorOFF)

1.3

0.62.0

VV(max)V(min)

QuiescentCurrentStandbyQuiescentCurrent

ThermalResistance

5

10

80

200/250

TO-220orTO-263Package,JunctiontoCaseTO-220Package,JunctiontoAmbient(Note11)TO-263Package,JunctiontoAmbient(Note12)TO-263Package,JunctiontoAmbient(Note13)TO-263Package,JunctiontoAmbient(Note14)

250503020

AA(min)A(max)µA(max)mAmA(max)mAmA(max)µAµA(max)˚C/W˚C/W˚C/W˚C/W˚C/W

Limit(Note4)

Units(Limits)

DEVICEPARAMETERSIbFeedbackBiasCurrent

AdjustableVersionOnly,VFB=1.3V

nAnA(max)kHzkHz(min)kHz(max)

VV(max)%

www.national.com4

AllOutputVoltageVersions

ElectricalCharacteristics(Continued)

SpecificationswithstandardtypefaceareforTJ=25˚C,andthosewithboldfacetypeapplyoverfullOperatingTempera-tureRange.Unlessotherwisespecified,VIN=12Vforthe3.3V,5V,andAdjustableversionandVIN=24Vforthe12Vver-sion.ILOAD=500mA

LM2596-XX

Symbol

Parameter

Conditions

Typ(Note3)

5

15

ILVLOGIC=0.5V(RegulatorON)

0.02

5Limit(Note4)

Units(Limits)

ON/OFFCONTROLTestCircuitFigure1IHON/OFFPinInputCurrent

VLOGIC=2.5V(RegulatorOFF)

µAµA(max)µAµA(max)

Note1:AbsoluteMaximumRatingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsindicateconditionsforwhichthedeviceisin-tendedtobefunctional,butdonotguaranteespecificperformancelimits.Forguaranteedspecificationsandtestconditions,seetheElectricalCharacteristics.Note2:Thehumanbodymodelisa100pFcapacitordischargedthrougha1.5kresistorintoeachpin.Note3:Typicalnumbersareat25˚Candrepresentthemostlikelynorm.

Note4:Alllimitsguaranteedatroomtemperature(standardtypeface)andattemperatureextremes(boldtypeface).Allroomtemperaturelimitsare100%produc-tiontested.AlllimitsattemperatureextremesareguaranteedviacorrelationusingstandardStatisticalQualityControl(SQC)methods.AlllimitsareusedtocalculateAverageOutgoingQualityLevel(AOQL).

Note5:Externalcomponentssuchasthecatchdiode,inductor,inputandoutputcapacitors,andvoltageprogrammingresistorscanaffectswitchingregulatorsys-temperformance.WhentheLM2596isusedasshownintheFigure1testcircuit,systemperformancewillbeasshowninsystemparameterssectionofElectricalCharacteristics.

Note6:Theswitchingfrequencyisreducedwhenthesecondstagecurrentlimitisactivated.Theamountofreductionisdeterminedbytheseverityofcurrentover-load.

Note7:Nodiode,inductororcapacitorconnectedtooutputpin.

Note8:Feedbackpinremovedfromoutputandconnectedto0VtoforcetheoutputtransistorswitchON.

Note9:Feedbackpinremovedfromoutputandconnectedto12Vforthe3.3V,5V,andtheADJ.version,and15Vforthe12Vversion,toforcetheoutputtransistorswitchOFF.

Note10:VIN=40V.

Note11:Junctiontoambientthermalresistance(noexternalheatsink)fortheTO-220packagemountedvertically,withtheleadssolderedtoaprintedcircuitboardwith(1oz.)copperareaofapproximately1in2.

Note12:JunctiontoambientthermalresistancewiththeTO-263packagetabsolderedtoasingleprintedcircuitboardwith0.5in2of(1oz.)copperarea.Note13:JunctiontoambientthermalresistancewiththeTO-263packagetabsolderedtoasinglesidedprintedcircuitboardwith2.5in2of(1oz.)copperarea.Note14:JunctiontoambientthermalresistancewiththeTO-263packagetabsolderedtoadoublesidedprintedcircuitboardwith3in2of(1oz.)copperareaontheLM2596Ssideoftheboard,andapproximately16in2ofcopperontheothersideofthep-cboard.SeeApplicationInformationinthisdatasheetandthethermalmodelinSwitchersMadeSimple™version4.3software.

TypicalPerformanceCharacteristics

NormalizedOutputVoltage

LineRegulation

(CircuitofFigure1)

Efficiency

DS012583-5

DS012583-4

DS012583-6

5www.national.com

TypicalPerformanceCharacteristics

SwitchSaturationVoltage

(CircuitofFigure1)(Continued)

SwitchCurrentLimitDropoutVoltage

DS012583-8

DS012583-7

DS012583-9

Operating

QuiescentCurrent

Shutdown

QuiescentCurrent

MinimumOperatingSupplyVoltage

DS012583-10

DS012583-11

DS012583-12

ON/OFFThresholdVoltage

ON/OFFPin

Current(Sinking)

SwitchingFrequency

DS012583-15

DS012583-13

DS012583-14

www.national.com6

TypicalPerformanceCharacteristics

FeedbackPinBiasCurrent

(CircuitofFigure1)(Continued)

DS012583-16

TypicalPerformanceCharacteristics

ContinuousModeSwitchingWaveformsVIN=20V,VOUT=5V,ILOAD=2A

L=32µH,COUT=220µF,COUTESR=50mΩ

DiscontinuousModeSwitchingWaveformsVIN=20V,VOUT=5V,ILOAD=500mA

L=10µH,COUT=330µF,COUTESR=45mΩ

DS012583-17

A:OutputPinVoltage,10V/div.B:InductorCurrent1A/div.

C:OutputRippleVoltage,50mV/div.

DS012583-18

HorizontalTimeBase:2µs/div.

A:OutputPinVoltage,10V/div.B:InductorCurrent0.5A/div.

C:OutputRippleVoltage,100mV/div.

HorizontalTimeBase:2µs/div.

LoadTransientResponseforContinuousModeVIN=20V,VOUT=5V,ILOAD=500mAto2AL=32µH,COUT=220µF,COUTESR=50mΩ

LoadTransientResponseforDiscontinuousModeVIN=20V,VOUT=5V,ILOAD=500mAto2AL=10µH,COUT=330µF,COUTESR=45mΩ

DS012583-20

DS012583-19

A:OutputVoltage,100mV/div.(AC)B:500mAto2ALoadPulse

A:OutputVoltage,100mV/div.(AC)B:500mAto2ALoadPulse

HorizontalTimeBase:200µs/div.

HorizontalTimeBase:100µs/div.

7www.national.com

TestCircuitandLayoutGuidelines

FixedOutputVoltageVersions

DS012583-22

CIN—470µF,50V,AluminumElectrolyticNichicon“PLSeries”COUT—220µF,25VAluminumElectrolytic,Nichicon“PLSeries”D1—5A,40VSchottkyRectifier,1N5825L1—68µH,L38

AdjustableOutputVoltageVersions

DS012583-23

whereVREF=1.23V

SelectR1tobeapproximately1kΩ,usea1%resistorforbeststability.CIN—470µF,50V,AluminumElectrolyticNichicon“PLSeries”COUT—220µF,35VAluminumElectrolytic,Nichicon“PLSeries”D1—5A,40VSchottkyRectifier,1N5825L1—68µH,L38R1—1kΩ,1%

CFF—SeeApplicationInformationSection

FIGURE1.StandardTestCircuitsandLayoutGuides

Asinanyswitchingregulator,layoutisveryimportant.Rap-idlyswitchingcurrentsassociatedwithwiringinductancecangeneratevoltagetransientswhichcancauseproblems.Forminimalinductanceandgroundloops,thewiresindicatedbyheavylinesshouldbewideprintedcircuittracesandshouldbekeptasshortaspossible.Forbestresults,ex-ternalcomponentsshouldbelocatedasclosetotheswitcherlCaspossibleusinggroundplaneconstructionorsinglepointgrounding.

Ifopencoreinductorsareused,specialcaremustbetakenastothelocationandpositioningofthistypeofinduc-tor.Allowingtheinductorfluxtointersectsensitivefeedback,lCgroundpathandCOUTwiringcancauseproblems.Whenusingtheadjustableversion,specialcaremustbetakenastothelocationofthefeedbackresistorsandtheas-sociatedwiring.PhysicallylocatebothresistorsneartheIC,androutethewiringawayfromtheinductor,especiallyanopencoretypeofinductor.(Seeapplicationsectionformoreinformation.)

www.national.com8

LM2596SeriesBuckRegulatorDesignProcedure(FixedOutput)

PROCEDURE(FixedOutputVoltageVersion)Given:

VOUT=RegulatedOutputVoltage(3.3V,5Vor12V)VIN(max)=MaximumDCInputVoltageILOAD(max)=MaximumLoadCurrent1.InductorSelection(L1)

A.SelectthecorrectinductorvalueselectionguidefromFig-uresFigure4,Figure5,orFigure6.(Outputvoltagesof3.3V,5V,or12Vrespectively.)Forallothervoltages,seethede-signprocedurefortheadjustableversion.

B.Fromtheinductorvalueselectionguide,identifytheinduc-tanceregionintersectedbytheMaximumInputVoltagelineandtheMaximumLoadCurrentline.Eachregionisidentifiedbyaninductancevalueandaninductorcode(LXX).C.Selectanappropriateinductorfromthefourmanufactur-er’spartnumberslistedinFigure8.

2.OutputCapacitorSelection(COUT)

A.Inthemajorityofapplications,lowESR(EquivalentSeriesResistance)electrolyticcapacitorsbetween82µFand820µFandlowESRsolidtantalumcapacitorsbetween10µFand470µFprovidethebestresults.ThiscapacitorshouldbelocatedclosetotheICusingshortcapacitorleadsandshortcoppertraces.Donotusecapacitorslargerthan820µF.

Foradditionalinformation,seesectiononoutputcapaci-torsinapplicationinformationsection.

B.Tosimplifythecapacitorselectionprocedure,refertothequickdesigncomponentselectiontableshowninFigure2.Thistablecontainsdifferentinputvoltages,outputvoltages,andloadcurrents,andlistsvariousinductorsandoutputca-pacitorsthatwillprovidethebestdesignsolutions.

C.Thecapacitorvoltageratingforelectrolyticcapacitorsshouldbeatleast1.5timesgreaterthantheoutputvoltage,andoftenmuchhighervoltageratingsareneededtosatisfythelowESRrequirementsforlowoutputripplevoltage.D.Forcomputeraideddesignsoftware,seeSwitchersMadeSimple™version4.3orlater.

EXAMPLE(FixedOutputVoltageVersion)

Given:VOUT=5V

VIN(max)=12VILOAD(max)=3A

1.InductorSelection(L1)

A.Usetheinductorselectionguideforthe5VversionshowninFigure5.

B.FromtheinductorvalueselectionguideshowninFigure5,theinductanceregionintersectedbythe12Vhorizontallineandthe3Averticallineis33µH,andtheinductorcodeisL40.

C.Theinductancevaluerequiredis33µH.FromthetableinFigure8,gototheL40lineandchooseaninductorpartnum-berfromanyofthefourmanufacturersshown.(Inmostin-stance,boththroughholeandsurfacemountinductorsareavailable.)

2.OutputCapacitorSelection(COUT)

A.Seesectiononoutputcapacitorsinapplicationinfor-mationsection.

B.FromthequickdesigncomponentselectiontableshowninFigure2,locatethe5Voutputvoltagesection.Intheloadcurrentcolumn,choosetheloadcurrentlinethatisclosesttothecurrentneededinyourapplication,forthisexample,usethe3Aline.Inthemaximuminputvoltagecolumn,selectthelinethatcoverstheinputvoltageneededinyourapplication,inthisexample,usethe15Vline.Continuingonthislinearerecommendedinductorsandcapacitorsthatwillprovidethebestoverallperformance.

Thecapacitorlistcontainsboththroughholeelectrolyticandsurfacemounttantalumcapacitorsfromfourdifferentcapaci-tormanufacturers.Itisrecommendedthatboththemanufac-turersandthemanufacturer’sseriesthatarelistedinthetablebeused.

InthisexamplealuminumelectrolyticcapacitorsfromseveraldifferentmanufacturersareavailablewiththerangeofESRnumbersneeded.

330µF35VPanasonicHFQSeries330µF35VNichiconPLSeriesC.Fora5Voutput,acapacitorvoltageratingatleast7.5Vormoreisneeded.ButevenalowESR,switchinggrade,220µF10Valuminumelectrolyticcapacitorwouldexhibitap-proximately225mΩofESR(seethecurveinFigure14fortheESRvsvoltagerating).ThisamountofESRwouldresultinrelativelyhighoutputripplevoltage.Toreducetherippleto1%oftheoutputvoltage,orless,acapacitorwithahighervalueorwithahighervoltagerating(lowerESR)shouldbeselected.A16Vor25Vcapacitorwillreducetheripplevolt-agebyapproximatelyhalf.

9www.national.com

LM2596SeriesBuckRegulatorDesignProcedure(FixedOutput)

PROCEDURE(FixedOutputVoltageVersion)3.CatchDiodeSelection(D1)

A.Thecatchdiodecurrentratingmustbeatleast1.3timesgreaterthanthemaximumloadcurrent.Also,ifthepowersupplydesignmustwithstandacontinuousoutputshort,thediodeshouldhaveacurrentratingequaltothemaximumcurrentlimitoftheLM2596.Themoststressfulconditionforthisdiodeisanoverloadorshortedoutputcondition.

B.Thereversevoltageratingofthediodeshouldbeatleast1.25timesthemaximuminputvoltage.

C.Thisdiodemustbefast(shortreverserecoverytime)andmustbelocatedclosetotheLM2596usingshortleadsandshortprintedcircuittraces.Becauseoftheirfastswitchingspeedandlowforwardvoltagedrop,Schottkydiodesprovidethebestperformanceandefficiency,andshouldbethefirstchoice,especiallyinlowoutputvoltageapplications.Ultra-fastrecovery,orHigh-Efficiencyrectifiersalsoprovidegoodresults.Ultra-fastrecoverydiodestypicallyhavere-verserecoverytimesof50nsorless.Rectifierssuchasthe1N5400seriesaremuchtooslowandshouldnotbeused.4.InputCapacitor(CIN)

AlowESRaluminumortantalumbypasscapacitorisneededbetweentheinputpinandgroundpintopreventlargevolt-agetransientsfromappearingattheinput.ThiscapacitorshouldbelocatedclosetotheICusingshortleads.Inaddi-tion,theRMScurrentratingoftheinputcapacitorshouldbeselectedtobeatleast1⁄2theDCloadcurrent.Thecapacitormanufacturersdatasheetmustbecheckedtoassurethatthiscurrentratingisnotexceeded.ThecurveshowninFig-ure13showstypicalRMScurrentratingsforseveraldifferentaluminumelectrolyticcapacitorvalues.

Foranaluminumelectrolytic,thecapacitorvoltageratingshouldbeapproximately1.5timesthemaximuminputvolt-age.Cautionmustbeexercisedifsolidtantalumcapacitorsareused(seeApplicationInformationoninputcapacitor).Thetantalumcapacitorvoltageratingshouldbe2timesthemaximuminputvoltageanditisrecommendedthattheybesurgecurrenttestedbythemanufacturer.

Usecautionwhenusingceramiccapacitorsforinputbypass-ing,becauseitmaycausesevereringingattheVINpin.Foradditionalinformation,seesectiononinputcapaci-torsinApplicationInformationsection.

(Continued)

EXAMPLE(FixedOutputVoltageVersion)

3.CatchDiodeSelection(D1)

A.RefertothetableshowninFigure11.Inthisexample,a5A,20V,1N5823Schottkydiodewillprovidethebestperfor-mance,andwillnotbeoverstressedevenforashortedout-put.

4.InputCapacitor(CIN)

TheimportantparametersfortheInputcapacitorarethein-putvoltageratingandtheRMScurrentrating.Withanominalinputvoltageof12V,analuminumelectrolyticcapacitorwithavoltageratinggreaterthan18V(1.5xVIN)wouldbeneeded.Thenexthighercapacitorvoltageratingis25V.TheRMScurrentratingrequirementfortheinputcapacitorinabuckregulatorisapproximately1⁄2theDCloadcurrent.Inthisexample,witha3Aload,acapacitorwithaRMScurrentratingofatleast1.5Aisneeded.ThecurvesshowninFigure13canbeusedtoselectanappropriateinputcapacitor.Fromthecurves,locatethe35Vlineandnotewhichcapaci-torvalueshaveRMScurrentratingsgreaterthan1.5A.A680µF/35Vcapacitorcouldbeused.

Forathroughholedesign,a680µF/35Velectrolyticcapaci-tor(PanasonicHFQseriesorNichiconPLseriesorequiva-lent)wouldbeadequate.othertypesorothermanufacturerscapacitorscanbeusedprovidedtheRMSripplecurrentrat-ingsareadequate.

Forsurfacemountdesigns,solidtantalumcapacitorscanbeused,butcautionmustbeexercisedwithregardtotheca-pacitorsurgecurrentrating(seeApplicationInformationoninputcapacitorsinthisdatasheet).TheTPSseriesavailablefromAVX,andthe593DseriesfromSpraguearebothsurgecurrenttested.

www.national.com10

LM2596SeriesBuckRegulatorDesignProcedure(FixedOutput)

Conditions

OutputVoltage(V)3.3

LoadCurrent(A)3

MaxInputVoltage(V)

5710406

2

5

3

104081015409

2

12

3

20401518304015

2

2040

2222223322334722223347226868223368683368150

L41L41L41L40L33L32L39L41L41L40L39L33L38L38L41L40L44L44L32L38L42

Inductor

Inductance

(µH)

Inductor(#)

PanasonicHFQSeries(µF/V)470/25560/35680/35560/35470/25330/35330/35470/25560/25330/35330/35470/25180/35180/35470/25330/25180/25180/35330/25180/2582/25

OutputCapacitor

ThroughHoleElectrolytic

NichiconPLSeries(µF/V)560/16560/35680/35470/35470/35330/35270/50560/16560/25330/35270/35560/16180/35180/35470/25330/25180/25180/35330/25180/2582/25

(Continued)

SurfaceMountTantalumAVXTPSSeries(µF/V)330/6.3330/6.3330/6.3330/6.3330/6.3330/6.3220/10220/10220/10220/10220/10220/10100/10100/10100/16100/16100/16100/16100/16100/1668/20

Sprague595DSeries(µF/V)390/6.3390/6.3390/6.3390/6.3390/6.3390/6.3330/10330/10330/10330/10330/10330/10270/10270/10180/16180/16120/20120/20180/16120/2068/25

FIGURE2.LM2596FixedVoltageQuickDesignComponentSelectionTable

11www.national.com

LM2596SeriesBuckRegulatorDesignProcedure(AdjustableOutput)

PROCEDURE(AdjustableOutputVoltageVersion)Given:

VOUT=RegulatedOutputVoltageVIN(max)=MaximumInputVoltageILOAD(max)=MaximumLoadCurrent

F=SwitchingFrequency(Fixedatanominal150kHz).1.ProgrammingOutputVoltage(SelectingR1andR2,asshowninFigure1)

Usethefollowingformulatoselecttheappropriateresistorvalues.

EXAMPLE(AdjustableOutputVoltageVersion)Given:

VOUT=20VVIN(max)=28VILOAD(max)=3A

F=SwitchingFrequency(Fixedatanominal150kHz).1.ProgrammingOutputVoltage(SelectingR1andR2,asshowninFigure1)

SelectR1tobe1kΩ,1%.SolveforR2.

SelectavalueforR1between240Ωand1.5kΩ.Thelowerresistorvaluesminimizenoisepickupinthesensitivefeed-backpin.(Forthelowesttemperaturecoefficientandthebeststabilitywithtime,use1%metalfilmresistors.)

R2=1k(16.26−1)=15.26k,closest1%valueis15.4kΩ.R2=15.4kΩ.

2.InductorSelection(L1)

A.CalculatetheinductorVolt•microsecondconstantE•T(V•µs),fromthefollowingformula:

2.InductorSelection(L1)

A.CalculatetheinductorVolt•microsecondconstant(E•T),

whereVSAT=internalswitchsaturationvoltage=1.16VandVD=diodeforwardvoltagedrop=0.5V

B.UsetheE•TvaluefromthepreviousformulaandmatchitwiththeE•TnumberontheverticalaxisoftheInductorValueSelectionGuideshowninFigure7.

C.onthehorizontalaxis,selectthemaximumloadcurrent.D.IdentifytheinductanceregionintersectedbytheE•TvalueandtheMaximumLoadCurrentvalue.Eachregionisidentifiedbyaninductancevalueandaninductorcode(LXX).

E.Selectanappropriateinductorfromthefourmanufactur-er’spartnumberslistedinFigure8.

B.E•T=34.2(V•µs)C.ILOAD(max)=3A

D.FromtheinductorvalueselectionguideshowninFigure7,theinductanceregionintersectedbythe34(V•µs)horizon-tallineandthe3Averticallineis47µH,andtheinductorcodeisL39.

E.FromthetableinFigure8,locatelineL39,andselectaninductorpartnumberfromthelistofmanufacturerspartnum-bers.

www.national.com12

LM2596SeriesBuckRegulatorDesignProcedure(AdjustableOutput)

(Continued)

PROCEDURE(AdjustableOutputVoltageVersion)3.OutputCapacitorSelection(COUT)

A.Inthemajorityofapplications,lowESRelectrolyticorsolidtantalumcapacitorsbetween82µFand820µFprovidethebestresults.ThiscapacitorshouldbelocatedclosetotheICusingshortcapacitorleadsandshortcoppertraces.Donotusecapacitorslargerthan820µF.Foradditionalinforma-tion,seesectiononoutputcapacitorsinapplicationin-formationsection.

B.Tosimplifythecapacitorselectionprocedure,refertothequickdesigntableshowninFigure3.Thistablecontainsdif-ferentoutputvoltages,andlistsvariousoutputcapacitorsthatwillprovidethebestdesignsolutions.

C.Thecapacitorvoltageratingshouldbeatleast1.5timesgreaterthantheoutputvoltage,andoftenmuchhighervolt-ageratingsareneededtosatisfythelowESRrequirementsneededforlowoutputripplevoltage.

EXAMPLE(AdjustableOutputVoltageVersion)3.OutputCapacitorSeIection(COUT)

A.SeesectiononCOUTinApplicationInformationsection.B.FromthequickdesigntableshowninFigure3,locatetheoutputvoltagecolumn.Fromthatcolumn,locatetheoutputvoltageclosesttotheoutputvoltageinyourapplication.Inthisexample,selectthe24Vline.Undertheoutputcapacitorsection,selectacapacitorfromthelistofthroughholeelec-trolyticorsurfacemounttantalumtypesfromfourdifferentcapacitormanufacturers.Itisrecommendedthatboththemanufacturersandthemanufacturersseriesthatarelistedinthetablebeused.

Inthisexample,throughholealuminumelectrolyticcapaci-torsfromseveraldifferentmanufacturersareavailable.

220µF/35VPanasonicHFQSeries150µF/35VNichiconPLSeries

C.Fora20Voutput,acapacitorratingofatleast30Vormoreisneeded.Inthisexample,eithera35Vor50Vcapaci-torwouldwork.A35Vratingwaschosen,althougha50Vrat-ingcouldalsobeusedifaloweroutputripplevoltageisneeded.

Othermanufacturersorothertypesofcapacitorsmayalsobeused,providedthecapacitorspecifications(especiallythe100kHzESR)closelymatchthetypeslistedinthetable.Re-fertothecapacitormanufacturersdatasheetforthisinforma-tion.

4.FeedforwardCapacitor(CFF)(SeeFigure1)

Foroutputvoltagesgreaterthanapproximately10V,anaddi-tionalcapacitorisrequired.Thecompensationcapacitoristypicallybetween100pFand33nF,andiswiredinparallelwiththeoutputvoltagesettingresistor,R2.Itprovidesaddi-tionalstabilityforhighoutputvoltages,lowinput-outputvolt-ages,and/orverylowESRoutputcapacitors,suchassolidtantalumcapacitors.

4.FeedforwardCapacitor(CFF)

ThetableshowninFigure3containsfeedforwardcapacitorvaluesforvariousoutputvoltages.Inthisexample,a560pFcapacitorisneeded.

Thiscapacitortypecanbeceramic,plastic,silvermica,etc.(Becauseoftheunstablecharacteristicsofceramiccapaci-torsmadewithZ5Umaterial,theyarenotrecommended.)

13www.national.com

LM2596SeriesBuckRegulatorDesignProcedure(AdjustableOutput)

(Continued)

PROCEDURE(AdjustableOutputVoltageVersion)5.CatchDiodeSelection(D1)

A.Thecatchdiodecurrentratingmustbeatleast1.3timesgreaterthanthemaximumloadcurrent.Also,ifthepowersupplydesignmustwithstandacontinuousoutputshort,thediodeshouldhaveacurrentratingequaltothemaximumcurrentlimitoftheLM2596.Themoststressfulconditionforthisdiodeisanoverloadorshortedoutputcondition.B.Thereversevoltageratingofthediodeshouldbeatleast1.25timesthemaximuminputvoltage.

C.Thisdiodemustbefast(shortreverserecoverytime)andmustbelocatedclosetotheLM2596usingshortleadsandshortprintedcircuittraces.Becauseoftheirfastswitchingspeedandlowforwardvoltagedrop,Schottkydiodesprovidethebestperformanceandefficiency,andshouldbethefirstchoice,especiallyinlowoutputvoltageapplications.Ultra-fastrecovery,orHigh-Efficiencyrectifiersarealsoagoodchoice,butsometypeswithanabruptturn-offcharac-teristicmaycauseinstabilityorEMlproblems.Ultra-fastre-coverydiodestypicallyhavereverserecoverytimesof50nsorless.Rectifierssuchasthe1N4001seriesaremuchtooslowandshouldnotbeused.

6.InputCapacitor(CIN)

AlowESRaluminumortantalumbypasscapacitorisneededbetweentheinputpinandgroundtopreventlargevoltagetransientsfromappearingattheinput.Inaddition,theRMScurrentratingoftheinputcapacitorshouldbeselectedtobeatleast1⁄2theDCloadcurrent.Thecapacitormanufacturersdatasheetmustbecheckedtoassurethatthiscurrentratingisnotexceeded.ThecurveshowninFigure13showstypicalRMScurrentratingsforseveraldifferentaluminumelectro-lyticcapacitorvalues.

ThiscapacitorshouldbelocatedclosetotheICusingshortleadsandthevoltageratingshouldbeapproximately1.5timesthemaximuminputvoltage.

Ifsolidtantaluminputcapacitorsareused,itisrecomendedthattheybesurgecurrenttestedbythemanufacturer.

Usecautionwhenusingahighdielectricconstantceramiccapacitorforinputbypassing,becauseitmaycausesevereringingattheVINpin.

Foradditionalinformation,seesectiononinputcapaci-torsinapplicationinformationsection.

6.InputCapacitor(CIN)

TheimportantparametersfortheInputcapacitorarethein-putvoltageratingandtheRMScurrentrating.Withanominalinputvoltageof28V,analuminumelectrolyticaluminumelec-trolyticcapacitorwithavoltageratinggreaterthan42V(1.5xVIN)wouldbeneeded.Sincethethenexthighercapacitorvoltageratingis50V,a50Vcapacitorshouldbeused.Thecapacitorvoltageratingof(1.5xVIN)isaconservativeguide-line,andcanbemodifiedsomewhatifdesired.

TheRMScurrentratingrequirementfortheinputcapacitorofabuckregulatorisapproximately1⁄2theDCloadcurrent.Inthisexample,witha3Aload,acapacitorwithaRMScurrentratingofatleast1.5Aisneeded.

ThecurvesshowninFigure13canbeusedtoselectanap-propriateinputcapacitor.Fromthecurves,locatethe50VlineandnotewhichcapacitorvalueshaveRMScurrentrat-ingsgreaterthan1.5A.Eithera470µFor680µF,50Vca-pacitorcouldbeused.

Forathroughholedesign,a680µF/50Velectrolyticcapaci-tor(PanasonicHFQseriesorNichiconPLseriesorequiva-lent)wouldbeadequate.OthertypesorothermanufacturerscapacitorscanbeusedprovidedtheRMSripplecurrentrat-ingsareadequate.

Forsurfacemountdesigns,solidtantalumcapacitorscanbeused,butcautionmustbeexercisedwithregardtotheca-pacitorsurgecurrentrting(seeApplicationInformationorin-putcapacitorsinthisdatasheet).TheTPSseriesavailablefromAVX,andthe593DseriesfromSpraguearebothsurgecurrenttested.

EXAMPLE(AdjustableOutputVoltageVersion)5.CatchDiodeSelection(D1)

A.RefertothetableshowninFigure11.Schottkydiodesprovidethebestperformance,andinthisexamplea5A,40V,1N5825Schottkydiodewouldbeagoodchoice.The5Adi-oderatingismorethanadequateandwillnotbeover-stressedevenforashortedoutput.

Tofurthersimplifythebuckregulatordesignprocedure,Na-tionalSemiconductorismakingavailablecomputerdesignsoftwaretobeusedwiththeSimpleSwitcherlineotswitch-ingregulators.SwitchersMadeSimple(version4.3orlater)isavailableona31⁄2\"disketteforIBMcompatiblecomputers.www.national.com14

LM2596SeriesBuckRegulatorDesignProcedure(AdjustableOutput)

OutputVoltage(V)

246912152428

ThroughHoleOutputCapacitor

PanasonicHFQSeries(µF/V)820/35560/35470/25330/25330/25220/35220/35100/50

NichiconPLSeries(µF/V)820/35470/35470/25330/25330/25220/35150/35100/50

33nF10nF3.3nF1.5nF1nF680pF560pF390pFFeedforwardCapacitor

SurfaceMountOutputCapacitor

AVXTPSSeries(µF/V)330/6.3330/6.3220/10100/16100/1668/2033/2510/35

Sprague595DSeries(µF/V)470/4390/6.3330/10180/16180/16120/2033/2515/50

33nF10nF3.3nF1.5nF1nF680pF220pF220pFFeedforwardCapacitor

FIGURE3.OutputCapacitorandFeedforwardCapacitorSelectionTable

LM2596SeriesBuckRegulatorDesignProcedure

INDUCTORVALUESELECTIONGUIDES(ForContinuousModeOperation)

DS012583-24

DS012583-26

FIGURE4.LM2596-3.3

FIGURE6.LM2596-12

DS012583-25DS012583-27

FIGURE5.LM2596-5.0FIGURE7.LM2596-ADJ

15www.national.com

LM2596SeriesBuckRegulatorDesignProcedure

Inductance

(µH)L15L21L22L23L24L25L26L27L28L29L30L31L32L33L34L35L36L37L38L39L40L41L42L43L44

22684733221533022015010068473322152201501006847332215010068

Cur-rent(A)0.990.991.171.401.702.100.801.001.201.471.782.202.503.103.401.702.102.503.103.503.503.502.703.403.40

Schott

ThroughHole67148350671440706714408067144090671483706714838067144100671441106714412067144130671441406714415067144160671483906714840067144170671441806714419067144200671442106714422067144230671484106714424067144250

SurfaceMount671484606714445067144460671444706714848067148490671444806714449067144500671445106714452067144530671445406714850067148790

—————6714829067148300

———

HoleRL-1284-22-43RL-5471-5RL-5471-6RL-5471-7RL-1283-22-43RL-1283-15-43RL-5471-1RL-5471-2RL-5471-3RL-5471-4RL-5471-5RL-5471-6RL-5471-7RL-1283-22-43RL-1283-15-43RL-5473-1RL-5473-4RL-5472-1RL-5472-2RL-5472-3RL-5472-4RL-5472-5RL-5473-4RL-5473-2RL-5473-3

Renco

Through

SurfaceMountRL1500-22RL1500-68

———————————————————————

(Continued)

PulseEngineeringThroughHolePE-53815PE-53821PE-53822PE-53823PE-53824PE-53825PE-53826PE-53827PE-53828PE-53829PE-53830PE-53831PE-53932PE-53933PE-53934PE-53935PE-54036PE-54037PE-54038PE-54039PE-54040PE-54041PE-54042PE-54043PE-54044

SurfaceMountPE-53815-SPE-53821-SPE-53822-SPE-53823-SPE-53825-SPE-53824-S

CoilcraftSurfaceMountDO3308-223DO3316-683DO3316-473DO3316-333DO3316-223DO3316-153

PE-53826-SDO5022P-334PE-53827-SDO5022P-224PE-53828-SDO5022P-154PE-53829-SDO5022P-104PE-53830-SDO5022P-683PE-53831-SPE-53932-SPE-53933-SPE-53934-SPE-53935-SPE-54036-SPE-54037-SPE-54038-SPE-54039-SPE-54040-SPE-54041-SPE-54042-S

DO5022P-473DO5022P-333DO5022P-223DO5022P-153

——————————

FIGURE8.InductorManufacturersPartNumbers

CoilcraftInc.

CoilcraftInc.,EuropePulseEngineeringInc.PulseEngineeringInc.,Europe

RencoElectronicsInc.SchottCorp.

PhoneFAXPhoneFAXPhoneFAXPhoneFAXPhoneFAXPhoneFAX

(800)322-2645(708)639-1469+111236730595+441236730627(619)674-8100(619)674-8262+3539324107+3539324459(800)645-5828(516)586-5562(612)475-1173(612)475-1786

FIGURE9.InductorManufacturersPhoneNumbers

www.national.com16

LM2596SeriesBuckRegulatorDesignProcedure

NichiconCorp.PanasonicAVXCorp.Sprague/Vishay

PhoneFAXPhoneFAXPhoneFAXPhoneFAX

(Continued)

(708)843-7500(708)843-2798(714)373-7857(714)373-7102(803)448-9411(803)448-1943(207)324-4140(207)324-7223

FIGURE10.CapacitorManufacturersPhoneNumbers

VR

SurfaceMountSchottky

3ADiodes

ThroughHoleSchot-tky1N5820SR302MBR3201N5821MBR33031DQ031N5822SR304MBR340

MURS32030WF10

31DQ04SR305MBR35031DQ05

FIGURE11.DiodeSelectionTable

50WQ05

MUR320UltraFastRecoveryAllofthesediodesareratedtoatleast50V.

SurfaceMountSchot-tky

UltraFastRecovery

4A–6ADiodes

ThroughHoleSchot-tkySR5021N5823SB520SR5031N5824SB530

50WQ04

MURS62050WF10

SB55050SQ080SR5041N5825SB540

MUR620HER601UltraFastRecoveryAllofthesediodesareratedtoatleast50V.

UltraFastRecoveryAllofthesediodesareratedtoatleast50V.

20V

SK32

30V

30WQ03SK33

Allofthesediodesareratedtoatleast50V.

50WQ03

40VSK34MBRS34030WQ04

50VorMoreSK35MBRS36030WQ05

17www.national.com

BlockDiagram

DS012583-21

FIGURE12.

ApplicationInformation

PINFUNCTIONS

+VIN—ThisisthepositiveinputsupplyfortheICswitchingregulator.Asuitableinputbypasscapacitormustbepresentatthispintominimizevoltagetransientsandtosupplytheswitchingcurrentsneededbytheregulator.Ground—Circuitground.

Output—Internalswitch.Thevoltageatthispinswitchesbetween(+VIN−VSAT)andapproximately−0.5V,withadutycycleofapproximatelyVOUT/VIN.Tominimizecouplingtosensitivecircuitry,thePCboardcopperareaconnectedtothispinshouldbekepttoaminimum.

Feedback—Sensestheregulatedoutputvoltagetocom-pletethefeedbackloop.

ON/OFF—Allowstheswitchingregulatorcircuittobeshutdownusinglogiclevelsignalsthusdroppingthetotalinputsupplycurrenttoapproximately80µA.Pullingthispinbelowathresholdvoltageofapproximately1.3Vturnstheregulatoron,andpullingthispinabove1.3V(uptoamaximumof25V)shutstheregulatordown.Ifthisshutdownfeatureisnotneeded,theON/OFFpincanbewiredtothegroundpinoritcanbeleftopen,ineithercasetheregulatorwillbeintheONcondition.

EXTERNALCOMPONENTS

INPUTCAPACITOR

CIN—AlowESRaluminumortantalumbypasscapacitorisneededbetweentheinputpinandgroundpin.Itmustbelo-catedneartheregulatorusingshortleads.Thiscapacitorpreventslargevoltagetransientsfromappearingatthein-put,andprovidestheinstantaneouscurrentneededeachtimetheswitchturnson.

TheimportantparametersfortheInputcapacitorarethevoltageratingandtheRMScurrentrating.BecauseoftherelativelyhighRMScurrentsflowinginabuckregulator’sin-putcapacitor,thiscapacitorshouldbechosenforitsRMScurrentratingratherthanitscapacitanceorvoltageratings,

www.national.com

18

althoughthecapacitancevalueandvoltageratingaredi-rectlyrelatedtotheRMScurrentrating.

TheRMScurrentratingofacapacitorcouldbeviewedasacapacitor’spowerrating.TheRMScurrentflowingthroughthecapacitorsinternalESRproducespowerwhichcausestheinternaltemperatureofthecapacitortorise.TheRMScurrentratingofacapacitorisdeterminedbytheamountofcurrentrequiredtoraisetheinternaltemperatureapproxi-mately10˚Caboveanambienttemperatureof105˚C.Theabilityofthecapacitortodissipatethisheattothesurround-ingairwilldeterminetheamountofcurrentthecapacitorcansafelysustain.CapacitorsthatarephysicallylargeandhavealargesurfaceareawilltypicallyhavehigherRMScurrentratings.Foragivencapacitorvalue,ahighervoltageelectro-lyticcapacitorwillbephysicallylargerthanalowervoltagecapacitor,andthusbeabletodissipatemoreheattothesur-roundingair,andthereforewillhaveahigherRMScurrentrating.

TheconsequencesofoperatinganelectrolyticcapacitorabovetheRMScurrentratingisashortenedoperatinglife.Thehighertemperaturespeedsuptheevaporationoftheca-pacitor’selectrolyte,resultingineventualfailure.

Selectinganinputcapacitorrequiresconsultingthemanu-facturersdatasheetformaximumallowableRMSripplecur-rent.Foramaximumambienttemperatureof40˚C,agen-eralguidelinewouldbetoselectacapacitorwitharipplecurrentratingofapproximately50%oftheDCloadcurrent.Forambienttemperaturesupto70˚C,acurrentratingof75%oftheDCloadcurrentwouldbeagoodchoiceforaconservativedesign.Thecapacitorvoltageratingmustbeatleast1.25timesgreaterthanthemaximuminputvoltage,andoftenamuchhighervoltagecapacitorisneededtosat-isfytheRMScurrentrequirements.

AgraphshowninFigure13showstherelationshipbetweenanelectrolyticcapacitorvalue,itsvoltagerating,andtheRMScurrentitisratedfor.ThesecurveswereobtainedfromtheNichicon“PL”seriesoflowESR,highreliabilityelectro-

ApplicationInformation

(Continued)

lyticcapacitorsdesignedforswitchingregulatorapplications.Othercapacitormanufacturersoffersimilartypesofcapaci-tors,butalwayscheckthecapacitordatasheet.

“Standard”electrolyticcapacitorstypicallyhavemuchhigherESRnumbers,lowerRMScurrentratingsandtypicallyhaveashorteroperatinglifetime.

Becauseoftheirsmallsizeandexcellentperformance,sur-facemountsolidtantalumcapacitorsareoftenusedforinputbypassing,butseveralprecautionsmustbeobserved.Asmallpercentageofsolidtantalumcapacitorscanshortiftheinrushcurrentratingisexceeded.Thiscanhappenatturnonwhentheinputvoltageissuddenlyapplied,andofcourse,higherinputvoltagesproducehigherinrushcurrents.Sev-eralcapacitormanufacturersdoa100%surgecurrenttest-ingontheirproductstominimizethispotentialproblem.Ifhighturnoncurrentsareexpected,itmaybenecessarytolimitthiscurrentbyaddingeithersomeresistanceorinduc-tancebeforethetantalumcapacitor,orselectahighervolt-agecapacitor.Aswithaluminumelectrolyticcapacitors,theRMSripplecurrentratingmustbesizedtotheloadcurrent.FEEDFORWARDCAPACITOR

(AdjustableOutputVoltageVersion)

CFF—AFeedforwardCapacitorCFF,shownacrossR2inFigure1isusedwhentheouputvoltageisgreaterthan10VorwhenCOUThasaverylowESR.Thiscapacitoraddsleadcompensationtothefeedbackloopandincreasesthephasemarginforbetterloopstability.ForCFFselection,seethede-signproceduresection.

allowableoutputripplevoltage,typically1%to2%oftheout-putvoltage.Butiftheselectedcapacitor’sESRisextremelylow,thereisapossibilityofanunstablefeedbackloop,re-sultinginanoscillationattheoutput.Usingthecapacitorslistedinthetables,orsimilartypes,willprovidedesignsolu-tionsunderallconditions.

Ifverylowoutputripplevoltage(lessthan15mV)isre-quired,refertothesectiononOutputVoltageRippleandTransientsforapostripplefilter.

Analuminumelectrolyticcapacitor’sESRvalueisrelatedtothecapacitancevalueanditsvoltagerating.Inmostcases,highervoltageelectrolyticcapacitorshavelowerESRvalues(seeFigure14).Often,capacitorswithmuchhighervoltageratingsmaybeneededtoprovidethelowESRvaluesre-quiredforlowoutputripplevoltage.

Theoutputcapacitorformanydifferentswitcherdesignsof-tencanbesatisfiedwithonlythreeorfourdifferentcapacitorvaluesandseveraldifferentvoltageratings.SeethequickdesigncomponentselectiontablesinFigure2and4fortypi-calcapacitorvalues,voltageratings,andmanufacturersca-pacitortypes.

Electrolyticcapacitorsarenotrecommendedfortempera-turesbelow−25˚C.TheESRrisesdramaticallyatcoldtem-peraturesandtypicallyrises3X@−25˚Candasmuchas10Xat−40˚C.SeecurveshowninFigure15.

SolidtantalumcapacitorshaveamuchbetterESRspecforcoldtemperaturesandarerecommendedfortemperaturesbelow−25˚C.

DS012583-29

FIGURE14.CapacitorESRvsCapacitorVoltageRating

(TypicalLowESRElectrolyticCapacitor)

DS012583-28

FIGURE13.RMSCurrentRatingsforLowESR

ElectrolyticCapacitors(Typical)OUTPUTCAPACITOR

COUT—Anoutputcapacitorisrequiredtofiltertheoutputandprovideregulatorloopstability.LowimpedanceorlowESRElectrolyticorsolidtantalumcapacitorsdesignedforswitchingregulatorapplicationsmustbeused.Whenselect-inganoutputcapacitor,theimportantcapacitorparametersare;the100kHzEquivalentSeriesResistance(ESR),theRMSripplecurrentrating,voltagerating,andcapacitancevalue.Fortheoutputcapacitor,theESRvalueisthemostimportantparameter.

TheoutputcapacitorrequiresanESRvaluethathasanup-perandlowerlimit.Forlowoutputripplevoltage,alowESRvalueisneeded.Thisvalueisdeterminedbythemaximum

19

CATCHDIODE

Buckregulatorsrequireadiodetoprovideareturnpathfortheinductorcurrentwhentheswitchturnsoff.ThismustbeafastdiodeandmustbelocatedclosetotheLM2596usingshortleadsandshortprintedcircuittraces.

Becauseoftheirveryfastswitchingspeedandlowforwardvoltagedrop,Schottkydiodesprovidethebestperformance,especiallyinlowoutputvoltageapplications(5Vandlower).Ultra-fastrecovery,orHigh-Efficiencyrectifiersarealsoagoodchoice,butsometypeswithanabruptturnoffcharac-teristicmaycauseinstabilityorEMIproblems.Ultra-fastre-coverydiodestypicallyhavereverserecoverytimesof50nsorless.Rectifierssuchasthe1N5400seriesaremuchtooslowandshouldnotbeused.

www.national.com

ApplicationInformation

(Continued)

DS012583-31

DS012583-30

FIGURE15.CapacitorESRChangevsTemperatureINDUCTORSELECTION

Allswitchingregulatorshavetwobasicmodesofoperation;continuousanddiscontinuous.Thedifferencebetweenthetwotypesrelatestotheinductorcurrent,whetheritisflowingcontinuously,orifitdropstozeroforaperiodoftimeinthenormalswitchingcycle.Eachmodehasdistinctivelydifferentoperatingcharacteristics,whichcanaffecttheregulatorsperformanceandrequirements.Mostswitcherdesignswilloperateinthediscontinuousmodewhentheloadcurrentislow.

TheLM2596(oranyoftheSimpleSwitcherfamily)canbeusedforbothcontinuousordiscontinuousmodesofopera-tion.

Inmanycasesthepreferredmodeofoperationisthecon-tinuousmode.Itoffersgreateroutputpower,lowerpeakswitch,inductoranddiodecurrents,andcanhavelowerout-putripplevoltage.Butitdoesrequirelargerinductorvaluestokeeptheinductorcurrentflowingcontinuously,especiallyatlowoutputloadcurrentsand/orhighinputvoltages.Tosimplifytheinductorselectionprocess,aninductorselec-tionguide(nomograph)wasdesigned(seeFigure4through8).Thisguideassumesthattheregulatorisoperatinginthecontinuousmode,andselectsaninductorthatwillallowapeak-to-peakinductorripplecurrenttobeacertainpercent-ageofthemaximumdesignloadcurrent.Thispeak-to-peakinductorripplecurrentpercentageisnotfixed,butisallowedtochangeasdifferentdesignloadcurrentsareselected.(SeeFigure16.)

FIGURE16.(∆IIND)Peak-to-PeakInductor

RippleCurrent(asaPercentageoftheLoadCurrent)

vsLoadCurrentByallowingthepercentageofinductorripplecurrenttoin-creaseforlowloadcurrents,theinductorvalueandsizecanbekeptrelativelylow.

Whenoperatinginthecontinuousmode,theinductorcurrentwaveformrangesfromatriangulartoasawtoothtypeofwaveform(dependingontheinputvoltage),withtheaveragevalueofthiscurrentwaveformequaltotheDCoutputloadcurrent.

Inductorsareavailableindifferentstylessuchaspotcore,toroid,E-core,bobbincore,etc.,aswellasdifferentcorema-terials,suchasferritesandpowderediron.Theleastexpen-sive,thebobbin,rodorstickcore,consistsofwirewoundonaferritebobbin.Thistypeofconstructionmakesforaninex-pensiveinductor,butsincethemagneticfluxisnotcom-pletelycontainedwithinthecore,itgeneratesmoreElectro-MagneticInterference(EMl).Thismagneticfluxcaninducevoltagesintonearbyprintedcircuittraces,thuscaus-ingproblemswithboththeswitchingregulatoroperationandnearbysensitivecircuitry,andcangiveincorrectscoperead-ingsbecauseofinducedvoltagesinthescopeprobe.AlsoseesectiononOpenCoreInductors.

WhenmultipleswitchingregulatorsarelocatedonthesamePCboard,opencoremagneticscancauseinterferencebe-tweentwoormoreoftheregulatorcircuits,especiallyathighcurrents.AtorroidorE-coreinductor(closedmagneticstruc-ture)shouldbeusedinthesesituations.

TheinductorslistedintheselectionchartincludeferriteE-coreconstructionforSchott,ferritebobbincoreforRencoandCoilcraft,andpowderedirontoroidforPulseEngineer-ing.

Exceedinganinductor’smaximumcurrentratingmaycausetheinductortooverheatbecauseofthecopperwirelosses,orthecoremaysaturate.Iftheinductorbeginstosaturate,theinductancedecreasesrapidlyandtheinductorbeginstolookmainlyresistive(theDCresistanceofthewinding).Thiscancausetheswitchcurrenttoriseveryrapidlyandforcetheswitchintoacycle-by-cyclecurrentlimit,thusreducingtheDCoutputloadcurrent.Thiscanalsoresultinoverheat-ingoftheinductorand/ortheLM2596.Differentinductortypeshavedifferentsaturationcharacteristics,andthisshouldbekeptinmindwhenselectinganinductor.Theinductormanufacturer’sdatasheetsincludecurrentandenergylimitstoavoidinductorsaturation.

www.national.com20

ApplicationInformation

DISCONTINUOUSMODEOPERATION

(Continued)

Theselectionguidechoosesinductorvaluessuitableforcontinuousmodeoperation,butforlowcurrentapplicationsand/orhighinputvoltages,adiscontinuousmodedesignmaybeabetterchoice.Itwoulduseaninductorthatwouldbephysicallysmaller,andwouldneedonlyonehalftoonethirdtheinductancevalueneededforacontinuousmodede-sign.Thepeakswitchandinductorcurrentswillbehigherinadiscontinuousdesign,butattheselowloadcurrents(1Aandbelow),themaximumswitchcurrentwillstillbelessthantheswitchcurrentlimit.

Discontinuousoperationcanhavevoltagewaveformsthatareconsiderabledifferentthanacontinuousdesign.Theout-putpin(switch)waveformcanhavesomedampedsinusoi-dalringingpresent.(SeeTypicalPerformanceCharacteris-ticsphototitledDiscontinuousModeSwitchingWaveforms)Thisringingisnormalfordiscontinuousoperation,andisnotcausedbyfeedbackloopinstabilities.Indiscontinuousop-eration,thereisaperiodoftimewhereneithertheswitchorthediodeareconducting,andtheinductorcurrenthasdroppedtozero.Duringthistime,asmallamountofenergycancirculatebetweentheinductorandtheswitch/diodeparasiticcapacitancecausingthischaracteristicringing.Nor-mallythisringingisnotaproblem,unlesstheamplitudebe-comesgreatenoughtoexceedtheinputvoltage,andeventhen,thereisverylittleenergypresenttocausedamage.Differentinductortypesand/orcorematerialsproducediffer-entamountsofthischaracteristicringing.Ferritecoreinduc-torshaveverylittlecorelossandthereforeproducethemostringing.Thehighercorelossofpowderedironinductorspro-ducelessringing.Ifdesired,aseriesRCcouldbeplacedinparallelwiththeinductortodampentheringing.Thecom-puteraideddesignsoftwareSwitchersMadeSimple(ver-sion4.3)willprovideallcomponentvaluesforcontinuousanddiscontinuousmodesofoperation.

inginoscillationproblems.Ifverylowoutputripplevoltageisneeded(lessthan20mV),apostripplefilterisrecom-mended.(SeeFigure1.)Theinductancerequiredistypicallybetween1µHand5µH,withlowDCresistance,tomaintaingoodloadregulation.AlowESRoutputfiltercapacitorisalsorequiredtoassuregooddynamicloadresponseandripplereduction.TheESRofthiscapacitormaybeaslowasde-sired,becauseitisoutoftheregulatorfeedbackloop.ThephotoshowninFigure17showsatypicaloutputripplevolt-age,withandwithoutapostripplefilter.

Whenobservingoutputripplewithascope,itisessentialthatashort,lowinductancescopeprobegroundconnectionbeused.Mostscopeprobemanufacturersprovideaspecialprobeterminatorwhichissolderedontotheregulatorboard,preferableattheoutputcapacitor.Thisprovidesaveryshortscopegroundthuseliminatingtheproblemsassociatedwiththe3inchgroundleadnormallyprovidedwiththeprobe,andprovidesamuchcleanerandmoreaccuratepictureoftheripplevoltagewaveform.

Thevoltagespikesarecausedbythefastswitchingactionoftheoutputswitchandthediode,andtheparasiticinductanceoftheoutputfiltercapacitor,anditsassociatedwiring.Tominimizethesevoltagespikes,theoutputcapacitorshouldbedesignedforswitchingregulatorapplications,andtheleadlengthsmustbekeptveryshort.Wiringinductance,straycapacitance,aswellasthescopeprobeusedtoevalu-atethesetransients,allcontributetotheamplitudeofthesespikes.

Whenaswitchingregulatorisoperatinginthecontinuousmode,theinductorcurrentwaveformrangesfromatriangu-lartoasawtoothtypeofwaveform(dependingontheinputvoltage).Foragiveninputandoutputvoltage,thepeak-to-peakamplitudeofthisinductorcurrentwaveformre-mainsconstant.Astheloadcurrentincreasesordecreases,theentiresawtoothcurrentwaveformalsorisesandfalls.Theaveragevalue(orthecenter)ofthiscurrentwaveformisequaltotheDCloadcurrent.

Iftheloadcurrentdropstoalowenoughlevel,thebottomofthesawtoothcurrentwaveformwillreachzero,andtheswitcherwillsmoothlychangefromacontinuoustoadiscon-tinuousmodeofoperation.Mostswitcherdesigns(irregard-lesshowlargetheinductorvalueis)willbeforcedtorundis-continuousiftheoutputislightlyloaded.Thisisaperfectlyacceptablemodeofoperation.

DS012583-32

FIGURE17.PostRippleFilterWaveform

OUTPUTVOLTAGERIPPLEANDTRANSIENTS

Theoutputvoltageofaswitchingpowersupplyoperatinginthecontinuousmodewillcontainasawtoothripplevoltageattheswitcherfrequency,andmayalsocontainshortvoltagespikesatthepeaksofthesawtoothwaveform.

Theoutputripplevoltageisafunctionoftheinductorsaw-toothripplecurrentandtheESRoftheoutputcapacitor.Atypicaloutputripplevoltagecanrangefromapproximately0.5%to3%oftheoutputvoltage.Toobtainlowripplevolt-age,theESRoftheoutputcapacitormustbelow,however,cautionmustbeexercisedwhenusingextremelylowESRcapacitorsbecausetheycanaffecttheloopstability,result-21

DS012583-33

FIGURE18.Peak-to-PeakInductorRippleCurrentvsLoadCurrent

Inaswitchingregulatordesign,knowingthevalueofthepeak-to-peakinductorripplecurrent(∆IIND)canbeusefulfordetermininganumberofothercircuitparameters.Param-eterssuchas,peakinductororpeakswitchcurrent,mini-www.national.com

ApplicationInformation

(Continued)

mumloadcurrentbeforethecircuitbecomesdiscontinuous,outputripplevoltageandoutputcapacitorESRcanallbecalculatedfromthepeak-to-peak∆IIND.WhentheinductornomographsshowninFigure4through8areusedtoselectaninductorvalue,thepeak-to-peakinductorripplecurrentcanimmediatelybedetermined.ThecurveshowninFigure18showstherangeof(∆IIND)thatcanbeexpectedfordiffer-entloadcurrents.Thecurvealsoshowshowthepeak-to-peakinductorripplecurrent(∆IIND)changesasyougofromthelowerbordertotheupperborder(foragivenloadcurrent)withinaninductanceregion.Theupperborderrep-resentsahigherinputvoltage,whilethelowerborderrepre-sentsalowerinputvoltage(seeInductorSelectionGuides).Thesecurvesareonlycorrectforcontinuousmodeopera-tion,andonlyiftheinductorselectionguidesareusedtose-lecttheinductorvalue

Considerthefollowingexample:

VOUT=5V,maximumloadcurrentof2.5A

VIN=12V,nominal,varyingbetween10Vand16V.

TheselectionguideinFigure5showsthattheverticallinefora2.5Aloadcurrent,andthehorizontallineforthe12Vin-putvoltageintersectapproximatelymidwaybetweentheup-perandlowerbordersofthe33µHinductanceregion.A33µHinductorwillallowapeak-to-peakinductorcurrent(∆IIND)toflowthatwillbeapercentageofthemaximumloadcurrent.ReferringtoFigure18,followthe2.5Alineapproxi-matelymidwayintotheinductanceregion,andreadthepeak-to-peakinductorripplecurrent(∆IIND)onthelefthandaxis(approximately620mAp-p).

Astheinputvoltageincreasesto16V,itapproachestheup-perborderoftheinductanceregion,andtheinductorripplecurrentincreases.ReferringtothecurveinFigure18,itcanbeseenthatforaloadcurrentof2.5A,thepeak-to-peakin-ductorripplecurrent(∆IIND)is620mAwith12Vin,andcanrangefrom740mAattheupperborder(16Vin)to500mAatthelowerborder(10Vin).

Oncethe∆IINDvalueisknown,thefollowingformulascanbeusedtocalculateadditionalinformationabouttheswitchingregulatorcircuit.

1.PeakInductororpeakswitchcurrent

OPENCOREINDUCTORS

Anotherpossiblesourceofincreasedoutputripplevoltageorunstableoperationisfromanopencoreinductor.Ferritebobbinorstickinductorshavemagneticlinesoffluxflowingthroughtheairfromoneendofthebobbintotheotherend.ThesemagneticlinesoffluxwillinduceavoltageintoanywireorPCboardcoppertracethatcomeswithintheinduc-tor’smagneticfield.Thestrengthofthemagneticfield,theorientationandlocationofthePCcoppertracetothemag-neticfield,andthedistancebetweenthecoppertraceandtheinductor,determinetheamountofvoltagegeneratedinthecoppertrace.AnotherwayoflookingatthisinductivecouplingistoconsiderthePCboardcoppertraceasoneturnofatransformer(secondary)withtheinductorwindingastheprimary.Manymillivoltscanbegeneratedinacoppertracelocatednearanopencoreinductorwhichcancausestabilityproblemsorhighoutputripplevoltageproblems.Ifunstableoperationisseen,andanopencoreinductorisused,it’spossiblethatthelocationoftheinductorwithre-specttootherPCtracesmaybetheproblem.Todetermineifthisistheproblem,temporarilyraisetheinductorawayfromtheboardbyseveralinchesandthencheckcircuitop-eration.Ifthecircuitnowoperatescorrectly,thenthemag-neticfluxfromtheopencoreinductoriscausingtheproblem.SubstitutingaclosedcoreinductorsuchasatorroidorE-corewillcorrecttheproblem,orre-arrangingthePClayoutmaybenecessary.MagneticfluxcuttingtheICdevicegroundtrace,feedbacktrace,orthepositiveornegativetracesoftheoutputcapacitorshouldbeminimized.

Sometimes,locatingatracedirectlybeneathabobbinin-ductorwillprovidegoodresults,provideditisexactlyinthecenteroftheinductor(becausetheinducedvoltagescancelthemselvesout),butifitisoffcenteronedirectionortheother,thenproblemscouldarise.Iffluxproblemsarepresent,eventhedirectionoftheinductorwindingcanmakeadifferenceinsomecircuits.

Thisdiscussiononopencoreinductorsisnottofrightentheuser,buttoalerttheuseronwhatkindofproblemstowatchoutforwhenusingthem.Opencorebobbinor“stick”induc-torsareaninexpensive,simplewayofmakingacompactef-ficientinductor,andtheyareusedbythemillionsinmanydif-ferentapplications.

THERMALCONSIDERATIONS

TheLM2596isavailableintwopackages,a5-pinTO-220(T)anda5-pinsurfacemountTO-263(S).

2.

Minimumloadcurrentbeforethecircuitbecomesdis-continuous

3.4.

OutputRippleVoltage=(∆IIND)x(ESRofCOUT)=0.62Ax0.1Ω=62mVp-p

TheTO-220packageneedsaheatsinkundermostcondi-tions.Thesizeoftheheatsinkdependsontheinputvoltage,theoutputvoltage,theloadcurrentandtheambienttem-perature.ThecurvesinFigure19showtheLM2596Tjunc-tiontemperaturerisesaboveambienttemperaturefora3Aloadanddifferentinputandoutputvoltages.ThedataforthesecurveswastakenwiththeLM2596T(TO-220pack-age)operatingasabuckswitchingregulatorinanambienttemperatureof25˚C(stillair).Thesetemperaturerisenum-bersareallapproximateandtherearemanyfactorsthatcanaffectthesetemperatures.Higherambienttemperaturesre-quiremoreheatsinking.

TheTO-263surfacemountpackagetabisdesignedtobesolderedtothecopperonaprintedcircuitboard.Thecopperandtheboardaretheheatsinkforthispackageandtheotherheatproducingcomponents,suchasthecatchdiodeandinductor.ThePCboardcopperareathatthepackageissolderedtoshouldbeatleast0.4in2,andideallyshouldhave2ormoresquareinchesof2oz.(0.0028)in)copper.Additionalcopperareaimprovesthethermalcharacteristics,

www.national.com22

ApplicationInformation

(Continued)

CircuitDataforTemperatureRiseCurve

TO-220Package(T)

CapacitorsInductorDiodePCboard

ThroughholeelectrolyticThroughhole,Renco

Throughhole,5A40V,Schottky

3squareinchessinglesided2oz.copper(0.0028\")

butwithcopperareasgreaterthanapproximately6in2,onlysmallimprovementsinheatdissipationarerealized.Iffur-therthermalimprovementsareneeded,doublesided,multi-layerPCboardwithlargecopperareasand/orairflowarerecommended.

ThecurvesshowninFigure20showtheLM2596S(TO-263package)junctiontemperatureriseaboveambienttempera-turewitha2Aloadforvariousinputandoutputvoltages.ThisdatawastakenwiththecircuitoperatingasabuckswitchingregulatorwithallcomponentsmountedonaPCboardtosimulatethejunctiontemperatureunderactualoperatingconditions.Thiscurvecanbeusedforaquickcheckfortheapproximatejunctiontemperatureforvariousconditions,butbeawarethattherearemanyfactorsthatcanaffectthejunc-tiontemperature.Whenloadcurrentshigherthan2Aareused,doublesidedormultilayerPCboardswithlargecop-perareasand/orairflowmightbeneeded,especiallyforhighambienttemperaturesandhighoutputvoltages.

Forthebestthermalperformance,widecoppertracesandgenerousamountsofprintedcircuitboardcoppershouldbeusedintheboardlayout.(Oneexceptiontothisistheoutput(switch)pin,whichshouldnothavelargeareasofcopper.)Largeareasofcopperprovidethebesttransferofheat(lowerthermalresistance)tothesurroundingair,andmovingairlowersthethermalresistanceevenfurther.

Packagethermalresistanceandjunctiontemperaturerisenumbersareallapproximate,andtherearemanyfactorsthatwillaffectthesenumbers.Someofthesefactorsincludeboardsize,shape,thickness,position,location,andevenboardtemperature.Otherfactorsare,tracewidth,totalprintedcircuitcopperarea,copperthickness,single-ordouble-sided,multilayerboardandtheamountofsolderontheboard.TheeffectivenessofthePCboardtodissipateheatalsodependsonthesize,quantityandspacingofothercomponentsontheboard,aswellaswhetherthesurround-ingairisstillormoving.Furthermore,someofthesecompo-nentssuchasthecatchdiodewilladdheattothePCboardandtheheatcanvaryastheinputvoltagechanges.Fortheinductor,dependingonthephysicalsize,typeofcoremate-rialandtheDCresistance,itcouldeitheractasaheatsinktakingheatawayfromtheboard,oritcouldaddheattotheboard.

FIGURE19.JunctionTemperatureRise,TO-220

DS012583-35

CircuitDataforTemperatureRiseCurve

TO-263Package(S)

CapacitorsInductorDiodePCboard

Surfacemounttantalum,molded“D”sizeSurfacemount,PulseEngineering,68µHSurfacemount,5A40V,Schottky9squareinchessinglesided2oz.copper(0.0028\")

FIGURE20.JunctionTemperatureRise,TO-263

DS012583-36

FIGURE21.DelayedStartup

DS012583-34

23www.national.com

ApplicationInformation

(Continued)

tional47kΩresistorisneededfromtheON/OFFpintothegroundpintostaywithinthe25VmaximumlimitoftheON/OFFpin.

INVERTINGREGULATOR

ThecircuitinFigure25convertsapositiveinputvoltagetoanegativeoutputvoltagewithacommonground.Thecircuitoperatesbybootstrappingtheregulator’sgroundpintothenegativeoutputvoltage,thengroundingthefeedbackpin,theregulatorsensestheinvertedoutputvoltageandregu-latesit.

DS012583-37

FIGURE22.UndervoltageLockout

forBuckRegulator

DELAYEDSTARTUP

ThecircuitinFigure21usesthetheON/OFFpintoprovideatimedelaybetweenthetimetheinputvoltageisappliedandthetimetheoutputvoltagecomesup(onlythecircuitrypertainingtothedelayedstartupisshown).Astheinputvolt-agerises,thechargingofcapacitorC1pullstheON/OFFpinhigh,keepingtheregulatoroff.Oncetheinputvoltagereachesitsfinalvalueandthecapacitorstopscharging,andresistorR2pullstheON/OFFpinlow,thusallowingthecir-cuittostartswitching.ResistorR1isincludedtolimitthemaximumvoltageappliedtotheON/OFFpin(maximumof25V),reducespowersupplynoisesensitivity,andalsolimitsthecapacitor,C1,dischargecurrent.Whenhighinputripplevoltageexists,avoidlongdelaytime,becausethisripplecanbecoupledintotheON/OFFpinandcauseproblems.Thisdelayedstartupfeatureisusefulinsituationswheretheinputpowersourceislimitedintheamountofcurrentitcandeliver.Itallowstheinputvoltagetorisetoahighervoltagebeforetheregulatorstartsoperating.Buckregulatorsrequirelessinputcurrentathigherinputvoltages.

UNDERVOLTAGELOCKOUT

Someapplicationsrequiretheregulatortoremainoffuntiltheinputvoltagereachesapredeterminedvoltage.Anund-ervoltagelockoutfeatureappliedtoabuckregulatorisshowninFigure22,whileFigure23and24appliesthesamefeaturetoaninvertingcircuit.ThecircuitinFigure23fea-turesaconstantthresholdvoltageforturnonandturnoff(zenervoltageplusapproximatelyonevolt).Ifhysteresisisneeded,thecircuitinFigure24hasaturnONvoltagewhichisdifferentthantheturnOFFvoltage.Theamountofhyster-esisisapproximatelyequaltothevalueoftheoutputvolt-age.Ifzenervoltagesgreaterthan25Vareused,anaddi-

DS012583-38

ThiscircuithasanON/OFFthresholdofapproximately13V.

FIGURE23.UndervoltageLockout

forInvertingRegulator

ThisexampleusestheLM2596-5.0togeneratea−5Vout-put,butotheroutputvoltagesarepossiblebyselectingotheroutputvoltageversions,includingtheadjustableversion.Sincethisregulatortopologycanproduceanoutputvoltagethatiseithergreaterthanorlessthantheinputvoltage,themaximumoutputcurrentgreatlydependsonboththeinputandoutputvoltage.ThecurveshowninFigure26providesaguideastotheamountofoutputloadcurrentpossibleforthedifferentinputandoutputvoltageconditions.

Themaximumvoltageappearingacrosstheregulatoristheabsolutesumoftheinputandoutputvoltage,andthismustbelimitedtoamaximumof40V.Forexample,whenconvert-ing+20Vto−12V,theregulatorwouldsee32Vbetweentheinputpinandgroundpin.TheLM2596hasamaximuminputvoltagespecof40V.

Additionaldiodesarerequiredinthisregulatorconfiguration.DiodeD1isusedtoisolateinputvoltagerippleornoisefromcouplingthroughtheCINcapacitortotheoutput,underlightornoloadconditions.Also,thisdiodeisolationchangesthetopologytoclosleyresembleabuckconfigurationthuspro-vidinggoodclosedloopstability.ASchottkydiodeisrecom-mendedforlowinputvoltages,(becauseofitslowervoltagedrop)butforhigherinputvoltages,afastrecoverydiodecouldbeused.

WithoutdiodeD3,whentheinputvoltageisfirstapplied,thechargingcurrentofCINcanpulltheoutputpositivebysev-eralvoltsforashortperiodoftime.AddingD3preventstheoutputfromgoingpositivebymorethanadiodevoltage.

www.national.com24

ApplicationInformation

(Continued)

DS012583-39

Thiscircuithashysteresis

RegulatorstartsswitchingatVIN=13VRegulatorstopsswitchingatVIN=8V

FIGURE24.UndervoltageLockoutwithHysteresisforInvertingRegulator

DS012583-40

CIN470COUT220—68µF/25VTant.Sprague595DµF/50VElec.PanasonicHFQ

—47µF/20VTant.Sprague595DµF/25VElec.PanasonicHFQ

FIGURE25.Inverting−5VRegulatorwithDelayedStartup

Thistypeofinvertingregulatorcanrequirerelativelylargeamountsofinputcurrentwhenstartingup,evenwithlightloads.InputcurrentsashighastheLM2596currentlimit(ap-prox4.5A)areneededforatleast2msormore,untiltheout-putreachesitsnominaloutputvoltage.Theactualtimede-pendsontheoutputvoltageandthesizeoftheoutputcapacitor.Inputpowersourcesthatarecurrentlimitedorsourcesthatcannotdeliverthesecurrentswithoutgettingloadeddown,maynotworkcorrectly.Becauseoftherela-tivelyhighstartupcurrentsrequiredbytheinvertingtopology,thedelayedstartupfeature(C1,R1andR2)showninFigure25isrecommended.Bydelayingtheregulatorstartup,theinputcapacitorisallowedtochargeuptoahighervoltagebeforetheswitcherbeginsoperating.Aportionofthehighin-putcurrentneededforstartupisnowsuppliedbytheinputcapacitor(CIN).Forseverestartupconditions,theinputca-pacitorcanbemademuchlargerthannormal.INVERTINGREGULATORSHUTDOWNMETHODSTousetheON/OFFpininastandardbuckconfigurationissimple,pullitbelow1.3V(@25˚C,referencedtoground)toturnregulatorON,pullitabove1.3VtoshuttheregulatorOFF.Withtheinvertingconfiguration,somelevelshiftingisrequired,becausethegroundpinoftheregulatorisnolongeratground,butisnowsettingatthenegativeoutputvoltagelevel.TwodifferentshutdownmethodsforinvertingregulatorsareshowninFigure27and28.DS012583-41

FIGURE26.InvertingRegulatorTypicalLoadCurrentBecauseofdifferencesintheoperationoftheinvertingregu-lator,thestandarddesignprocedureisnotusedtoselecttheinductorvalue.Inthemajorityofdesigns,a33µH,3.5Ain-ductoristhebestchoice.Capacitorselectioncanalsobenarroweddowntojustafewvalues.UsingthevaluesshowninFigure25willprovidegoodresultsinthemajorityofinvert-ingdesigns.

25www.national.com

ApplicationInformation

(Continued)

DS012583-42

FIGURE27.InvertingRegulatorGroundReferencedShutdown

DS012583-43

FIGURE28.InvertingRegulatorGroundReferencedShutdownusingOptoDevice

TYPICALTHROUGHHOLEPCBOARDLAYOUT,FIXEDOUTPUT(1XSIZE),DOUBLESIDED

DS012583-44

CIN—470µF,50V,AluminumElectrolyticPanasonic,“HFQSeries”COUT—330µF,35V,AluminumElectrolyticPanasonic,“HFQSeries”D1—5A,40VSchottkyRectifier,1N5825L1—47µH,L39,Renco,ThroughHoleThermalloyHeatSink#7020

www.national.com26

ApplicationInformation

(Continued)

TYPICALTHROUGHHOLEPCBOARDLAYOUT,ADJUSTABLEOUTPUT(1XSIZE),DOUBLESIDED

DS012583-45

CIN—470µF,50V,AluminumElectrolyticPanasonic,“HFQSeries”COUT—220µF,35VAluminumElectrolyticPanasonic,“HFQSeries”D1—5A,40VSchottkyRectifier,1N5825L1—47µH,L39,Renco,ThroughHoleR1—1kΩ,1%

R2—UseformulainDesignProcedureCFF—SeeFigure3.

ThermalloyHeatSink#7020

FIGURE29.PCBoardLayout

27www.national.com

PhysicalDimensions

inches(millimeters)unlessotherwisenoted

5-LeadTO-220(T)

OrderNumberLM2596T-3.3,LM2596T-5.0,

LM2596T-12orLM2596T-ADJNSPackageNumberT05D

www.national.com28

LM2596SIMPLESWITCHERPowerConverter150kHz3AStep-DownVoltageRegulatorPhysicalDimensions

inches(millimeters)unlessotherwisenoted(Continued)

5-LeadTO-263SurfaceMountPackage(S)OrderNumberLM2596S-3.3,LM2596S-5.0,

LM2596S-12orLM2596S-ADJNSPackageNumberTS5B

LIFESUPPORTPOLICY

NATIONAL’SPRODUCTSARENOTAUTHORIZEDFORUSEASCRITICALCOMPONENTSINLIFESUPPORTDEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFTHEPRESIDENTANDGENERALCOUNSELOFNATIONALSEMICONDUCTORCORPORATION.Asusedherein:1.Lifesupportdevicesorsystemsaredevicesorsystemswhich,(a)areintendedforsurgicalimplantintothebody,or(b)supportorsustainlife,andwhosefailuretoperformwhenproperlyusedinaccordancewithinstructionsforuseprovidedinthelabeling,canbereasonablyexpectedtoresultinasignificantinjurytotheuser.

NationalSemiconductorCorporationAmericas

Tel:1-800-272-9959Fax:1-800-737-7018Email:support@nsc.com

www.national.com

NationalSemiconductorEurope

Fax:+49(0)180-5308586Email:europe.support@nsc.com

DeutschTel:+49(0)180-5308585EnglishTel:+49(0)180-5327832FrançaisTel:+49(0)180-5329358ItalianoTel:+49(0)180-5341680

2.Acriticalcomponentisanycomponentofalifesupportdeviceorsystemwhosefailuretoperformcanbereasonablyexpectedtocausethefailureofthelifesupportdeviceorsystem,ortoaffectitssafetyoreffectiveness.

NationalSemiconductorAsiaPacificCustomerResponseGroupTel:65-2544466Fax:65-2504466

Email:sea.support@nsc.com

NationalSemiconductorJapanLtd.

Tel:81-3-5639-7560Fax:81-3-5639-7507

Nationaldoesnotassumeanyresponsibilityforuseofanycircuitrydescribed,nocircuitpatentlicensesareimpliedandNationalreservestherightatanytimewithoutnoticetochangesaidcircuitryandspecifications.

因篇幅问题不能全部显示,请点此查看更多更全内容