CuInSe2-basedchalcopyritesemiconductorshaveprovedtobesuccessfulcandidatesforterrestrialphotovoltaics(PV).Cu(In,-Ga)Se2(CIGSe)thinfilmsolarcellsexhibitedarecordconversionefficiencyof19.9%[1].Thesecellsutilizeexpensiveandscarceelementslikeindium,whichaffectslarge-scaleproduction.Toachievethegoalofcost-effectivephotovoltaictechnology,itisnecessarytoexplorenewmaterialslikeCu2ZnSnSe4,Cu2ZnSnS4andotherquaternariesofthesechalcopyrite-likesemiconductors.TheelementszincandtininthesecompoundsemiconductorsarerelativelycheapandabundantcomparedtoindiumandgalliumusedinCIGSthinfilmsolarcells.Cu2ZnSnS4(CZTS),withadirectbandgap(1.45eV)closetooptimumvalueforPVapplications,highopticalabsorptioncoefficient($104cmÀ1)andp-typeconductivityisapromisingmaterialforabsorberlayerinthinfilmsolarcells.Athoroughunderstandingofmaterialpropertiesisverymuchessentialforthesuccessfulutilizationofthiscompoundinsolarcells.OnlylimitedworkisdoneonthegrowthandcharacterizationofCZTSbulk[2–10]andthinfilms[11–33].Nitscheetal.[2]hadsuccessfullygrownCu2ZnSnS4singlecrystal¨ferandNitsche[3]in1967byvapour-phaseiodinetransport.SchalaterreportedthestructuralpropertiesofmanyCu2–II–IV–S4(Se4)singlecrystals.Halletal.[4]investigatedthestructuraldifferencebetweenCu2(Fe,Zn)SnS4andCu2(Zn,Fe)SnS4usingsinglecrystalX-raydiffractionmethods.Bernardinietal.[5]carriedoutEPRandSQUIDmagnetometrystudiesonnaturalandsyntheticCu2FeSnS4ÃCorrespondingauthor.Tel.:+918772289472;fax:+918772248485.E-mailaddress:sundararajav@rediffmail.com(V.SundaraRaja).0927-0248/$-seefrontmatter&2009ElsevierB.V.Allrightsreserved.doi:10.1016/j.solmat.2009.01.011(stannite)andCu2ZnSnS4(kesterite)crystals.Structuralinvestiga-tionofsyntheticCu2FeSnS4–Cu2ZnSnS4singlecrystalswas¨ssbauerstudyonstannite–kes-reportedbyBonazzietal.[6].MoteritesolidsolutionswasinvestigatedbyBenedettoetal.[7].Matsushitaetal.[8]carriedoutX-raydiffraction(XRD)anddifferentialthermalanalysis(DTA)studiesonCu2ZnSnS4andotherrelatedcompoundsemiconductorssynthesizedfromele-mentalmixture.Tanakaetal.[9]reportedforthefirsttimethephotoluminescencestudiesofCZTSbulkcrystalsgrownbyiodinetransportmethod.RecentlySchorretal.[10]reportedstructuralcharacterizationresultsonstannite–kesteritesolidsolutionseriesbyneutrondiffractionstudies.ItoandNakazawa[11]reportedforthefirsttimeaCZTS/CdSnOheterojunctionusingCZTSfilmsdepositedbysputtering.Friedlmeieretal.[12]investigatedthepropertiesofthermally-evaporatedCZTSfilmsandreportedaCZTS/CdS/ZnOheterojunctionwithanefficiencyof2.3%.Katagiriandco-workershaveextensivelyinvestigatedCZTSfilmspreparedbysulphurisationofelectronbeamevaporated[13–20]aswellasRFsputtered[21]precursors.CZTScellswithanefficiencyof5.74%,usingvapour-phasesulphurizedRFsputteredprecursors,havebeenreportedin2007[22].Seoletal.[23]investigatedelectricalandopticalpropertiesofRFmagnetronsputteredCZTSfilm.Hybridsputtering[24],co-evaporation[25],pulsedlaserdeposition[26]andsulphurisationofmetallic/compoundpre-cursorsdepositedusingvacuumevaporation[27],ionbeamsputtering[28]andsputteringandsequentialevaporation[29]havebeenusedinrecentyearstodepositCZTSfilms.ApartfromthephysicalvapourdepositionmethodscitedaboveforthedepositionofCZTSfilms,chemicaldepositionmethodslikephoto-chemicaldeposition[30],sol–gel[31]andspraypyrolysis[32–34]havebeenusedtodepositthesefilms.Y.B.KishoreKumaretal./SolarEnergyMaterials&SolarCells93(2009)1230–12371231Table1ElementalcompositionoftheCZTSfilmsdepositedatdifferentTs.SubstrateCompositionofelementsinatomic%Cu/temperature(Zn+Sn)(Ts)(K)CuZnSnS56327.4919.4311.1641.910.9060326.8618.6413.5340.960.8464327.2018.9611.3142.530.9268328.7816.9914.3739.860.9272328.5819.9815.4336.010.81Fig.1.XRDpatternsofCZTSfilmsdepositedatdifferentTs’s.Fig.2.ExpandedviewofXRDpeaksofCZTSfilmsdepositedat(a)563,(b)603,(c)643,(d)683and(e)723K.Spraypyrolysisisaversatileandlow-costtechnique,whichisextensivelyusedtodepositselenide,sulphideandoxidesemi-conductorfilms.NakayamaandIto[32]studiedtheeffectofethanolandzincconcentrationinthestartingsolutiononthepropertiesofspray-depositedCZTSfilmsusingN2asthecarriergas.Filmsgrownfromaqueoussolutionarehighlysulphur-deficient(28–30%)andnearstoichiometricCZTSfilmswereobtainedwithasolutioncontaining30%ethanol.Subsequentannealingofthefilmsinsulphurambientwasfoundtobenecessary.Madara´szetal.[33]depositedCZTSfilmsbyspraypyrolysisusingthioureacomplexesbutopticalandmorphologicalstudieswerenotcarriedout.RecentlyKamounetal.[34]investigatedtheeffectofsubstratetemperature(553–633K)andthesprayduration(30,60min)onthegrowthofCZTSfilms.XRDstudiesofthesefilmsshowedthatthefilmsaremulti-phase.Wehaveinvestigatedthegrowthandpropertiesofspray-depositedCZTSfilmsatvarioussubstratetemperaturesintherange563–723Kinordertooptimizesubstratetemperaturetoobtainsingle-phaseCZTSfilms.Theresultsoftheseinvestigationsarepresentedinthispaper.2.Experimental
Cu2ZnSnS4thinfilmsweredepositedbyspraypyrolysistechniquestartingwithanaqueoussolutioncontainingcupricchloride(0.01M),zincacetate(0.005M),stannicchloride(0.005M)andthiourea(0.04M).Excessthioureawastakentocompensatethelossofsulphurduringpyrolysis.Thesolutionwas1232Y.B.KishoreKumaretal./SolarEnergyMaterials&SolarCells93(2009)1230–1237Fig.3.Crystalstructureof(a)mineralstannite(Cu2FeSnS4)and(b)mineralkesterite(Cu2ZnSnS4).Table2Atomiccoordinatespositionsofelementsinstannite(Cu2FeSnS4)andkesterite(Cu2ZnSnS4)structures[4].¯2m)Stannite(I4AtomsFeSnCuSWyckoffnotation2a2b4d8iPosition(000)1ð1220Þ1ð0124Þ(xxz)¯)Kesterite(I4AtomsCuSnCuZnSWyckoffnotation2a2b2c2d8gPosition(000)1ð1220Þ1ð0124Þ1ð1204Þ(xyz)morphologywereobservedusingaJEOLscanningelectronmicroscope(SEM).Theelementalcompositionwasdeterminedusinganenergydispersivespectrometer(EDS)systemattachedtoJEOLSEM.ElectricalresistivityofthefilmsatroomtemperaturewasdeterminedwithaKeithley617programmableelectrometer.3.Resultsanddiscussion3.1.CompositionTheelementalcompositionofCu2ZnSnS4thinfilmsdeter-minedfromEDSanalysisforfilmsdepositedatvarioussubstratetemperaturesisshowninTable1.Thereisaconsiderabledeviationfromstoichiometry.Thefilmsaremostlycopperrich,zincrichbutsulphurdeficient.Sulphurdeficiencyissignificantlyhigherathighersubstratetemperaturessincesulphurismorevolatile.Spray-depositedCZTSfilmsobtainedfrompureaqueoussolutionbyNakayamaandIto[32]inthesubstratetemperaturerange553–633Karealsosulphur-deficient(28–38at%).WehavetakenCuCl2,whichissolubleinwaterasthesourceofcopperinsteadofCuClusedbythem,andthereissomeimprovementinthesulphurcontentinthefilm.Yetthefilmsaresulphur-deficient.3.2.Structuralcharacterization3.2.1.X-raydiffractionstudiesTheXRDpatternsofCZTSfilmsdepositedatdifferentsubstratetemperatures(563,603,643,683and723K)areshowninFig.1.Fig.2showstheexpandedviewofthemostintensepeaktoknowsprayed,usingapneumaticallycontrolledair-atomizingspraynozzle(14JAU,SprayingsystemsCo.,USA),ontoheatedglasssubstratesheldatvarioussubstratetemperatures.Compressedairwasusedasthecarriergasandthesprayratewas12ml/min.Experimentswereconductedatvarioussubstratetemperaturesintherange563–723Ktoinvestigatetheeffectofsubstratetemperature(Ts)onthegrowthofthefilms.Thesubstratetemperaturecouldbemaintainedtoanaccuracyof75Kusingadigitaltemperaturecontroller.Filmswereanalyzedbystudyingtheircomposition,structural,opticalandelectricalproperties.X-raydiffractometer(SEIFERTModel3003TT)wasusedinBragg–BrentanomodetorecordX-raydiffraction(XRD)patterns.Cu-Karadiation(l¼0.15406nm)wasusedtorecordthespectrainthe2yrange10–601withastepsizeof0.031.Spectraltransmittanceandreflectancewererecordedinthewavelengthrange300–2000nmonJASCOUV–VIS–NIRdoublebeamspectrophotometer.ThemicrostructureandthesurfaceY.B.KishoreKumaretal./SolarEnergyMaterials&SolarCells93(2009)1230–12371233Table3CalculatedandexperimentalXRDpeakintensitiesforCZTSthinfilms.S.No.1234567891011121314151617181920a(hkl)(002)(101)(110)(112)(103)(200)(004)(202)(211)(114)(105)(220)(204)(312)(116)(303)(224)(314)(008)(332)d-spacing(nm)0.54210.48690.38470.31260.30080.27130.27140.24260.23680.22120.20130.19190.19190.16360.16360.16180.15650.14500.13560.1245Calculatednormalizedintensity(I/I0)07210025511112040141304235Minctrystinformationcard[35]04.55–100210.55.22––––18.0135.9024.7312.30–––––Experimentalintensity–20–100–––––––45a452525a–––––(220)/(204)and(312)/(116)arenotresolvableexperimentallyasc$2a.Fig.4.SEMmicrographsofCZTSthinfilmsdepositedat(a)563,(b)603,(c)643,(d)683and(e)723K.whetherpeakscorrespondingtoanysecondaryphase(Cu2SnS3,ZnS)arepresent.FromFig.1,itisobservedthatfilmsdepositedatTs¼563Karemulti-phasecontainingCu2SnS3(JCPDSCardno.27-0198),Cu2ZnSnS4andCuxS(JCPDSCardno.20-0365)ofwhichCu2SnS3(CTS)isthedominantsecondaryphaseasindicatedby¯1¯1)peak.CZTSfilmsdepositedatTs¼603Karetheintense(2foundtocontainveryweakpeakscorrespondingtoCuxS(Fig.1).XRDpatternsoffilmsdepositedatTs¼643and683Kseemtoindicatethatthefilmsaresinglephasesincenopeakcorrespond-ingtoanysecondaryphaseisseen.ButthelowintensityofXRDpatternsandconsiderabledeviationfromthestoichiometryofthesefilms(Table1)suggestthepossibilityofamorphousphasesbeingpresentinthesefilms.Thesamplesbeingzinc-rich(Cu/Zn+Sn¼0.92,Zn/Sn¼1.68and1.18),ZnSmightbepresentinamorphousform.ThispropositionmightbejustifiedbythefactthatfilmsdepositedatTs¼723KarefoundtocontainZnSasdominantphasepossiblyduetotheimprovementincrystallinityathigherTs(Figs.1and2).ThelatticeparametersofCZTSfilmsdeterminedfromtheobservedd(112)andd(220)spacingsarea¼0.54270.001andc¼1.08570.001nm.Theseareingoodagreementwiththereportedsinglecrystaldata,a¼0.5427andc¼1.0848nm[3].ThereareconflictingreportswithregardtothestructureofCZTSfilms.AfewgroupsreportedthestructureofCZTSfilmstobestannite[11–13,27–30],whilesomeothergroupsreportedkesteritestructureforCZTSfilms[16,22–26].Stannite(Cu2FeSnS4)andkesterite(Cu2ZnSnS4)belongtotetragonalsystembutthe¯2mspacegroupsaredifferent.StannitestructurespacegroupisI4¯(Fig.3).ThecoordinatewhilekesteritestructurespacegroupisI4positionsareshowninTable2[4].However,basedonneutron1234Y.B.KishoreKumaretal./SolarEnergyMaterials&SolarCells93(2009)1230–1237diffractionstudiesofstannite–kesteritesolidsolutionseries(Cu2Fe1ÀxZnxSnS4),Schorretal.[10]recentlyreportedthatthestructureofCu2ZnSnS4(x¼1intheseries)isunambiguously¯).kesterite(I4Wehavecalculatedtheintensitiesofpossiblediffractionpeaks(Ihkl)usingtheatomicscatteringfactors,coordinatepositionsandexperimentallydeterminedlatticeconstantsaandcvaluesusingtheformula[36].Ihkl21þcos22yÀ2Me¼FhklPsin2ycosy(1)arethecoordinatesofeachatom.ThecalculatedpeakintensitiesforkesteritestructurearecomparedwiththenormalizedexperimentalpeakintensitiesinTable3alongwithMincryst¯).Theagreementisinformationcarddata[35]forkesterite(I4reasonablysatisfactory.Thepeakatd¼0.1919nmisassignedto(220)/(204).TheXRDpeaks(220)and(204)arenotresolvableexperimentallyasc$2a.Similarly,thepeaks(312)and(116)arealsonotresolvable.Hencetheobservedpeakatd¼0.1636nmisassignedto(312)/(116).Thecrystallitesize(L)inthesefilmsisdeterminedusingScherer’sformula[36]L¼sl=BCosywheresistheScherer’sconstant,Bisthefull-widthathalfmaximum(FWHM)andyistheBraggangle.Thecalculatedcrystallitesizevaluesarefoundtolieintherange20–45nmbasedonthesubstratetemperature.Thecrystallitesizeisfoundtoincreasewithincreaseinsubstratetemperature.3.2.2.MicrostructureFig.4showsSEMmicrographsofCZTSfilmsdepositedatdifferentsubstratetemperatures.Asthesubstratetemperatureincreases,thereisanimprovementingrainmorphologyandsize.FilmsdepositedatTs¼563Kdonotexhibitwell-definedgrainsandtheappearanceissmeary.AsTsincreases,themorphologyisfoundtoimproveanddistinctgrainsareseenforfilmsdepositedatTs¼683and723K.ThegrainsizeoffilmsdepositedforTsintherange643–723Kisfoundtobe$1mm.ItmaybeworthmentioningherethatScherer’sformulagivesthecrystallitesizenormaltotheX-raybeamdirectionanddoesnotgivelateraldimension[37].3.3.OpticalpropertiesHereFhklisstructurefactor,Pismultiplicityfactor,MisthetemperaturefactorandyistheBraggangle.Intheaboveequation,trigonometrictermrelatestoLorentz-polarizationfactor.ThestructurefactorisgivenbytheequationFhkl¼P2pi(hu+kv+lw)wherefnisatomicscatteringfactor,(u,v,w)fne2x105Absorption coefficient (cm-1)1x105
5x104
1.0
2.03.0
Photon energy (eV)
4.0
Fig.5.OpticalabsorptioncoefficientofCZTSthinfilmsdepositedatTs¼643K.Theopticalabsorptioncoefficient(a)wasdeterminedfromthemeasuredspectraltransmittance(Tl)andreflectance(Rl)usingtheformula[38]\"#ð1ÀRlÞ2(2)at¼lnTl3.0
20
(αhν)2 x 109 (eV cm-1)2(αhν)2 x 109 (eV cm-1)20.9
1.1hν (eV)
1.3
15
2.0
10
1.0
5.0
0.00.0
1.4
1.6hν (eV)
1.8
2.0
Fig.6.(ahn)2asafunctionofphotonenergy(hn)forfilmsdepositedatTs¼563Kfortwodifferentphotonenergyregions.Y.B.KishoreKumaretal./SolarEnergyMaterials&SolarCells93(2009)1230–1237123516
5.0
(αhν)2 x 1010 (eV cm-1)21.4
1.61.8hν (eV)
2.0
(αhν)2 x 109 (eV cm-1)212
4.0
3.0
8.0
2.0
4.0
1.0
0.00.0
1.8
2.0
2.2hν (eV)
2.4
2.6
Fig.7.(ahn)2asafunctionofphotonenergy(hn)forfilmsdepositedatTs¼603Kfortwodifferentphotonenergyregions.1616
12(αhν)2 x 109 (eV cm-1)2(αhν)2 x 109 (eV cm-1)212
8.0
8.04.0
4.00.0
1.4
1.6hν (eV)
Fig.8.(ahn)2asafunctionofphotonenergy(hn)forfilmsdepositedatTs¼643K.0.01.82.0
1.41.6hν (eV)1.82.0Fig.9.(ahn)2asafunctionofphotonenergy(hn)forfilmsdepositedatTs¼683K.wheretisthefilmthickness.Atypicalplotofopticalabsorptioncoefficientversusphotonenergy(hn)forfilmsdepositedatTs¼643KisshowninFig.5.Thenatureoftheopticaltransition,whetherdirectorindirectandtheopticalbandgap(Eg)ofeachfilm,isobtainedfromtheequation[38]a¼AðhnÀEgÞn=hn(3)3whereAisaconstant.Theexponent‘n’cantakevalues12,/2or2basedonwhethertheopticaltransitionisdirect-allowed,direct-allowedorindirect-allowed,respectively.Inthepresentinvestigation,valuesofaarefoundtoobeyEq.(3)forn¼12indicatingthattheopticaltransitionisdirect-allowedinnature.Fig.6(a)and(b)showtheplotsof(ahn)2versushnfortwodifferentphotonenergyregionsforfilmsdepositedatTs¼563K.Theopticalbandgapvaluesarefoundtobe0.92and1.40eV,respectively.Theuncertaintyinthedeterminationofbandgapis70.02eV.Thedirectopticalbandgapof0.92eVisattributedtoCu2SnS3and1.40eVisattributedtoCZTSfilm[11,14].This1236Y.B.KishoreKumaretal./SolarEnergyMaterials&SolarCells93(2009)1230–1237observationthatthefilmscontainthesecondaryphaseCu2SnS3isinagreementwiththeconclusionfromXRDpatternofthefilmsdepositedatTs¼563K.Figs.7(a)and(b)showthe(ahn)2versusplotsfortwodifferentphotonenergyregionsforthefilmsdepositedatTs¼603K.Thedirectopticalbandgapvaluesarefoundtobe1.39and1.90eV.TheformerisattributedtodirectopticalbandgapofCZTSandthelattertoCuxS.ThedirectopticalbandgapofCuxSreportedearlierintheliteratureisfoundtovaryfrom1.7to2.16eVbasedonthevalueofx[39].XRDanalysisofthefilmsdepositedatTs¼603KconfirmedthepresenceofCZTSandCuxS.The(ahn)2versushnplotsforfilmsdepositedatTs¼643and683KareshowninFigs.8and9.Thedirectopticalbandgapsarefoundtobe1.45and1.40eV,respectivelyandareincloseagreementwiththereportedvalueofCZTS[11,14].ThedifferenceindirectopticalbandgapvaluesofCZTSfilmsdepositedatvarioussubstratetemperaturesmightbeduetothedifferenceinthefilmcomposition.NootheropticaltransitioncorrespondingtoanysecondaryphasecouldbenoticedinthespectraltransmittancecurvesforthesefilmsdepositedatTs¼643and683K,indicatingthatthefilmsaresingle-phaseCZTS.Howeverasstatedearlier,considerabledeviationofthesefilms(Table1)fromstoichiometrysuggeststhepossibilityofamorphousphasesbeingpresent.Thesamplebeingzinc-rich,ZnSmightbepresentinthefilm.However,thecorrespondingopticaltransitioncouldnotbeobservedinthetransmittancespectrumowingtothetoolowspectralintensitybelowthe500nmregionafterstrongabsorptionbyCZTS.3.4.ElectricalpropertiesRoom-temperatureelectricalresistivityofCZTSfilmsdepos-itedatdifferentsubstratetemperatureswasdeterminedusingvanderPauwtechnique.Thefilmswerefoundtobep-typeandtheresistivitywasfoundtovaryfrom0.02to2.00Ocm.4.Conclusions
Cu2ZnSnS4thinfilmscouldbesuccessfullydepositedbyspraypyrolysistechnique.Theeffectofsubstratetemperature(Ts)onthegrowthofspray-depositedCu2ZnSnS4thinfilmwasinves-taged.FilmsdepositedatTs¼563KarefoundtocontainCu2SnS3andCuxSasthesecondaryphasewhileatTs¼603K,CuxSisfoundtobethesecondaryphase.AtTs¼723K,ZnSappearsasthesecondaryphase.PolycrystallineCu2ZnSnS4thinfilms,withamorphousZnSbeingpresenttoasmallextent,couldbeobtainedinthesubstratetemperaturerange643–683K.Thefilmsexhibitedkesteritestructure(spacegroupI4¯)withlatticeparametersa¼0.542andc¼1.085nm.ThedirectopticalbandgapofCZTSfilmsdepositedunderoptimizedconditionsisfoundtoliebetween1.40and1.45eV.EffortsareunderwaytoimprovestoichiometryofCZTSfilmsbyannealingthesefilmsinthepresenceofsulphur.CZTSfilmswithbandgapclosetotheidealbandgapforhighesttheoreticalconversionefficiency,withanopticalabsorptioncoefficientof4104cmÀ1andwithp-typeelectricalconductivitycouldbeobtained.References[1]IngridRepinsl,MiguelA.Contreras,BrainEgaas,ClayDeHart,JohnScharf,CraigL.Perkins,BobbyToandRomenelNoufi,19.9%-efficientZnO/CdS/CuInGaSe2solarcellwith81.2%fillfactor,Prog.Photovoltaics:Res.Appl.16(2008)235–239.[2]R.Nitsche,D.F.Sargent,P.Wild,Crystalgrowthofquaternary122464chalcogenidedsbyiodinevaportransport,J.Cryst.Growth(1967)52–57.[3]W.Scha¨fer,R.Nitsche,TetrahedralquaternarychalcogenidesofthetypeCu2–II–IV–S4(Se4),Mater.Res.Bull.9(1974)645–654.[4]S.R.Hall,J.T.Szymanski,J.M.Stewart,Kesterite,Cu2(Zn,Fe)SnS4andstannite,Cu2(Fe,Zn)SnS4structuralsimilarbutdistinctminerals,Can.Miner.16(1978)131–137.[5]G.P.Bernardini,D.Borrini,A.Caneschi,F.DiBenedetto,D.Gatteschi,S.Ristori,M.Romanelli,EPRandSQUIDmagnetometrystudyofCu2FeSnS4(stannite)andCu2ZnSnS4(kesterite),Phys.Chem.Miner.27(2000)453–461.[6]P.Bonazzi,L.Bindi,G.P.Bernardini,S.Menchetti,AmodelforthemechanismofincorporationofCu,FeandZninthestannite–ke¨steriteseries,Cu2FeSnS4–Cu2ZnSnS4,Can.Miner.41(2003)639–647.[7]F.DiBenedetto,G.P.Bernardini,D.Borrini,W.Lottermoser,G.Tippelt,G.Amthauer,57Feand119SnMo¨ssbauerstudyonstannite(Cu2FeSnS4)–kesterite(Cu2ZnSnS4)solidsolution,Phys.Chem.Miner.31(2005)683–690.[8]H.Matsushita,T.Maeda,A.Katsui,T.Takizawa,ThermalanalysisandsynthesisfromthemetalsofCu-basedquaternarycompoundsCu–III–IV–VI4andCu2–II–IV–VI4,J.Cryst.Growth208(2000)416–422.[9]K.Tanaka,Y.Miyamoto,H.Uchiki,K.Nakazawa,H.Araki,Donor–acceptorpairrecombinationluminescencefromCu2ZnSnS4bulksinglecrystals,Phys.StatusSolidi(A)203(2006)2891–2896.[10]S.Schorr,H.-J.Hoebler,M.Tovar,Aneutrondiffractionstudyofthestannite–kesteritesolidsolutionseries,Eur.J.Miner.19(2007)65–75.[11]K.Ito,T.Nakazawa,Electricalandopticalpropertiesofstannite-typequaternarysemiconductorthinfilms,Jpn.J.Appl.Phys.27(1988)2094–2097.[12]Th.M.Friedlmeier,N.Wieser,Th.Walter,H.Dittrich,H.W.Schock,Hetero-junctionsbasedonCu2ZnSnS4andCu2ZnSnSe4thinfilms,in:Proceedingsofthe14thEuropeanPVSECandExhibition,1997,P4B.10.[13]H.Katagiri,N.Sasaguchi,S.Hando,S.Hoshino,J.Ohashi,T.Yokota,PreparationandevaluationofCu2ZnSnS4thinfilmsbysulfurizationofE-Bevaporatedprecursors,in:TechnicalDigestofthe9thInternationalPVSEC—Miyazaki,Japan,1996,pp.745–746.[14]H.Katagiri,N.Sasaguchi,S.Hando,S.Hoshino,J.Ohashi,T.Yokota,PreparationfilmsbyandevaluationofCu2ZnSnS4thinfilmsbysulfuri-zationofE–Bevaporatedprecursors,Sol.EnergyMater.Sol.Cells49(1997)407–414.[15]H.Katagiri,N.Ishigaki,T.Ishida,CharacterizationofCu2ZnSnS4thinfilmspreparedbyvaporphasesulfurization,in:ProceedingsoftheWCPEC-2,Vienna,Austria,1998,pp.640–643.[16]H.Katagiri,K.Saitoh,T.Washio,H.Shinoham,T.Kurumadani,S.Mivaiima,DevelopmentofthinfilmsolarcellbasedonCu2ZnSnS4thinfilms,in:TechnicalDigestofthe11thInternationalPVSEC,Hokkaido,Japan,1999,pp.647–648.[17]H.Katagiri,N.Ishigaki,T.Ishida,K.Saito,CharacterizationofCu2ZnSnS4thinfilmspreparedbyvaporphasesulfurization,Jpn.J.Appl.Phys.40(2001)500–504.[18]H.Katagiri,K.Saito,T.Washio,H.Shinohara,T.Kurumadani,S.Miyajima,DevelopmentofthinfilmsolarcellbasedonCu2ZnSnS4thinfilm,Sol.EnergyMater.Sol.Cells65(2001)141–148.[19]T.Kobayashi,K.Jimbo,K.Tsuchida,S.Shinoda,T.Oyanagi,H.Katagiri,InvestigationofCu2ZnSnS4-basedthinfilmsolarcellsusingabundantmaterials,Jpn.J.Appl.Phys.44(2005)783–787.[20]H.Katagiri,Cu2ZnSnS4thinfilmsolarcells,ThinSolidFilms480–481(2005)426–432.[21]H.Katagiri,K.Jimbo,K.Moriya,K.Tsuchida,SolarcellwithoutenvironmentalpollutionbyusingCZTSthinfilm,in:Proceedingsofthe3rdWorldConferenceonPhotovoltaicEnergyConversion,Oseka,2003,pp.2874–2879.[22]K.Jimbo,R.Kimura,T.Kamimura,S.Yamada,W.Maw,H.Araki,K.Oishi,H.Katagiri,Cu2ZnSnS4-typethinfilmsolarcellsusingabundantmaterials,ThinSolidFilms515(2007)5997–5999.[23]J.Seol,S.Lee,J.Lee,H.Nam,K.Kim,ElectricalandopticalpropertiesofCu2ZnSnS4thinfilmspreparedbyrfmagnetronsputteringprocess,Sol.EnergyMater.Sol.Cells75(2003)155–162.[24]T.Tanaka,T.Nagatomo,D.Kawasaki,M.Nishio,Q.Guo,A.Wakahara,A.Yoshida,H.Ogawa,PreparationofCu2ZnSnS4thinfilmsbyhybridsputtering,J.Phys.Chem.Solids66(2005)1978–1981.[25]T.Tanaka,D.Kawasaki,M.Nishio,Q.Guo,H.Ogawa,FabricationofCu2ZnSnS4thinfilmsbyco-evaporation,Phys.StatusSolidi(C)3(2006)2844–2847.[26]K.Sekiguchi,K.Tanaka,K.Moriya,H.Uchiki,EpitaxialgrowthofCu2ZnSnS4thinfilmsbypulsedlaserdeposition,Phys.StatusSolidi(C)3(2006)2618–2621.[27]L.Shao,Y.Fu,J.Zhang,D.He,ElectricalandopticalpropertiesofCu2ZnSnS4thinfilmspreparedforsolarcellabsorber,Chin.J.Semicond.28(2007)337–340.[28]J.Zhang,L.Shao,Y.Fu,E.Xie,Cu2ZnSnS4,thinfilmspreparedbysulfurizationofionbeamsputteredprecursorandtheirelectricalandopticalproperties,RareMet.25(2006)315–319.[29]A.Weber,I.Ko¨tschau,S.Schorr,H.-W.Schock,FormationofCu2ZnSnS4andCu2ZnSnS4-CuInS2thinfilmsinvestigatedbyin-situenergydispersiveX-raydiffraction,Mater.Res.Soc.Symp.Proc.1012(2007)201–208.[30]K.Moriya,J.Watabe,K.Tanaka,H.Uchiki,CharacterizationofCu2ZnSnS4thinfilmspreparedbyphoto-chemicaldeposition,Phys.StatusSolidi(C)3(2006)2848–2852.[31]K.Tanaka,N.Moritake,H.Uchiki,PreparationofCu2ZnSnS4thinfilmsbysulfurizingsol–geldepositedprecursors,Sol.EnergyMater.Sol.Cells91(2007)1199–1201.[32]N.Nakayama,K.Ito,SprayedfilmsofstanniteCu2ZnSnS4,Appl.Surf.Sci.92(1996)171–175.Y.B.KishoreKumaretal./SolarEnergyMaterials&SolarCells93(2009)1230–12371237´sz,P.Bombicz,M.Okuya,S.Kaneko,Thermaldecompositionofthiourea[33]J.MadaracomplexesofCu(I),Zn(II)andSn(II)chloridesasprecursorsforthespraypyrolysisdepositionofsulfidethinfilms,SolidStateIonics141–142(2001)439–446.[34]N.Kamoun,H.Bouzouita,B.Rezig,FabricationandcharacterizationofCu2ZnSnS4thinfilmsdepositedbyspraypyrolysistechnique,ThinSolidFilms515(2007)5949–5952.[35]Mincrystinformationcard—KESTERITE(Cardno.2333)/http://database.ie-m.ac.ru/mincryst/s_carta.php?KESTERITES.[36]B.D.Cullity,ElementsofX-rayDiffraction,Addison-Wesley,London,1978,pp.81–143.[37]H.P.Klug,L.E.Alexander,X-rayDiffractionProcedures,JohnWileyandSons,NewYork,1954,pp.491–538.[38]I.V.Pankove,OpticalProcessesinSemiconductors,DoverInc.,NewYork,1975,pp.34–95.[39]A.C.Rastogi,S.Salkalachen,OpticalabsorptionbehaviourofevaporatedCuxSthinfilms,ThinSolidFilms97(1982)191–199.
因篇幅问题不能全部显示,请点此查看更多更全内容