您的当前位置:首页正文

动力传动圆锥渐开线齿轮的设计、制造和应用

2024-02-24 来源:步旅网
维普资讯 http://www.cqvip.com 第21卷第4期 2007年12月 传 动 技 术 Vo1.21 No.4 Deeember 2007 DRIVE SYSTEM TECHNIQUE 文章编号:1006—8244(2007)04—0003—12 动力传动圆锥渐开线齿轮的设计、制造和应用 Application,Design,and Manufacturing of Conical Involute Gears for Power Transmissions Dr.J.B6rner,K.Humm,Dr.F.Joachim,Dr.H. karia ZF FrieartchSha fen AG,88038 Friearichsha fen,Germany; [摘要]圆锥渐开线齿轮(斜面体齿轮)被用于交叉或倾斜轴变速器和平行轴自由侧隙变速器中。圆锥齿轮 是在齿宽横断面上具有不同齿顸高修正(齿厚)的直齿或斜齿圆柱齿轮。这类齿轮的几何形状是已知的,但 应用在动力传动上则多少是个例外。ZF公司已将该斜面体齿轮装置应用于各种场合:4WD轿车传动装置、 船用变速器(主要用于快艇)、机器人齿轮箱和工业传动等领域。斜面体齿轮的模数在0.7 mm一8 mm之间, 交叉传动角在O。一25。之间。这些边界条件需要对斜面体齿轮的设计、制造和质量有一个深入的理解。在锥 齿轮传动中为获得高承载能力和低噪声所必须进行的齿侧修形可采用范成法磨削工艺制造。为降低制造 成本,机床设定和由于磨削加工造成的齿侧偏差可在设计阶段利用仿真制造进行计算。本文从总体上介绍 了动力传动变速器斜面体齿轮的研发,包括:基本几何形状、宏观及微观几何形状的设计、仿真、制造、齿轮 测量和试验。 [Abstract]Conical involute gears(beveloids)are used in transmissions with intersecting or skew axes and for backlash—free transmissions with parallel axes.Conical gears are spur or helical gears with variable ad— dendum modification(tooth thickness)across the face width.The geometry of such gears is generally known,but applications in power transmissions are more or less exceptiona1.ZF has implemented beveloid gear sets in various applications:4WD gear units for passenger cars,marine transmissions(mostly used in yachts),gear boxes for robotics,and industrial drives.The module of these beveloids varies between 0.7 mm and 8 mm in size,and the crossed axes angle varies between 0。and 25。.These boundary conditions re— quire a deep understanding of the design,manufacturing,and quality assurance of beveloid gears. Flank modifications,which are necessary for achieving a high load capacity and a low noise emission in the conical gears,can be produced with the continuous generation grinding process.In order to reduce the manufactur— ing costs,the machine settings as well as the flank deviations caused by the grinding process can be calculat— ed in the design phase using a manufacturing simulation.This presentation gives an overview of the devel— opment of conical gears for power transmissions:Basic geometry,design of macro and micro geometry, simulation,manufacturing,gear measurement,and testing. 关键词:表面镀层 精加工过程 齿轮中图分类号:TH132.41 试验 变速器 Key words:surface coating finishing processes gear test transmission 文献标识码:B 刖禹 1 Introduction 在变速器中如果各轴轴线不平行的话,转矩传 递可采用多种设计,例如:伞齿轮或冠齿轮、万向节 In transmissions with shafts that are not ar ranged parallel to the axis,torque transmission is possible by means of various designs such as bevel or crown gears,universal shafts,or conical invo— 轴或圆锥渐开线齿轮(斜面体齿轮)。圆锥渐开线齿 轮特别适用于小轴线角度(小于15。),该齿轮的优 维普资讯 http://www.cqvip.com Dr.J.Borner等:动力传动圆锥渐开线齿轮的设计、制造和应用 点是在制造、结构特点和输入多样性等方面的简易。 圆锥渐开线齿轮被用于直角或交叉轴传动的变速器 lute gears(beveloids).The use of conical involute gears is particularly ideal for small shaft angles 或被用于平行轴自由侧隙工况的变速器。由于锥角 的选择并不取决于轴线交角,配对的齿轮也可能采 (1ess than 15。),as they offer benefits with regard to ease of production,design features,and overall 用圆柱齿轮。斜面体齿轮可制成外啮合和内齿轮, input.Conical involute gears can be used in trans— 整个可选齿轮副矩阵见表1,它为设计者提供了高 度的灵活性。 missions with intersecting or skew axes or in trans— missions with parallel axes for backlash——free opera—— tion.Due to the fact that selection of the cone angle does not depend on the crossed axes angle,pairing is also possible with cylindrical gears.As beveloids can be produced as external and internal gears,a whole matrix of pairing options results and the de— signer is provided with a high degree of flexibility; 圆锥齿轮是在齿宽横截面上具有不同齿顶高修 正(齿厚)量的直齿轮或斜齿轮。它们能与各种用同 一把基准齿条刀具切制成的齿轮相啮合。斜面体齿 轮的几何形状是已知的,但它们很少应用在动力传 动上。过去,未曾对斜面体齿轮的承载能力和噪声 进行过任何大范围的试验研究。标准(诸如适用于 圆柱齿轮的ISO633 6)、计算方法和强度值都是未 Tab】e】. 表1 各种锥齿轮副排列 ] Table 1 Variants of conical gear set arrangement/6/ 齿轮 类型 轴axes Gear type 斜面体齿轮 平行parallel 交叉crossed ..  。倾斜skewed Beveloid Beveloid ; I 外啮合 External 圆柱齿轮 CylindricaI i 、 l ̄eveloid ! I t 、 !f , 斜面体齿轮 Beveloid "II///-A 一^ 。/ 、 内啮合 lnternaI Beveloid 圆柱齿轮 ('ylindricaI I  lr . . 』———厂_- Beveloid : : 图2 6档自动变速器6HP32传动简图 图l倒顺船用变速器(i—1.2 2.9;1350kW) Fig.1 Reversing marine transmission( —1.2—2.9;l350kW) Fig.2 Schematic view of drive train of 6-speed automatic gear box 6 HP32 维普资讯 http://www.cqvip.com Dr.J.B6rner等:动力传动圆锥渐开线齿轮的设计、制造和应用 知的。因此,必须开发计算方法、获得承载能力数 值和算出用于生产和质量保证的规范。在过去的 15年中,ZF公司已为锥齿轮开发了多种应用: ・输出轴具有下倾角的船用变速器[1,3], 图.1 转向器[1] 机器人用小齿隙行星齿轮装置(交叉轴角度 1。一3。)[2] 商用车辆的输送齿轮箱(垃圾倾倒车) AWD用自动变速器[4],图2 2齿轮几何形状 2.1宏观几何形状 简而言之,斜面体齿轮可看成是一个在齿宽横 截面上连续改变齿顶高修正的圆柱齿轮,如图3。 为此,根据齿根锥角 刀具向齿轮轴线倾斜[1]。结 果形成了齿轮基圆尺寸。 螺旋角,左 右 tan =【an J8…s 千 (1) 横向压力角 左 右 tan a ・COS n 一—— 广一 q-tan 8・ 基圆直径左 右 Zim COS 饿,L d dR i 一 (3) COS .L 左右侧不同的基圆导致斜齿轮齿廓形状的不 均匀,图3。采用齿条类刀具加工将使得齿根锥具 有相应的根锥角 。齿顶角设计成这样以使得顶端 避免与被啮合齿轮发生干涉,并获得最大接触区 域。由此导致在齿宽横截面上具有不同的齿高。 由于几何设计限制了根切和齿顶形状,实际齿宽随 图3斜面体齿轮的横截面形状 Fig.3 Transversal planes at helical beveloid gear Conical gears are spur or helical gears with variable addendum correction(tooth thickness) across the face width.They can mesh with all gears made with a tool with the same basic rack.The ge— ometry of beveloids is generally known,but they have SO far rarely been used in power transmis— sions.Neither the load capacity nor the noise be— havior of beveloids has been examined to any great extent in the past.Standards(such as ISO 6336 for cylindrical gears), calculation methods, and strength values are not available.Therefore,it was necessary to develop the calculation method,obtain the load capacity values,and calculate specifica— tions for production and quality assurance.In the last 1 5 years,ZF has developed various applications with conical gears: ・Marine transmissions with down—angle out— put shafts/1,3/,Fig.1 ・Steering transmissions 、 ・l OW—backlash planetary gears(crossed axes angle 1…0)for robots,/2/ ・Transfer gears for commercial vehicles (dumper) ・Automatic car transmissions for AWD/4/。 Fig.2 2 GEAR GEOMETRY 2.1 MACR0 GE0MElRY To put it simply,a beveloid is a spur gear with continuously changing addendum modification across the face width,as shown in Fig.3.To accomplish this,the tool is tilted towards the gear axis by the root cone angle This results in the basic gear dimensions: Helix angle,right/left tan 8R l,一tan p・COS tan ・sin COS 8 (1) Transverse pressure an g le right/left tan a 0‘COS tan GtRL二。 .COS 8 ±tan ・ Base circle diameter right/left , ‘m,z COS GtR,L 一— 雨 (3) The differing base circles for the left and right flanks lead to asymmetrical tooth profiles at helical gears,Fig.3.Manufacturing with a rack—type cut— 维普资讯 http://www.cqvip.com Dr.J.B6rner等:动力传动圆锥渐开线齿轮的设计、制造和应用 锥角 增加而减小。锥齿轮传动合适的锥角最大约为 15。。 2.2 一ter results in a tooth root cone with root cone angle 占。The addendum angle is designed SO that tip edge 微观几何形状 interferences with the mating gear are avoided and a 对伞齿轮通常形成点状接触。除接触外,在 maximally large contact ratio is obtained.Thus,a differing tooth height results across the face width. 齿侧还存在间隙,如图7。齿轮修形设计的目的是 减小这些间隙以形成平坦而均匀的接触。通过逐 Due to the geometric design limits for undercut and tip formation,the possible face width decreases as the cone angle increases.Sufficiently well—propor— tioned gearing is possible up to a cone angle of ap— 步应用啮合定律有可能对齿侧进行精确的计算 Es-1,图4。最后,在原始侧生成半径为 和法向矢 量为,z 的P1点。这生成速度矢量 及对于在啮 r JJ1*sin l Pl一 1’ Pl*COS),】 O 合一侧所生成的点,有半径矢量r『 】: P2一a—— Pl 和速度矢量 fp2*S1n 。 P2—0)2‘ Yp2*cos O 角速度根据齿轮速比确定: 一一垒 )02 z1 角度 被反复迭代直至满足下代。 里l×( 2一 p1)===0 啮合点Pa偏转 :角度 Z1 2一一 ・一22 绕齿轮轴转动,形成共轭点P 。 图4齿侧共轭点的生成,简化在一个平面上 Fig.4 Generating of the conj ugate flank point simplified shown in one plane prox.15。. (4) 2.2 MICRo GEoMETRY The pairing of two conical gears generally leads to a point—shaped tooth contact.Out—side this con— (5) tact,there is gaping between the tooth flanks, Fig.7.The goal of the gearing correction design is to reduce this gaping in order to create a flat and uni— form contact.An exact calculation of the tooth flank is possible with the step—-by-step appli—-cation of the gearing law/s/,Fig.4.To that end,a point(P1) with the radius P1 and normal vector l is generated on the original flank.This generates the speed vector P1 with Pl*sin l rPl*COS y l (4) (9) O For the point created on the mating flank,the radial vector Kp2: rm===a一Kp1 (5) and the speed vector V”P2 apply rP2*sin 2 j 2一 2‘ rP2*COS y (6) O The angular velocities are generated from the gear ra— tl0: (D C 。 The angle y is iterated gearing law in the form ×(up2一u自1)一0 (8) is fulfilled.The meshing point Pa found is then rota— ted through the angle 2 ,一一 ・Z1 (9) 2 around the gear axis,and this results in the conju— gate flank point P2. 维普资讯 http://www.cqvip.com ∞0)( .I 0 0 0 一Q 0 一 _【lL_10 恒 尝暴 Dr.J.B6rner等:动力传动圆锥渐开线齿轮的设计、制造和应用 0一∞ 0.I ∞∞ H ∞ _【__EJ,0 0 pla齿轮轴平面 ne of gear axes 小端 toe 图5一对交叉轴齿轮副工作齿侧和非工作齿侧的作用区域 Fig.5 Field of∞0)( .I acti 0 _恒 蠼暴 lon for dri0 0 口0 一ve 8-coast _【l_L10  side for gear pair with crossed axes 直径 Diameter ̄ram 图6 速度为500rpra的交叉轴齿轮副在工作区域的 滑动速度和纯滚动线 Fig.6 Sliding velocity in the field of action with line for pure roll— ing at a gear set with crossed axes for speed of 500 rpm 3传动装置设计 3.1根切和齿顶形状 斜面体齿轮的可用齿宽受到大端齿顶形状和 小端根切的限制,见图3。齿高愈高(为获得较大的 齿高变位量),理论可用齿宽愈窄。小端根切和大 端齿顶形状导致齿高变位量沿齿宽方向发生变化。 当一对齿轮的锥角大致相同时可获得最大的可用 齿宽。若齿轮副中小齿轮愈小,则该小齿轮必须采 用更小的锥角。齿顶锥角小于齿根锥角时,通常能 在小端获得有用的渐开线,而在大端处有足够齿顶 间隙,这时大端的齿顶形状并不太严重。 3.2工作区域和滑动速度 斜面体齿轮工作区域产生扭歪的原因是圆锥 3 GEARING DESIGN 3.1 U DERCU l’A D l’lP ’UKMA l’lU The usable face width on the beveloid gearing is 1imited by tip formation on the hee1 and undercut on the toe as shown in Fig.3.The greater the selected tooth height(in order to obtain a larger addendum modification),the smaller the theoretically useable face width is.Undercut on the toe and tip formation on the heel result from changing the addendum modi— fication along the face width.The maximum usable 一∞\g— =u0一o≯ 口一日【I∞ face width is achieved when the cone angle on both gears of the pairing is selected to be approximately the same size.With pairs having a significantly smal— ler pinion,a smaller cone angle must be used on this pinion.Tip formation on the heel is less critical if the tip cone angle is smaller than the root cone angle, wh ch often provides good use of the available invo 1ute on the toe and{or sufficient tip clearance n the hee1. 3.2 FIELD OF ACTIoN AND SLIDING VELoCITY The field of action for the beveloid gearing is distorted by the radial conicity with a tendency to— wards the shape of a parallelogram.In addition,the field of action is twisted due to the working pressure angle change across the face width.Fig.5 shows an example of this.There is a roll axis on the beveloid gearing with crossed axes;there is no sliding on this axis as there is on the roll point of cylindrical gear pairs.With a skewed axis arrangement,there is al— ways yet another axial slide in the tooth engagement. Due to the working pressure angle that changes across the face width,there is varying distribution of the contact path to the tip and root contact.Thus, significantly differing sliding velocities can result on the tooth tip and the tooth root along the face width. In the center section,the selection of the addendum modification should be based on the specifications for the cylindrical gear pairs;the root contact path at the driver should be smaller than the tip contact path. Fig.6 shows the distribution of the sliding velocity on the driver of a beveloid gear pair. 4 CONTACT ANALYSIS AND MODIFYCA— TIoNS 4.1 PoINT CoNTACT AND EASE—oFF 维普资讯 http://www.cqvip.com Dr.J.B0rner等:动力传动圆锥渐开线齿轮的设计、制造和应用 半径有形成平行四边形趋势。另外,工作压力角在齿 宽横截面方向的改变也造成工作区域的扭曲。图5是 一个例子。在交叉轴传动的斜面体齿轮上存在一滚 动轴;如同圆柱齿轮副的滚动点一样,在该轴上不存 在滑动。对于倾斜轴布置而言,在轮齿啮合处总存在 另外的轴向滑动。由于工作压力角在齿宽横截面上 变化,从小端到大端的接触区内的接触轨迹有很大的 变化。因此,沿齿宽方向在齿顶和齿根处具有明显不 同的滑动速度。在齿轮中部,齿顶高修正的选择是基 于圆柱齿轮副的规范;在主动齿轮根部的接触轨迹将 小于齿顶的接触轨迹。图6给出了斜面体齿轮副主动 齿轮滑动速度的分布。 图7 螺旋角fi=o。和交叉轴斜面体齿轮副的间隙 Fig.7 Ease-Off for a beveloid gear pair with helix angle 卢一0。and crossed axes 4接触分析和修形 4.1点接触和间隙 在未修正齿轮传动中,由于轴线倾斜,通常仅 有一点接触。沿可能接触线出现的间隙可大致解 释为螺旋凸起和齿侧廓线角度的偏差所致。圆柱 齿轮左右侧间隙与轴线交叉无关。对于螺旋齿轮 而言,当两斜面体齿轮锥角大致相同时,其产生的 间隙也几乎相等。随两齿轮锥角和螺旋角不一致 的增加,左右侧间隙的不同程度也增加。 在工作压力角较小时将导致更大的间隙。图7 给出了具有相同锥角交叉轴传动的斜面体齿轮副 所出现的间隙。图8显示了具有相同10。交叉轴线 和30。螺旋角齿轮在左右侧间隙方面的差异。两侧 平均间隙的数值在很大程度上与螺旋角无关,但与 两齿轮的锥角相关。 螺旋角和锥角的选择决定了齿轮左右侧平均 问隙的分布。倾斜轴线布置对接触间隙产生额外 影响。这将有效减少齿轮一侧的螺旋凸形。如果 垂直轴线与总基圆半径相同,并且基圆柱螺旋角之 gi 0.0∞时叫 嚣厘 At the uncorrected gearing,there is only one point in contact due to the tilting of the axes.The gaping that results along the potential contact line can be approximately described by helix crowning and flank line angle deviation.Crossed axes result in no difference between the gaps on the left and right flanks on spur gears.With helical gearing, the resulting gaping is almost equivalent when both beveloid gears show approximately the same cone angle.The difference between the gap values on the left and right flanks increases as the difference between the cone angles increases and as the helix angle increases. This process results in larger gap values on the flank with the smaller working pressure angle. Fig.7 shows the resulting gaping(ease—off)for a beveloid gear pair with crossed axes and beveloid gears with an identical cone angle.Fig.8 shows the differences in the gaping that results for the left and right flanks for the same crossed axes angle of 1 0。 and a helical angle of approx.30。.The mean ga— ping obtained from both flanks is,to a large ex— tent,independent of the helix angle and the distri— bution of the cone angle to both gears. The selection Of the helical and cone angles on— ly determines the distribution of the mean gaping to the left and right flanks.A skewed axis arrange— ment results in additional influence on the contact gaping.There is a significant reduction in the effec— tive helix crowning on one flank.If the axis per— pendiCU1ar is identical to the total of the base radii and the difference in the base helix angle is equiva— lent to the(proj ected)crossed axes angle,then the gaping decreases to zero and line contact appears. However,significant gaping remains on the oppo— site flank.If the axis perpendicular is further en— larged up tO the point at which a cylindrical crossed helical gear pair is obtained,this results in equiva— lent minor helix crowning in the ease-off on both flanks.In addition to helix crowning,a notable profile twist(see Fig.8)is also characteristic of the ease—off of helical beveloids.This profile twist grows significantly as the helix angle increases. Fig.9 shows how the profile twist on the example 维普资讯 http://www.cqvip.com 宣T1 06∞日田 Dr.J.B0rner等:动力传动圆锥渐开线齿轮的设计、制造和应用 差等于交叉轴角的话,间隙减小到零并出现线接 gear set from Fig.7 is changed depending on the he— lix angle.In order to compensate for the existing 触。然而,在另一侧将出现明显的间隙。如果正交 的轴线进一步扩大直至变成圆柱交叉轴螺旋齿轮 副的话,其两侧间隙等同于较小的螺旋凸形。除螺 旋凸形外,明显的齿廓扭曲(见图8)也是斜面体齿 轮的间隙特征。随螺旋角增加齿廓扭曲也随之增 加。图9表明图7所示齿轮装置的齿廓是如何扭 gaping in the tooth engagement,topological flank corrections are necessary;these corrections greatly compensate for the effective helix crowning as well as the profile twist.Without the compensation of the profile twist,only a diagonally patterned con— 曲。为补偿齿轮啮合中所存在的间隙,必须采用齿 侧拓扑修形,该类修形可明显补偿螺旋凸形和轮廓 扭曲。未对齿廓扭曲作补偿的话,在工作区域仅有 一个对角线状的接触带,见图10。 非工作侧 厘 非工作侧 厘 图8螺旋角fi=30。、交叉轴夹角 一10。的斜面 体齿轮传动副间隙 左:较小的根锥角一5.49。右:根锥角O—lO.8l。 Fig.8 Ease-Off for a beveloid gear pair with helix angle 8— 30。,crossed axes angle 一10。Left:for similar root cone angles of 5.49。right:for root cone angles of 0。 and 10.810 4.2齿侧修形 对于一定程度的补偿而言,必需的齿面形状可 由实际间隙所决定。图l1给出了这些样品的齿形 几何特征。采用修正后的接触率得到了很大改善, tact strip is obtained in the field of action,as shown in Fig.10. 4.2 FLANK MODIFICATIONS For a given degree of compensation,the neces— sary topography can be determined from the existing ease—off.Fig.1 1 shows these types of typographies, which were produced on prototypes.The contact ra— tios have improved greatly with these corrections as can be seen in Fig.12.For use in series production, the target is always to manufacture such topogra— phies on commonly used grinding machines.The op— tions for this are described in Section 6.In addition to the gaping compensation,tip relief is also benefi— cia1.This relief reduces the load at the start and at the end of meshing and can also provide lower noise excitation.However,tip relief manufactured at bev— eloid gears is not constant in amount and length across the face width.The problem primarily occurs on gearing with a large root cone angle and a tip cone angle deviating from this angle.The tip relief at the toe is significantly larger than that at the hee1.This uneven tip relief must be accepted if relief of the start and end of meshing is required.The production of tip relief using another cone angle as the root cone angle is possible;however,this requires an additional grinding step only for the tip relief.Independently of the generating grinding process,targeted flank to— pography can be manufactured by coroning or ho— ning;the application of this method on beveloids, however,is still in the early stages of development. 5 LoAD CAPACITY AND NoISE EXCITA— TIoN 5.1 APPLICATIoN oF THE CALCULATIoN STANDARDS The flank and root load capacity of beveloid gearing can only approximately be deter—mined using the calculation standards(IS06336,DIN3990,AG一 维普资讯 http://www.cqvip.com Dr.J.Borner等:动力传动圆锥渐开线齿轮的设计、制造和应用 驱动侧 Drive Flank ■160 180 60 40 20 0 鲁 。; 龌 蜩蠢 0 非工作侧 Coast Flank 鲁 ‘; 龌 蜩基 0 图9齿廊扭曲与螺旋角和交叉轴线角的关系 Fig.9 Profile twist versus helix angle and crossed axes angle 如图12所示。为应用在系列生产中,其目标总是能 使用磨床加工这类齿面,对此的选择在第6节论述。 除间隙补偿外,齿顶修形也是有益的。修形减少了 啮合开始和结束阶段的负荷,并能提供一较低的噪 声激励源。然而,斜面体齿轮的齿顶修形在齿宽横 截面上的加工总量上和长度上是不同的。问题主 要出现在具有一个大根锥角但顶锥角与根锥角存 在偏差的齿轮上。因此齿顶修形在小端明显大于 大端。如齿轮需要在啮合开始和结束处修形,则必 须接受这种不均匀的齿顶修形。利用其它锥角如 根锥角进行齿顶修形加工也是可行的。但是,这样 需要专门用于齿顶卸载的专用磨削设备。与范成 法磨削方法无关,齿侧修正可采用诸如珩磨等手 段;但在斜面体齿轮上应用这些方法尚处在早期开 发阶段。 5承载能力和噪声激励 5.1计算标准的应用 斜面体齿轮齿侧和根部承载能力仅可用圆柱 MA C95)for cylindrical gearing.A substitute cy— lindrical gear pair has to be used,which is defined by the gear parameters at the center of the face width.The profile of the beveloid tooth iS asym— metrical;that can,however,be ignored on the substitute gears.The substitute center distance is obtained by adding up the operating pitch radii at the center of the face width.When viewed across the face width,individual parameters will change, which significantly influence the load capacity. 骥 枢 8.O 想 枢 8.O 图lO齿廊扭曲补偿对载荷分布的影响 Fig.10 Influence of profile twist compensation on load distribution Table 2 shows the main influences on the root and flank load capacities.The larger notch effect due to the decrease in the tooth root fillet radius to— wards the hee1 iS in opposition to the increase in the root thickness.In addition,there iS a smaller tan— gential force on the larger operating pitch circle at the hee1;at the same time,however,the addendum modification on the hee1 iS smaller.The primary in— fl uences are nearly well—balanced SO that the load capacity can be calculated sufficiently approximate with the substitute gear pair.The load distribution across the face width can be considered with the width factors(e.g.KⅢand K础in DIN/ISO)and 维普资讯 http://www.cqvip.com Dr.J.BOrner等:动力传动圆锥渐开线齿轮的设计、制造和应用 60 40 曰0 20 一q) 山 30 冒 磊 重 0 茎 图11 —4WD变速器用斜面体齿轮装置的间隙和必要 的拓扑修形(交叉轴线8。、锥角为O。和8.6。) Fig.1 1 Ease-off and necessary topological modifications for a beveloid gear set used in a 4WD-transmission(crossed axes angle 8。,cone angles 0。and 8,6。) 齿轮的计算标准(ISO 6336,DIN 3990,AGMAC95) should be determined from additional load pattern analyses. 5.2 USE OF THE TOOTH CONTACT ANALYSIS A more precise calculation of the load capacity is possible with a three dimensiona1 tooth contact anal ysis,as used at cylindrical gear pairs.The substitute cylindrical gear pair can be used in this analysis and the contact conditions are considered very well with flank topography.This topography is obtained from the superimposition of the load——free contact ease——off with the flank corrections used on the gear.In this process,the contact lines are determined on the sub stitute cylindrical gear and they differ slightly from the contact at the beveloid gear.Fig.1 3 shows the 1oad distr utions calculated in this manner as corn pared to the load patterns recorded,and a very good correlation can be seen. This tooth contact analysis also generates the trans— mission error resulting from the tooth mesh as vibra— tional excitation.It can,however,only be used as a rough guide.The impreciseness in the contact behav— ior calculated has a stronger effect on the transmis— sion error than it does on the 1oad distribution。 5.3 EXACT MODELING USING THE FINITE ELE MENT METHoD The stress at the beveloid gears can also be cal— culated using the finite—element method.Fig.14 shows examples of the modeling of the transverse section on the gears.Fig.1 5 shows the computer- generated modeI in the tooth mesh section and the stress distribution calculated with PERMAS/7/on the driven gear in a mesh position.The calculation was carried out for multiple mesh positions and the transmission error can be determined from the rota— tion of the gears. 5.4 TESTS REGARDING LOAD CAPACITY AND NOISE A back—to—back test bench with crossed axes, upon which gear pairs from AWD transmissions were tested,was used to determine the load capacity,Fig. 16.Different corrections were produced on the test gears in order to ascertain their influence on the 1oad capacity.There was good correlation between the load capacity in the test and the FE(finite element) results.Particularly noteworthy is an additional shift of the 1oad pattern towards the hee1 due to the incr— 维普资讯 http://www.cqvip.com Dr.J.Borner等:动力传动圆锥渐开线齿轮的没汁、制造和幢用 驱动侧 Driveflank 非工作侧 Coastflank 非工作侧 Coastflank (T=23 Nm) 齿顶 0 0 甚 0 藿 8 琳童 U Tip 齿根 Root 珥删奎 u娶 蝰 誓 图l 2 图11斜面体齿轮齿形改进后的载荷曲线图 Fig.1 2 I.oad patt翟叠 ern at the beveloids from Fig.1 1 improved by topography 作近似估算。具体计算时用圆柱齿轮副替代斜面 体齿轮,用斜面体齿轮中部的齿宽来定义圆柱齿轮 的参数。虽然斜面体齿轮齿廓是非对称的,但在替 代齿轮中可不予考虑。替代齿轮的中心距由斜面 体齿轮中部齿宽处的工作节圆半径确定。当计及 齿宽横截面时,各项独立的参数都会变化,这将明 显影响承载能力。 表2给出了影响齿根和齿侧承载能力的主要因 素。由于沿大端方向减小轮齿齿根圆角半径所产 生较大的凹口效应阻止了根部齿厚的增加。另外, 在大端处,较大的节圆直径可获得较小的切向力; 然而,大端处的齿高变位量也随之变小。由于主要 影响得到很好的平衡。因此可用替代齿轮副获得十 分近似的承载能力计算结果。齿宽横截面上的载 荷分布可用齿宽系数(例如DIN/ISO标准中的K 。 表2齿宽横截面上承载能力的主要影响因素(s=小,L=大) Table 2 Main influences on load capacity across the face width (S=small,L=large) 变曲应力Bending stress: 参数Parameter 小端Toe 大端Heel 齿根弦Root Chord S@ L@ 齿根圆角半径Root ifllet radius L@ S@ 齿根圆角半径节圆上的切向力 Tangential force at operating diameter L@ S@ 齿廓接触率Proifle contact ratio L@ S@ 接触应力Contact stress: 参数Parameter 小端Toe 大端Heel 曲率半径Radius ofcurvature S@ M@ 齿廓接触率Profile contact ratio 。L@ S@ 12 图13 轻载、底部的接触斑点:试验结果 Fig.1 3 Contact pattern al light load off Bottom obtained at lesl rig 图14 斜面体齿轮lfj部和两端处的有限元模型 Fig.14 Finite-element—model of beveloid tooth at cenler and end positions 图1j 斜面体齿轮副的有限元模型和应力分布 Fig.1 5 Finite Element—Model of a beveloid gear set and cadulated stresS distribution 维普资讯 http://www.cqvip.com Dr.J.B6rner等:动力传动圆锥渐开线齿轮的设计、制造和应用 和K 。)表示和利用补充的负载曲线图分析来确定。 5.2轮齿接触分析 如同在圆柱齿轮副中那样,更精确的承载能力 计算可采用三维轮齿接触分析。同样采用替代齿 轮,而且齿侧处接触状况被认为非常理想。该齿侧 形状通过叠加经齿侧修正的无负载接触间隙而获 得。在这里,接触线由替代齿轮所确定,它们和斜 面体齿轮的接触状况稍有不同。图13给出了以这 方法获得的载荷分布,并与已有的负载曲线图作对 比,两者的相关性非常好。 轮齿接触分析也将生成一个作为激振源的由 轮齿啮合产生的传动误差。然而这仅能作为一个 粗略的引导。在传动误差方面,斜面体齿轮接触计 算的不精确性是一个比载荷分布更大的影响因素。 5.3采用有限元法的精确建模 斜面体齿轮的应力也能利用有限元法计算。 图14是齿轮横断面建模的实例。图15给出了使用 PERMAS软件由计算机生成的主动齿轮在啮合位 置的轮齿啮合区模型和应力分布计算值[7]。可对 多个啮合位置进行计算,并能求出齿轮旋转产生的 传动误差。 5.4承载能力和噪声试验 在交叉轴背靠背试验台上对AWD变速器进行 试验以测量其承载能力,图16。试验齿轮采用不同 的修正,以确定它们对承载能力的影响。承载能力 的试验与有限元计算结果相当吻合。值得注意的 是,由于大端硬度提高使得载荷曲线图朝大端由一 个额外的移动。这种移动在替代的圆柱齿轮副计 算中不能被辨别。在进行承载能力试验的同时,传 动误差和旋转加速度的测量在通用噪声试验台上 进行,图17。除了载荷影响外,这些试验还测量了 附加轴线倾斜所引起的噪声激励,关于轴线附加倾 斜,试验中未发现有明显的影响。 图 16 轴线交叉角为8。的斜面体齿轮背靠背试验 Fig. 1 6 Back— to— back test rig for beveloid gears with crossed axes angle of 8。 eased stiffness in this area.This shift iS not dis cernable in the calculation with the substitute cylin— drical gear pair.Simultaneous to the load capacity tests,measurements of the transmission error and rotational acceleration were conducted jn a univer sal noise test box,Fig.17.In addition to the load influence,the influence of additional axis tilt on the noise excitation was also examined in these tests. With regard to this axis tilt,no large amount of sensitivity in the tested gear sets was found. 6 MANUFACTURING SIMULATION With the assistance of the manufacturing simu— lation,machine settings and movements with con— tinuous generation grinding as well as the produced profile twist can be obtained.Production—constrain— ed profile twist can be considered as early as the de— sign phase of a transmission and can be incorporat— ed into the load capacity and noise analyses.Simu— lation software for the manufacturing of beveloids was specially developed at ZF,which is comparable to/9/. 6.1 PRODUCTION METHODS THAT CAN BE USED FoR BEVELOIDS Only generating methods can be used to produce the beveloid gearing,because the shape of the tooth profile changes significantly along the face width. Only very slightly conical beveloids can be manufac— tured with the acknowledgment that there is profile angle deviation even with the shaping process.Hobs are the easiest to use for pre—cutting.Gear planing would theoretically be useable as well:however,the kinematics required makes this not really feasible on existing machines.Internal conical gears can then only be precisely manufactured with pinion——type cut—— ters if the cutter axis iS parallel to the tool axis and the cone is created by changing the center distance.If the internal gear is manufactured with a tilted pinion cutter axis such as used for crown gears,this results in a hollow crowning and a profile twist without eor— rective movements.These deviations are small e nough to be ignored for minor cone angles.For final processing,continuous generation grinding with a grinding worm appears to be the best option.If the workpiece or tool fixture can be additionally tilted, 维普资讯 http://www.cqvip.com D r.J.BOrner等:动力传动圆锥渐开线齿轮的设汁、制造和应用 图17 用于测量传递误差和加速度的试验齿轮箱 Fig.17 Test(}ear—Box used for transmission error and acceleration measurement 6仿真制造 借助于仿真制造,可获得机床设置及连续范成 磨削和产生齿廓扭曲的运动。齿廓受迫扭曲现象 可在变速器设计阶段就被认识到并与承载能力及 噪声一并进行分析。斜面体齿轮制造仿真软件由 ZF公司开发,详见[9]。 6.1 适用于斜面体齿轮的制造方法 斜面体齿轮仅可用范成法加工,因为齿廓形状 沿齿宽方向有明显的变化。尽管是锥角非常小的 斜面体齿轮,必须承认在修整处理中仍然会出现齿 廓角度偏差。滚刀最方便用于预切削。理论上也 可采用刨削,但是,所需的运动在现有机床上很难 实现。内齿圆锥齿轮仅能用类似小齿轮的刀具精 确制造,如果刀具轴线和工具轴线平行并且锥角是 通过改变中心距生成的。如果内齿轮利用轴线倾 斜的小齿轮刀具如同加工差速器锥齿轮那样来制 造的话,将导致齿沟凸起和无修正运动的齿廓扭 曲。对于小锥角而言这些偏差足够小,可以被忽 略。对于终加工,范成法螺旋磨削是一个最佳选 择。如果工件或机床夹具能被另外倾斜,也可采用 部分范成法。如果齿轮锥角处于机床控制范围内, 拓扑磨削工艺也是可能的(例如5轴机床),但是会 耗费巨大的努力。原则上,珩磨等方法也能被用于 加工,但是,在斜面体齿轮应用这些方法仍需大量 的开发工作。双齿侧范成法磨削工艺并利用中心 距弧形减少方法可实现齿沟凸起的目标。该方法 所得到的齿廓扭曲与造成啮合间隙的齿廓扭曲相 反。因此该方法可在很大程度上补偿齿廓扭曲并 可承受比圆柱齿轮更大的载荷。 6.2工件表面形状 以下的关于_T件描述被应用在仿真中: ・原始齿轮(留有磨削所需的余量) then partial generation methods are also applicable. Processing in a topological grinding process is also possible(e.g.5一axis machines),but with great ef— fort,when the cone angle of the gearing can be con— sidered in the machine contro1.In principle,honing and coroning can also be used for the processing; however,the application of these methods in bevel— oids still needs extensive development.The targe— ted hollow crowning can be created in the genera— tion grinding process in the dual—flank grinding process via a bowshaped reduction in the center dis— tance.This method results in a profile twist,that is the reverse of the profile twist from the contact gaping.Thus,this method provides extensive com— pensation for the profile twist and a significantly more voluminous load pattern as is typical on cylin— drical gears. 6.2 WORKPIECE GEOMETRY The following workpiece descriptions are used in the simulation: ・initial gear(with stock allowance for the grind processing) ・ideal gear(from the gear data,without flank corrections) ・finished gear(with production—constrained deviations and flank corrections). Fig.1 8 shows the gear data and the tooth gap contours for a beveloid gear in three transverse sec— tions.The addendum modification is enlarged with respect to the ideal gear to create the processing stock allowance for the precutting.The cone shape provides a varying stock allowance near the root fillet of the initial gear. 6.3 GRINDING WoRM GEoMETRY The grinding worms are modeled with smooth— surfaced enveloping shells of the screwed—in axial cross section.Only the contour in an axial plane is required for de—scribing the worms,as they are pro— filed with dressing wheels without modification movements,so that the profile remains unchanged across the perimeter.It is possible to consider modi— fications in the used profile.Fig.1 9 shows an axial section and the possible profile modifications of a grinding worm. Pip and root relief as well as profile crowning can be considered in the simulation. (下接第45页) 维普资讯 http://www.cqvip.com Fazal U.Syed等:功率分流混合电动车辆模型的演算和实验论证 [16] J.A.MacBain,J.J.Conover,and A.D.Brooker, “Full—vehicle simulation for series hybrid vehicles.’’ presented at the SAE Tech.Paper,Future Transporta StvulTI.Mech.Eng.Part D J.Automob.Eng.,vo1. 218,no.12,pp.1419—1425,Dec.2004. [27] G.Y.Liao,T.R.Weber,and D.P.Pfaff,“Model ling and analysis of powertrain hybridization on all— wheel—drive sport utility vehicles,”Proc.Instrum. tion Technology Conf.,Costa Mesa,CA,Jun.2003, Paper 2003—01 230l_ d electric vehicle simula— [17] X.He and I.Hodgson,“HybriMech.Eng.一Part D J.Automob.Eng.,vo1.218.no. 10,pP.1l25—1l34,Oct.2004. tion and evaluation for UT—HEV,”prmented at the SAE Tech.Paper Series,Future Transpotation Technology eh,J.Rancourt,and M. [28] D.Zhang,J.Chen,T.HsiR.Schmidt,“Dynamic modelling and simulation of two— mode electric variable transmission,”Proc.Instrum. Conf.,Costa Mesa,CA,Aug.2000,Paper 2000—01— 3lO5. ley and B.K.Powell,“A hybrid electric ve— [18] K.E.Baihiele powertrain dynamic model,”in Proc.Amet.Con— Mech.Eng.一Part D J.Automob.Eng.,vo1.215,no. 1l,pp.12l7一l223,Nov.200l_ trol Conf.,Jun.21-23,1995,vo1.3,pp.1677~l682. l,K.E.Bailey,and S.R.Cikanek,“Dy— [19] B.K.Powelnamic modeling and control of hybrid electrie vehicle powertrain system,”IEEE Control Syst.Mag.,vol, 18,no.5.pp.17—33,0ct.1998. kanek and K.E.Bailey,“Regenerative braking [29] S.R.Cisystem for a hybrid electric vehicle,”in Proc.Amet. Control Conf.,May 8 10,2002,vo1.4,pp,3129— 3l34. yazid,E.Santi,C.W.Brice, [3O] I .U.Gokdere,K.Benland R.A.Dougal,“H ybrid electric vehicle with perma— nent magnet traction motor:A simulation model,”in ab [2O] K.L.Butler,M.Ehsani,and P.Kamath,“A Matlbared modeling and simulation package for electric and hybrid electric vehicle design lEEE Trans.veh. Proc.Int.Conf.IEMD,May 9-12,1999,pp.502— 5O4. Techno1.,vo1.48,no.6,pp.177O—l778,Nov.1999. pke,M.R.Cuddy,and S.D.Burch,“AD— [21] K.B.WiVISOR 2.1:A user—friendly advanced powertrain simu— [31] S.M.Lukic and A.Emado,“Modeling of electric ma— chines for automotive applications using efficiency lation using a combined backward/forward approach,” 』EEE Trans. h. chno1.,vo1.48.no.6,pp. maps,”in Proc.Elect.Insu1.Conf.and Elect. Manuf.Coil Winding Techno1.Conf.,Sep.23—25, 2003,PP.543 550. 175l—l76l,Nov.1999.  and K.Wipke,“Modeling grid—connected [22] T.Markelhybrid electric vehicles using ADVIS0R,”in Proc.16th  [32] C.Shukang,P.Yulong,C.Feng,and C.Shumei,“The torque pulsation analysis of a starter generator with concentrated windings based hybrid electric vehi— Annu.Battery Conf.App1.and Adv.,Jan.9-12. 2001.pp.23—29. cles,”in Pr0c.』EEE』EMDC,Jun.1—4,2003,vo1.1, pp.2l8—221. [23] S.M.Lukic and A.Emadi,“Effects of drivetrain hy~ bridization on fuel economy and dynamic performance of parallel hybrid electric vehicles,”』EEE Trans. h. [33] E.Hansen,L.Wilhelm,N.Karditsas,I.Menjak,D. Corrigan,S.Dhar,and S.Ovshinsky,“Full system nickel—‘metal hydride battery packs for hybrid electric ve—・ Techno1.,vo1.53,no.2,pp.385—389,Mar.2004. [24] A.Emadi and S.Onoda,“PSIM—based modeling of au— tomotive power systems:Conventional,electric,and hybrid electric vehicles,”儿 EE Trans. h. chno1., hicle applications,”in Proc.17th Annu.Battery Conf. App1.and Adv.,Jan,15—18,2002,pp.253~260. [34] X.He,“Battery modeling for HEV simulation model development,’’presented at the SAE Tech.Paper Se— ries,World Congr.,Detroit,MI,Mar.200 1,Paper 2001-0卜0960. vo1.53,no.2,pp.390—400,Mar.2004.  [25] J.M.Tyrus,R.M.Long,M.Kramskaya,Y.Fert—man,and A.Emadi,“Hybrid electric sport utility vehi— cles,”』EEE Trans. h.Techno1.,vo1.53,no.5, ing and simulation [35] X.He and J.W.Hodgson.“Modelfor hybrid electric vchicles—I:Modeling,”IEEE Trans. Intel1.Transp.Syst.,vo1.3,no.4,pp.235—243, Dec.2002. PP.1607—1622,Sep.2004. z,“Circulating mechanical power in a power- [26] M.Schulsplit hybrid electric vehicle transmission,”Proc.In一 (上接第14页) 6.3磨削螺旋形状 ・理想齿轮(来自齿轮数据,无齿侧修形) ・光滑表面包络壳。仅在轴向平面上的齿廓线需 要定义成螺旋,它们就像用无修正运动的砂轮加工 齿廓那样,所以齿廓在圆周横截面上没有变化。实 际使用的齿廓可能是有修正的。图19给出了螺旋 磨削的一个轴向截面和可能的齿廓修正。在仿真中 完成的齿轮(具有制造偏差和齿侧修形) 图18给出了斜面体齿轮在3个横断面上的齿 轮数据和轮齿间隙等高线。齿顶高修正量较理论齿 轮有所增大,这是为了预加工留出余量。其锥角形 状在原始齿轮靠近齿根圆角处留有余量。 考虑了齿顶和齿根修形以及齿廓凸出。 45—— 

因篇幅问题不能全部显示,请点此查看更多更全内容