ContentslistsavailableatScienceDirect
Resources,ConservationandRecycling
journalhomepage:www.elsevier.com/locate/resconrec
Review
SustainableoptionsofposttreatmentofUASBeffluenttreatingsewage:Areview
AbidAliKhana,∗,RubiaZahidGaura,V.K.Tyagia,AnwarKhursheeda,BeniLewb,InduMehrotraa,A.A.Kazmia
ab
DepartmentofCivilEngineering,IITRoorkee,NH58,Uttrakhand247667,IndiaTheVolcaniCenter,InstituteofAgricultureEngineering,BetDagan50250,Israel
article
info
abstract
Articlehistory:
Received19February2010
Receivedinrevisedform16May2011Accepted17May2011
Keywords:
Highratemicro-aerobictreatmentsystemsNBMS
PostsettlingtreatmentstepPolishingmethodsSewage
UASBposttreatment
Theupflowanaerobicsludgeblanket(UASB)processisreportedtobeasustainabletechnologyfordomes-ticwastewaterstreatmentindevelopingcountriesandforsmallcommunities.However,theinabilityofUASBprocesstomeetthedesireddisposalstandardshasgivenenoughimpetusforsubsequentposttreat-ment.InordertoupgradetheUASBbasedsewagetreatmentplants(STPs)toachievedesiredeffluentqualityfordisposalorforreuse,varioustechnologicaloptionsareavailableandbroadlydifferentiatedasprimarypost-treatmentfortheremovaloforganicandinorganiccompoundsandsuspendedmatter;secondarypost-treatmentfortheremovalofhardlydegradablesolublematter,colloidalandnutrients;andpolishingsystemsforremovalsofpathogens.Hence,thispaperdiscussesthedifferentsystemsforthetreatmentofUASBreactoreffluenttreatingsewage.Additionally,acomparativereview,aneconomicevaluationofsomeoftheemergingoptionswasconductedandbasedontheextensivereviewofdifferentintegratedcombination,i.e.UASB-differentaerobicsystems,atreatmentconceptbasedonnaturalbio-logicalmineralizationrouterecognizedasanadvancedtechnologytomeetallpracticalaspectstomakeitasustainableforenvironmentalprotection,resourcepreservationandrecoveringmaximumresources.
© 2011 Elsevier B.V. All rights reserved.
Contents1.2.
Introduction............................................................................................................................................1233PosttreatmentoptionsofUASBreactor’seffluent....................................................................................................12352.1.CharacteristicsofeffluentofUASBreactortreatingdomesticwastewater...................................................................1235
2.1.1.BOD,CODandTSS....................................................................................................................12352.1.2.NandP................................................................................................................................12352.1.3.Reducedcompounds..................................................................................................................12352.1.4.Microbialpathogenicindicators......................................................................................................1236
2.2.Postsettlingsystems...........................................................................................................................1236
2.2.1.Conventionalpostsettlingmethods..................................................................................................12362.2.2.Flotationmethods....................................................................................................................1238
2.3.Physicalandbiologicalmicro-aerobicmethods(includingremoval/orrecoveryofdissolvedgases)........................................12382.4.Highratebiologicalaerobicmethods(includingnitrification–denitrificationsteps).........................................................12392.5.Lowrateprimaryposttreatmentsystems(includingvalorization/orremovalofnutrients).................................................12422.6.Finalpolishingsteps............................................................................................................................1244Discussion/summary...................................................................................................................................12453.1.Solutionsforsustainabilityandenvironmentalprotection....................................................................................12463.2.Selectionofsustainabletechnology............................................................................................................1246Conclusions.............................................................................................................................................1249References..............................................................................................................................................1249
3.
4.
∗Correspondingauthor.
E-mailaddresses:abidkdce@iitr.ernet.in,dee.abid@gmail.com(A.A.Khan).
0921-3449/$–seefrontmatter© 2011 Elsevier B.V. All rights reserved.doi:10.1016/j.resconrec.2011.05.017
A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
1233
1.Introduction
Anaerobictreatmentofdomesticwastewaterisnotanewcon-ceptandfromtimeimmemorialseptictanks,soakpits,cesspool,etc.havebeenused.Sincethesesystemscanonlypartiallytreatthesewageand,theeffluentstillcontainshighconcentrationoforganicmatter,suspendedsolidsandnutrients,theinterestforsewagetreatmentswitchedovertoaerobictreatmentsystems.Therearenumerousaerobictreatmentsystemssomeofwhichinclude,acti-vatedsludgeprocess(ASP),fluidizedbedreactors(FBR),tricklingfilter(TF),aeratedlagoonsandoxidationponds.Regardlessofthegoodtreatmentperformanceandlowlandrequirementofaerobicsystems;thesemethodssufferfromplentifuldrawbacksascom-paredtoanaerobictreatmentsystems(alsosummarizedinTable1)(Lettinga,2008):
•Energyintensive;
•Productionofhighandpoorlystabilizedsludge(60–70%ofincomingCODisconvertedtobiomass);
•Highinvestmentandoperational/maintenancecost;•Complexinfrastructure.
Though,mostoftheabovementioneddrawbacksarenotasso-ciatedwithoxidationpondsbuthighlandareaisneededwhichisveryuneconomicalindenselypopulatedcountrieslikeIndia.Therefore,thesementioneddrawbacksmaketheanaerobicsys-temssuitableforruralareasanddevelopingcountries.
Withtheadventofhighrateanaerobicsystemssuchasup-flowanaerobicsludgeblanketreactor(UASB),anaerobiccontactprocess,anaerobicfilter(AF)orfixedfilmreactorsandfluidizedbedreac-tors,whichpromoteagoodcontactbetweentheinflowwastewaterandthemicro-organismsathighconcentrationandconsequentlyhighorganicmatterremovalatshortretentiontimes,thestrategyforthetreatmentofsewagewasshiftedbacktoanaerobicprocesswhichhastheadvantagesoflowcost,energyrecoveryintheformofbiogas,operationalsimplicity,lowenergyconsumption,andlowproductionofdigestedsludge.In1970s,duetotheenergycrisisandrelativelylessexpensivetreatmentconcept,theUASBprocesswasrecognizedasoneofthemostfeasiblemethodforthetreatmentofsewageindevelopingtropicalandsub-tropicalcountrieslikeIndia,BrazilandColombiawherefinancialresourcesaregenerallyscarce.
Since1980,thediscussionontheapplicabilityofUASBpro-cessforthetreatmentofsewagehasbeenpresentedbyLettingaandco-researchers(Lettingaetal.,1980,1981,1993;LettingaandHulshoffPol,1986;Seghezzoetal.,2002;vonSperlingandChernicharo,2005;Lettinga,2008)andtheresultsindicatedthatabout70%chemicaloxygendemand(COD)removalcanbeachievedinwarmclimatescountries(Schellinkhoutetal.,1985;Souza,1986;Siddiqi,1990;Khan,2011).Presentlyabout30UASBbasedSTPswereinstalledinIndiasincelate1980sandmorethan20areunderconstruction(MoEF,2005and2006).
Therefore,singlestepUASBprocessundoubtedlyexperiencedasanattractiveoptioninwarmclimateregions.However,thetreatmentefficiencydecreaseswiththedecreaseintemperature,reachinga50%CODremovalat15◦C(Elmitwallietal.,2001;SinghandViraraghavan,2002;Lewetal.,2003).TheUASBreactorperformanceatlowtemperaturescanbeimprovedbychang-ingitsconfigurationlikeincorporatingsettlerabovetheGLSS(gas–liquid–solidseparator),oraddingtheAFatthetopoftheUASBreactor,makingitasahighrateanaerobichybridreactorandextended(staged)typesofUASB-systems,viz.UASB-reactorscom-pletedwithanAForsupplementedwithadditionalsludgedigesteroperatedatoptimaltemperatureforstabilizingsludge‘extracted’fromtheUASBreactor,whichfollowingitsstabilizationinthedigesterpartiallywillbereturntotheUASBreactorinordertokeepthemethanogenicactivityatasufficientlyhighlevel.Theper-formanceofUASB-Digestersystemfororganicmatterremovalwasobservedsubstantiallybetterattemperatureof15◦CascomparedtosinglestepUASBreactoratlowtemperature(Mahmoud,2002).Thetwo-stepUASBsystemwasstudiedbyvariousauthors(SayedandFergala,1995;Halalsheh,2002;Seghezzo,2004).However,resultsshowedsimilarperformanceofthetwo-stepreactorincom-parisontoaone-stepsystem,duetolowerremovalefficienciesinthesecondstage,whichwasattributedtolowsludgeretentiontime(SRT).TypicalproblemsofhighlyloadedUASBreactorslikesludgeflotationandwashoutofactivebiomasswereobserved,mainlyattemperaturesbelow20◦C.Wang(1994)evaluatedatwostagesys-temcomposedofUASB-EGSB(expandedgranularsludgebed)forsewagetreatmentatlowtemperature.Theprimaryobjectiveofthefirst-steptreatmentwastheremovalandpartialhydrolysisofsus-pendedCODandthesecond-stepprocessobservedtoconvertthedissolvedCODtoenergyrichmethanegas.
ChernicharoandMachado(1998)studiedpilotscalesystemcomposedofthreeunitsviz.;416LUASBreactoroperatedat6hand4hhydraulicretentiontime(HRT)followedbytwoanaero-bicfiltersinupflowanddownflowmodesoperatedinparallel.Theanaerobicfiltershadatotalcapacityof102L(32Lofpackingmate-rial),operatedatHRTvaryingfrom24to1.5h(upflowvelocitiesvariedfrom0.06to1.44m/h).Theselectionofupwardanddown-flowmodeofAFsoperationwastoidentifytheextentofremovaloforganicmatterduetophysicalmechanismsofsedimentationandfiltrationthatarepredominantinupwardmodeorbiochemi-calstabilizationmechanismsofCODremoval.Thedownflowmodewasmeanttoinduceattachedgrowthasabiofilmthatfavoursthebiochemicalstabilization.TheUASBreactorperformedwellalmostachievingabove80%removalofCOD.TheresultsdepictedthattheAFsadditionallypromotedtheremovalwhichimprovedtheoverallefficiencyofthesystemwithintheambitofonlyanaero-bicregime.TheoverallCODandbiologicaloxygendemand(BOD)removalvariedfrom85to95%andtheconcentrationoffinalefflu-entCODrangedfrom60to90mg/LandtheBODandSSvalueswerelessthan40and25mg/L,respectively.However,theauthorssug-gestedthatUASB-AFsystemcouldbeanoptionforthetreatmentofdomesticsewageindevelopingcountries,sincethesystemcouldbeoperatedatanHRTof6hforUASBand3–4hforAFresultinginverycompactandlowcosttreatmentbesidesthistherewasnoenergyconsumption.
Similarly,Elmitwallietal.(1999)andLewetal.(2004)com-paredtheperformancesofahybridUASB-filterandaclassicalUASBreactorforthetreatmentofdomesticwastewateratdifferentoper-ationaltemperatures(28,20,14and10◦C)andloadingrates.ForeachtemperaturestudiedaconstantCODremovalwasobservedaslongastheupflowvelocitywaslowerthan0.35m/hinbothreactors.However,atlowertemperatureof14and10◦CtheUASBreactorshowedabetterCODandTSSremovalthanthehybridreac-tor.
AgainElmitwallietal.(2003)studiedacompositesystemoftwostepanaerobicsystemfollowedbyaerobicsystemconsist-ingofanaerobicfilter,anaerobichybridreactorandtricklingfilter(AF+AH+TF)atlowtemperature.TheoperatingconditionssuchasHRTandtemperatureweremoreorlesssimilartoothertwostepsystems.Thetreatmentperformanceoftwostepanaerobicsystem(AF+AH)wasimprovedfrom63%to85%byaddingtheTF.Thetreatedeffluentofthisstagedsystemcanbereusedforrestrictedirrigationandnutrientcanberecycled.
Mahmoudetal.(2004)investigatedacombinedUASB-CSTR(completelystirredtankreactor)digestersystem,wheretheaccu-mulatedsludgefromtheUASBreactorwasthendirectedtoaCSTR-digester,operatingat35◦Cforfurthertreatment.ResultsshowedthattheUASB-CSTRdigesterhadabetterperformancethanasinglestageUASBreactorat15◦C.Theremovalefficienciesfortotal,suspended,colloidalanddissolvedCODwere72,74,74and
1234A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
Table1
Drawbacksofaerobicwastewatertreatmentsystemsasfirstbiologicaltreatmentstepcomparedtotheapplicationofanaerobicwastewatertreatmentasfirststep.
Drawbacksofaerobicsystemoveranaerobicsystems1.Energydemandinginsteadofenergyproducing
2.Productionofhugeamountsof(generallypoorlystabilizedandquitevoluminous)excesssludge
3.Highlandrequirementsforthetotaltreatmentsystem(consistingofprimarysettlers,theAeWT-systems,secondarysettlers,sludgethickeners,sludgestabilizationmethods,sludgedewatering,andsludgedryingbeds)4.Highinvestmentandoperation/maintenancecosts(morelaborintensive)
5.Useoftechnicallyrathercomplexmechanicalequipmentwithrelativelyshortlifetime6.Morecomplexinoperationandmaintenance,i.e.higherdependencyonspecialists
7.Needofamuchmorecomplexinfra-structure,suchaspowersupply,consequentlyahighvulnerability
8.Formationofrecalcitrantorganiccompounds(e.g.humicacids)frominessencewellbiodegradablecompoundsduetoexposureofoxygen9.Poordegradationofcompoundssuchasazo-dyes,PAC’s,nitro-aromatics10.Occasionallyseriousmal-odornuisanceproblemsAdvantagesofaerobicsystemoveranaerobicsystems
11.Theeffluentqualityofaerobicsystemsisbetterthananaerobicsystems12.CanproduceEffluentofnon-potablereusequality13.NutrientRemovalPossible
14.Noimmediateoxygendemand
15.Aesthetically(Color,Turbidity)betterquality16.Noodorrelatedproblems
Source:AdaptedfromLettinga(2008).
62%,respectively.TheperformanceoftheUASB-digestersystematlowtemperaturesissimilartotheremovalobservedat28◦C.TheproblemofsolidsaccumulationobservedatlowtemperaturescanbehandledbyincorporatingasludgedigesterwithUASBreactor.
Inallcases,changesinconfigurationoftheUASBsystemsuchasadditionoftheAFanddigestersystemimprovedtheCODremovalatlowtemperatures(lowerthan20◦C),however,theeffluentcom-positionwasverysimilartothecompositionobservedforsingeUASBreactorsoperatingat25–28◦C(Table2).
Further,duetogrowingconcernovertheimpactofsewagecon-taminationofriversandlakesandincreasingscarcityofwaterintheworldalongwithrapidpopulationincreaseinurbanareasgivesreasontoconsiderappropriatetechnologiesforsewagetreatmentsothatsewagecanbetreateduptoreusestandard.
Theanaerobicprocessesconstitutethecoremethodinthenaturalbiologicalmineralization(NBM)treatmentconceptfortreatmentoflowandhighstrengthwastewaters.Highrateanaer-obictreatmentsystems,suchasUASBprocesscombinedwiththecomplementaryNBMsystem,definitelyrepresentapossi-bleroutetosustainableenvironmentalprotectioninspiriteventowardsamoresustainablesociety.StillresearchersrealizedgreatchallengingimprovementsinNBMroute/fieldinordertogetsuf-ficientconfidenceamongpolicy/decisionmakers,engineers,etc.Themaximumreuse/orrecoveryofresourcescanbeachievedthroughanaerobicpre-treatment(UASB)followedbythetreatmentconceptsappliedbasedonthenaturalbiologicalmineralizationsequence/orroute(NBMS).Moreover,atthesametimelessenergyconsumptioncanberealizedincomparisonwithpurelyaerobictreatmentsystems.
Thusbyfar,theUASBprocesshasbeendemonstratedasarobusttechnologyforsewagetreatment,mainlyfordevelopingcountriesand/orsmallcommunities(Lettingaetal.,1980,1993;HulshoffandLettinga,1986;vanHaandelandLettinga,1994;VerstraeteandVandevivere,1999;Arceivala,2001;GnanadipathyandPolprasert,1993;SousaandForesti,1996;Foresti,2001;Chernicharo,2006;SchellinkhoutandCollazos,1992;Seghezzoetal.,1998;vonSperlingandChernicharo,2005;Tandukaretal.,2006a,b).More-over,theUASBreactortreatingdomesticwastewatercanproducetwomainresources,whichcanberecoveredandutilized:methaneandtheeffluent.
ThevaluablebyproductmethaneproducedduringCODremovalcanberecovered(from28%to75%)andtransformedintoenergy(Mendozaetal.,2009).Inenergyterms,1m3ofbiogaswith75%methanecontentisequivalentto1.4kW-helectricity.Thebiogascanbeusedtorundualfuelgeneratorsorstreetlighting(Arceivala
andAsolkar,2007).AccordingtoArceivalaandAsolkar(2007)approximately23.5%methanegaswasobserveddissolvedinUASBeffluents,therefore,therecoveryofdissolvedmethanegasisdis-cretionaryandmaynotbeacceptableincaseofsewagetreatmentduetohighexpenditurecostandcomplexityofrecoveryarrange-ments.However,themethanegasevolvedtotheheadspace(gasphase)canbeofmuchimportanceandeasilycollected.Forhighstrengthindustrialwastewaterstherecoveryofdissolvedmethanegasisfavoredinviewoftheglobalwarminganditsfuelvalue.More-over,athightemperaturethesolubilityofgaseouscompounds,e.g.methanegasdecreases.Therefore,theissueofgasrecoveryespe-ciallydissolvedmethanegasmustbecarefullyreviewedforeachindividualcaseintermsofeconomicsanddesirability.
Inspiteofwellprovenadvantages,theeffluentofUASBreactordoesnotcomplywiththeeffluentdischargestandardsestab-lishedbyvariousenvironmentalagencies(Chernicharo,2006;Tandukaretal.,2006a,b).TheeffluentofUASBreactortreatingsewagecontainshighnutrientandpathogensincludingsufficientlyhighamountofresidualorganicmatter.Thetreatedeffluentforreusemustmeetcertaincontrolssuchaspathogensconcentra-tionsfollowtheWHO(1989)standards.Topreventthepollutionofreceivingwaterbodiesandmakeituptoreusestandards,stringentdischargelegislationsmustberequired.
Todevelopanationaleffluentstandard,itisnecessarytocon-sideravarietyoflocalgeographical,socio-economic,dietaryandindustrialconditions(WHO,1989).Thenationalstandardsthere-fore,differappreciablyfromtheWHOguidelinevaluesaswellasbetweendifferentcountries.Forexample,effluentdischargestandardsinIsraelaremorestringentthaninIndia:standardsguidelinesforTSSinIsraelare10mg/LwhereasinIndiatheval-uesare100mg/Lfordischargeintowaterbodies.Moreover,theFlemishstandardsforeffluentdischarge(fordomesticwastewa-ter)intosurfacewaterbodies,whichfollowstheEuropeanUnionenvironmentallegislationsismore/lessstringentthantheIsraelistandard,(BOD=25mg/L;TSS=35mg/L).Despitethedifferencesinguideline,thesevaluesarehardlyachievedthroughsingleanaero-bicprocesses.Thus,UASBreactoralonerendersaneffluentwhichisnotsuitableforagriculturere-useand/ordischargeintowaterbodies.However,itcanbeusedasafirststepinwastewatertreatmentmainlyfororganicmatterremovalespeciallyinregionswherefinancialresourcesarescarce.Toprotectthereceivingwaterbodiesandtoreusetreatedwaterforrestrictedaswellasunre-strictedirrigation,itisnecessarytofurthertreateffluentfromUASBreactor,i.e.apost-treatmentsystem.ThemainroleoftheUASBpost-treatmentsystemsistoattaintheeffluentdisposalguidelines
A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
1235
Table2
Treatmentperformanceoflab&fullscaleUASBreactorstreatingsewage.
Country
Capacity
Temp.(◦C)
HRT(h)
Influent(mg/L)
Effluent(mg/L)
Removalefficiency(%)
Reference
COD
BOD291240167214210150––300195––
TSS
COD
BOD
TSS
COD
BOD
TSS–––7375–89737369–6965–90–
JapanJapanIndia–IndiaBrazil–
Colombia–
Brazil
NetherlandsNetherlands
–
1148L5MLD–
5MLD106L110L35m33.7m3106L120L6m3
––25–
20–3121–2512–1823–2424–26208–2020
6610864.7185.210–1841218
600532590463560265465
430–520660424500550
333––174420123154
200–250–188––
222197201125140133163170178170225165
1537960395359––6661––
–––47105334265–59––
6363667374–78506566736060–9070
5367648275–8561–807869––
Tandukaretal.(2007)Tandukaretal.(2005)Draaijeretal.(1992)Goncalvesetal.(1998)Arceivala(1995)Vieira(1988)
Monroyetal.(1988)
Schellinkhoutetal.(1988)NobreandGuimarães(1987)VieiraandSouza(1986)Lettingaetal.(1983)Lettingaetal.(1981)
withacompleteremovaloforganicmatter;aswellasremovalofconstituentslittleaffectedbytheanaerobictreatment,suchasnutrients;reducedinorganic(sulfide,ferrous,etc.)compounds,andpathogenicorganisms(viruses,bacteria,protozoaandhelminthes)alongwithresourcesrecovery,and/orvalorizationofmineralizedcompounds.
Thecompleteremovaloforganicpollutantscouldbepossibleifthesewagecanbetreatedviaasequentialanaerobic,micro-aerobicandfullyaerobicbiodegradationofthepollutantsonthebasisofprocessesproceedingaccordingtothebiologicalC–NandS-cycle,togetherwithassociatedchemicalandphysicalprocessesFig.1.Thistreatmentconceptenablesconserving/orrecoveryofusefulbyproductsintheformoffertilizers,soilconditionersandrenewableenergy.
Therefore,theobjectiveofthisreviewpaperistosumma-rize,highlightandevaluatedifferentposttreatmentoptionsfortheeffluentofUASBreactorstreatingdomesticwastewaterinanattempttofulfillthe‘NaturalBiologicalMineralizationRoute’(NBMR),conceptoftreatment.Theinformationthus,gatheredcanbeappliedtoidentifyappropriatealternativetoexistingposttreatmenttechniquestoupgradetheeffluentqualityfromexist-ingUASBbasedSTPs.Alsoitprovidesajustificationforfurtherresearch.
2.1.CharacteristicsofeffluentofUASBreactortreatingdomesticwastewater
TheeffluentqualityofUASBreactorwasmeasuredintermsofBOD,COD,TSS,nutrientssuchasNandP,reducedcompounds,i.e.sulfidesandmicrobialpathogens.
2.1.1.BOD,CODandTSS
Theeffluentbiologicaloxygendemand(BOD)ofmostoftheanaerobictreatmentsystemssuchasanaerobicponds,UASBreac-tors,septictanksandImhofftanktreatingsewagewithoutanyposttreatmentsystemhasbeenreportedtovaryfrom60to150mg/L(Chernicharo,2006).TheCODandtotalsuspendedsolids(TSS)oftheanaerobicallytreatedmunicipalwastewaterrangesbetween100to200and50to100mg/L,respectively(Forestietal.,2006).Theprocessefficiencyvarieswithtemperature,strengthandcomposi-tion,e.g.fractionofindustrialwastewaterinfiltratedanddiurnalfluctuations.Theeffluentsolublemineralizedcompoundssuchasammonia,phosphateandsulfidesalsocertainlyvariedwiththesefactors.Thetreatmentperformancedecreaseswithadecreaseintemperature(Lewetal.,2003,2004;Elmitwallietal.,2001;Wang,1994).TheperformanceofUASBreactors(COD,BODandTSSinfluent,effluentandremoval)treatingsewageatdifferenttemperaturesissummarizedinTable2.
2.PosttreatmentoptionsofUASBreactor’seffluent
Varietyofposttreatmentconfigurationsbasedonvariouscom-binationswithUASBwasreportedintheliterature.Thetreatmentperformanceofdifferentcombinationsofanaerobic(UASB)andaerobicposttreatmentsystemwassummarizedinTable3.Amongthese,tricklingfilter;TF,submergedaeratedbio-filter;SABF,rotat-ingbiologicalcontactor;RBC,wetlands,sequencingbatchreactor;SBR,chemicallyenhancedprimarytreatment;CEPTandzeolitecolumn,dissolvedairflotation;DAF,aerationsystemhavebeeninvestigatedatlaboratoryandpilotscale.Fewsystemslikepolish-ingpond,activatedsludgeprocess;wetlandsandaerobiclagoonsbasedonpilotandfullscaleapplication.
ThespecificaspectoftheposttreatmentofeffluentofUASBreactortreatingsewagewouldbethecompleteremovalofpathogenstoprotecthealthofhumanbeingsandthehighestremovalofCODinordertoprotectenvironmentwithrecov-eryofenergy,i.e.methaneandcertaincompoundssuchasNH4+–N,NO2−–N,NO3−–NandPO4–P.Therefore,theselectionofappropriatesustainabletechnologyshouldbebasedontheval-orizationofwastewaterbyrecoveringandreusingby-products,usesimpletechnologiesandconceptswhichcouldbeselectedbasedonthethoroughevaluationoftheeffluentqualityofUASBreactor.
2.1.2.NandP
Littleornonutrientremovalmaybeexpectedinananaero-bicsystemtreatingdomesticwastewater,asreportedbyseveralauthors(Lettingaetal.,1981;Forestietal.,2006;Moawadetal.,2009).Thereasonofthelownutrientremovalisthatduringtheanaerobicprocess,organicnitrogenandphosphorousarehydrolyzedtoammoniaandphosphate,whicharenotremovedfromthesystemandinconsequence,theirconcentrationincreasesintheliquidphase.Theconcentrationofammonianitrogenandphosphorousinanaerobicallytreatedmunicipalwastewaterhavebeenreportedtorangefrom30-50and10-17mg/Lrespectively(Forestietal.,2006).
2.1.3.Reducedcompounds
Sulfurcompoundsexistassulfidesinanaerobicsystemseffluenttreatingdomesticwastewater.Theeffluenttotalsulfidescon-centrationgreatlydependsoninfluentsulfateconcentrationandsulfatereducingbacterialactivityinsidethereactor.Generally,thesulfideconcentrationaround7–20mg/LwasobservedintheUASBeffluenttreatingsewageanditincreasestheeffluentoxygendemand(Walia,2007;Khan,2011).Further,thechemicalandbio-chemicaloxidationalsodependsonsulfidesconcentrationalongwithotherreducedspeciesFe2+andmercaptans.althoughlowfer-rousionconcentrationhasbeenobservedintheanaerobiceffluent
1236A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
CO2 CH4 H2S CO2 CO2 Organic wastes Red, (AnDi, SuDeNitr) And Degr. Solution with N- and P- compounds, mainly nutrients Micro- AeDegr AeDegr. viz. nitrification, mineralisation Solution with mineralized compounds S Soil cond itioner Fig.1.NaturalBiologicalMineralizationRoute(NBMR)oforganicmatteradaptedfrom(Lettinga,2008).
ofsystemstreatingdomesticwastewater.However,ferrousions
additiontoinfluentwasstudiedtoenhanceCODremoval.Vlyssidesetal.(2007)investigatedtheeffectofferrousiononbiologicalactiv-ityofUASBreactor.TheadditionofferrousioninducesastableandoutstandingconversionrateofCODandwasprovedtoenhancethebiologicalactivityofUASBreactor;otherwisetheferrousionsresultedduetoreducedenvironmentifsewagewastreatedbyUASBreactor.
2.1.4.Microbialpathogenicindicators
AlthoughUASBsystemsarenotdesignedforpathogenicremoval,fecalcoliformsreductionisaroundoneorderofmag-nitude(fromaround108to107);whilehelmintheggsremovalefficiencyhasbeenreportedtobe60–90%(Chernicharoetal.,2001;vonSperlingetal.,2002;Chernicharo,2006;vonSperlingandMascarenhas,2005).
Therefore,inordertomakethesituationidealforsustainabletreatmentthehighrateanaerobictreatmentsystemsespeciallyUASBrectormustbecombinedwithinnovativeposttreatmentsys-temsbasedonNMBsequence.Severalposttreatmentsystem/orcombinationofanaerobicpretreatment(i.e.UASBreactor)andfol-lowedbyaerobicsystemswereinvestigatedatlaboratoryandpilotscalelevelsforthetreatmentofsewage.ApplicationofdifferentaerobicsystemswithUASBreactorfortreatmentofsewagehasgivenlessemphasisonmakingthemsustainableand/ortoachievetherecoveryofresources.However,mostofthesecombinationswerefoundviableoptionforthetreatmentofeffluentofUASBreactor.
Thediscussionfortheselectionofthesustainabletechnologyforthepolicymakers,engineers,contractors,consultantsandauthor-itiesofthepublicsanitation(PuSansector)hasbeenpresentedindiscussion/summarypartofthisreviewpaper.
Further,inordertopromotethemasmoresustainableforthetreatmentofsewageandtoimprovetheirtreatmentperformance,thesesystems/combinationswerecategorizedbasedontheirappli-cationtoremovethesuspendedsolidswithorwithoutchemicalcoagulants,solubleorganicandinorganicmatter,andremovalofreducedcompoundssuchasferrousionsandsulfidesandrecoveryofmethane.
Themajorcategorieswere(I)conventionalorinnovativepostsettlingsystemsandmodernflotationmethodswithorwith-outchemicalcoagulants,etc.fortheremovalofsuspendedsolids
andsolubleorganicandinorganiccompoundslikephosphateortermedasprimaryposttreatmentoptions;(II)applicationofphys-icalmethodstoremoveandrecoverdissolvedmethanefromtheeffluent,whichisveryimportantissuefortheresearchers,engi-neersandscientists;(III)highrateprimarybiologicalmicro-aerobicmethodsfortheremovalofhighlyreduced(malodors)compoundslikesulfidesandvolatileorganicS−compounds,Fe2+andcolloidalmatter;(IV)highrateaerobicsystemsfornitrification,whencom-binedwithdenitrificationstep;(V)Lowrateprimarytreatmentsystemsincludingthesystemsmeantforcultivationofbiomass,e.g.removingandvalorizingnutrients;(VI)polishingstepsforhighrateremovalsofpathogens.Theposttreatmentsystemsthus,cat-egorizedcaneitherbeusedsinglyorsequentially.
2.2.Postsettlingsystems
TheUASBeffluentcontainhighlystabilizedsuspendedmat-terwhichcanberemovedbymicro-aerationandsettlingprocess.Therefore,propermethodsofremovalofsuspendedsolidsareneeded,however,presentlyatfullscale,onlySTPsnaturalsettlingmethodsarewidelyused.Moreover,naturalsettlingmethodisoftenslowandinefficientandsometimesenhancedbyadditionofchemicalwhichcouldeasilyremovethecolloidalandfinelydissolvedsolidsandseparatedbyphysicalaeration.Furthertherecoveryofresourcesintermsofphosphatesandtreatedeffluentifusedforirrigationpurposesmakingitanidealforsustainableoption.
2.2.1.Conventionalpostsettlingmethods
Overlandflowsystem(OFS)isaclassicalexampleofafullscalenaturalsysteminuseforUASBeffluentposttreatment.ThesystemwasextensivelystudiedinBrazilunderPROSABandisoperatedintwophases,characterizedbyconstantandtransienthydraulicregime,respectively(Chernicharoetal.,2001).Threeslopes(physicallyidentical)forwastewateroverlandflowconsti-tutedthepost-treatmentsystem.AverycommonweedspeciesnamedBrachiariahumidicolawasusedasvegetativecoverontheslopes.Thisweedisknownforitshighrateofnutrientabsorptionandhighresistanceagainstflooding.
TheapplicationofUASBeffluentatlowflowratefrom0.4to0.5m3/mhtooverlandflowsystempresentedagoodperformance.Thefinaleffluentconcentrationofthecombinedsystemshowed
A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
1237
)100)28(99o1tn(eod))))ma111i)))h00)8cc))0707709)9s00a2)90b)9a490090)2)02701)NM2((..ll0909(1090200(4d0120212.l0((((02.0daal2((0a0....2(nttla0n..(ll2lllt2(a(.2aaee.lt(s.aae(aaatl..tttlae.ooog)atetlilataeeeealtrrraaaain11icteedtesetnhhhlr0eahtntarreaaeovleccce2ekrstcefaairladdeueagaashhhwknaiiiirnnp(afifeynkaavuSccwmcnenlrrrSnleeeaiRAeryao-aaolauoehhnohPPTCSEMMMTSGKhCCCvK)9.99–99(50))))L59)8)1m)99995)999999×0)9.......))09999999994.9992919999999(((((((((/–(N533233422543P000000000000M111111111111××××××××××××(030800458140C............1–41514–379–4––8–F5)L)/))9))gm4888599(76)(((4((0P567124(.....T00–––01––1–3–––––––)L))/g)m9)0))7))95750716((5(8)4(23(5(9(6((N5...5748(.8207T0–––214621–32––––––)L/gm()N)89))9)))–900()80284(5702091H((138(1(–(N.044.8(2.40–––2106102–––––1––.)e9)g)aL84)92w/g))––8)5)))))))37()em)42))1038446s8.816677783(9099998((518g88(99(90((4(1(((((05nS––(4(30872(70.08.332737Sit24>21130T15–192<<114aerts))m8)3e858ts)–9–yL4–7)s/7573g)))(8(9tnm))7)9))))))20(9–)e(188172341439)20156m*D99(9(899998(419188((0(8((((((88(tanO.–––((5757029066347800807eoC41>2154442453766955irttatrston)pe)c43Bn)9)8SoL–5–Ac/093Ugt))8–5dnm)16).)))))(5()e(59226))7367829euD8(9999699965(68t((aflO0(((99(((8(rf22244((84–0–.1.67482gEB3–>12–1295–1921<4–2.estensiesunrhotootniitrsceaaaldrvunemaremtepfcaoclsdstneostdesysibrsyscefldenynt–nwodreetclwnasetiopnmmlnoopdedxdlfiooeieigtfieficflitrgricezteotancedregbdarfisf+liufryeetnnelioeBuhrwesstktfilraalpSFgiscSldRCamokeraAAaFlSonouicaePhsvteHBBrbunUDocSpcdDSReasbirnvSaota+++++++++dtaoAfl3e+r++mBBBBe+++++gTBBBBBBBteemtePSSSSSSSSSSSaBBBBBrltbaEAAAAAAAAAAArSSSSS%naeICUUUUUUUUUUUeAAAAAaUUUUU*TrTaveragevaluesofBODfrom48to62mg/L;CODfrom98to119mg/LandSSfrom17to57mg/L.Thecombinedsystemremoved2–3log-unitsofFCtherebyreducingtheresidualFCofeffluenttoaround8.4×104to2.4×105MPN/100mL.Inaddition,asignificantremovalofhelmintheggswasobservedwithanaverageeffluentconcentrationof0.2egg/L.However,thefinaleffluentqualityoftheoverlandflowsystemwasinterferedbythetransientflowregimeandthehighconcentrationsofsolidsandorganicmatterintheUASBreactoreffluent.Forthesesituations,thelengthoftheslopewassuggestedtobekeptabove35m.
Cavalcantietal.(2001)studiedinBrazilthefeasibilityofasingle,flow-throughpolishingpondsubdividedinlanesbyusingbafflesforthepost-treatmentofUASBreactoreffluent.Thepolishingpondwasconstructedtomaintainplugflowregimeinordertoraisethefecalcoliformremovalefficiencyofthesystemincontrasttoconventionalwastestabilizationpondswheretheorganicmat-terremovalwasconsideredasthedesignparameter.Twodistinctretentiontimesof5dand15dweremaintainedinthepond.Theresultsobtainedfromthestudyshowedthatattheretentiontimeof5d,theaverageBOD,CODandTSSvalueswerereducedto68,188and68mg/L,respectively.AtanHRTof15dtheseconcentrationslowereddownto24,108and18mg/L,respectively.Theresultsoftheremovalofpathogenicmicrobialindicatorswerealsoencour-agingwiththecompleteremovalofhelmintheggsatanHRTof3d.TheeffluentFCconcentrationatanHRTof15dwasobservedverycloseto1000MPN/100mLtoconformtheWHOguidelineforunrestrictedirrigation.
AgaininBrazil,vonSperlingandMascarenhas(2005)inves-tigatedtheperformanceoffourshallow(depth=0.40m)polishingpondsinseriesforthetreatmentofUASBeffluentatatotalhydraulicretentiontimeof7.4d(1.4–2.5daysineachpond)duringphaseI.InphaseII,thesefourpondswereoperatedinparalleleachhavingtwopondsinserieswithdoubledepthoffourpondsinseries.Basedontheresults,thetreatmentefficiencyinphaseIandphaseIIwassim-ilarandnothigh,withafinaleffluentaverageconcentrationofBODandCODwere44and170mg/L,respectively.ThefinaleffluenthadgeometricmeanFCconcentrationslowerthan1000MPN/100mL.ThemeanoverallFCremovalefficiencywasremarkablyhigh(6.42logunits,or99.99996%),totalnitrogenconcentrationof10mg/Lintheeffluent,werefoundcompatiblewiththedischargestan-dardsof15mg/L(70%removal)forurbanwastewatersfromtheEuropeanCommunity.Theammonianitrogenconcentrationineffluentfromcombinedsystemwas7.3mg/L(67%removal).How-ever,phosphorusremovalwasonly28%(effluenttotalphosphorus(TP)concentrationof2.8mg/L).
Severalstudiesonintegratedanaerobic-aerobicsystemswerecarriedoutinBrazil.AnotherstudyonUASB-polishingpondsys-temwasdonebyvonSperlingetal.(2005)treatingsewagefortheremovalofE.coliandhelmintheseggs.Thedepthofthepondsandaverageretentiontimeinpondsvariedfrom0.40to2.00mand2to21days,respectively.Theshallowpondsinseries,evenwithlowretentiontimes,wereabletoproduceeffluentscomply-ingwiththecoliformsWHOguidelinesforunrestrictedirrigation(lowerthan1000MPN/100mL).Allpolishingpondsystemswereabletoproduceeffluentswithouthelmintheseggs,whatisincom-pliancewiththeWHOguidelinesforunrestrictedandrestrictedirrigation(≤1egg/L,arithmeticmean).Thus,theeffluentqualityofthepolishingpondsinseriessatisfiedtheeffluentpathogendisposalstandards.But,higherlandrequirement,poornitrogenremovalandodorproblemmakingthemdisadvantageousfortheposttreatmentofUASBeffluentstreatingsewage.
AccordingtoKhan(2011)inIndiathereisapracticetousefinalpolishingunits(i.e.FPUs)totreattheUASBeffluentandtheseFPUsaredesignedatanHRTof1d.However,thetreatmentperfor-manceoftheFPUswasinsignificantandmerelyrunningassettlingtanks,withaverylimitedalgalactivity.TheBODandTSSremoval
1238A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
isgenerallyfoundlessthan50%.Duetoverylimitedalgalactivity,coliformremovalalsorestrictedtogenerally1–2logunit,how-ever,helmintheggsareremovedcompletely(vonSperlingetal.,2005).Khan(2011)investigatedthe38millionliterperday(MLD)UASBfollowedbyFPUsystemforthetreatmentofsewageatSaha-ranpur,Indiaandobservedthatthehelmintheggsreducedfrominfluent(sewage)40–70eggs/Lto0–0.4eggs/Linthefinaleffluentafterpond.
2.2.2.Flotationmethods
Dissolvedairflotation(DAF)clarifieswastewaterbyremovingfloatingsuspendedmattersuchasoil,fatsorsolids.Penetraetal.(1999)inBrazil,studiedtheperformanceofabenchscaledissolvedairflotationtreatingeffluentfromaUASB–coagulationsystem.Theferricchloride(FeCl3)doseof65mg/LatpHbetween5.3and6.1providedinDAFsystemeffectivelyreducedCODupto91%.TheremovalofTP,TSS,turbidityandtotalsulfides(TS)was94–97%.TheeffluentCODfromthecombinedUASB-coagulation-DAFsys-temwasfoundtorangefrom20to50mg/L.TSSwasaround4mg/L.SimilaryanotherresearcherRealietal.(2001)inBrazilstudiedthebenchscaleDAFforthetreatmentofeffluentofpilotscaleUASBreactortreatingsewageandfoundthatabout73%CODremoval,86%phosphorousremovaland98%turbidityremovalcanbeachievedinDAFusingFeCl3asacoagulant(dosagesbetween30and65mg/L)alongwith0.4mg/Lofnonionicpolymer.However,thenitrogenremovalwasverypoor.Theuseofchemicalwasthemajordraw-backofthissystemmakingitalesssustainableoptionduetohighcostofchemical.Thissystemcanbeusedwithainterestofresourcerecoveryintermsofnitrogen,phosphorousandsulfurifeffluentisusedfortheirrigationpurposes.
Thecoagulationandflocculationmethodofposttreatmentfortheeffluentof38MLDUASBreactortreatingsewagewasstud-iedbyPrakashetal.(2007)inIndia.BOD,COD,TSSandFCoftheUASBeffluentwereintherangeof38–55,109–256,65–110mg/Land4.3×104to9.3×106MPN/100mL,respectively.Theoptimumdosesofalum,polyaluminiumchloride(PAC),ferricchlorideandferricsulfate,determinedthroughaseriesofjartestswerefoundtobe20mg/L(asAl)foralum,24mg/L(asAl)forPACand39.6mg/L(asFe)forFeCl3and17.6mg/L(asFe)forFeSO4,respectively.AllcoagulantseffectivelyreducedtheeffluentBODandSStolessthan20mg/Land50mg/L,respectively.However,fecalcol-iformsconcentrationscouldnotbereducedtoapermissiblelimitof1000MPN/100mLforunrestrictedirrigation.Thefinalconcen-trationoffecalcoliformofUASBreactoreffluentonlyreducedto2300MPN/100mL.Chlorinationatthedosingrateof1–2mg/Lwithcontacttimeof30minwasfoundsuitabletomeetthestan-dards.Further,higherdosesofchlorine,i.e.3mg/LwassuggestedtoremovealltheFCnumbersfromthesampleaftercoagulationwithabovementionedoptimumalumandPACdoses,butitwas4mg/Laftercoagulationwithironcoagulants.
Aiyuketal.(2004)inGhent,Belgium,proposedanintegratedcoagulation–flocculation–UASB-zeolitecolumnconceptforalow-costtreatmentofdomesticwastewater.Inthisintegratedtreatmentsystem,domesticwastewaterwasinitiallysubjectedtochemicallyenhancedprimarytreatment(CEPT)usingFeCl3asacoagulantandapolymertoremovesuspendedmaterialandphosphorus,fol-lowedbyUASBtreatmenttoremovesolubleorganics.TheeffluentofUASBreactorwastreatedbyregenerablezeolitestoremovetotalammonianitrogen.Theionexchangesystemwasregeneratedbybiologicalnitrification.
Thecoagulant(FeCl3)doseof50mg/Lwasselectedfromaseriesofjartest.TheCEPTpretreatmentonanaverageremoved73%COD,85%SSand80%PO43−.However,thecoagulation/flocculationstep,i.e.CEPTofthisintegratedsystemproducedthicksludgecontaining8.4%solids.Aftercoagulation/flocculationstep,thepretreatedwastewatercontaininglowtotalCOD(approximately
140mg/L)wasintroducedtoanUASBreactorof2.1Lvolume(0.05minternaldiameterwith0.9mheight).Thereactorwasoperatedwithavolumetricloadingrateof0.4gCOD/Ld(HRT,10h)and0.7gCOD/Ld(HRT,5h).Thezeolite(asapost-treatmentcartridge)provedmostbeneficialasitremovedalmost100%NH4+.Thelargeinterstitialspacesinlatticesofzeolitecon-tributedtotheremovalofNH4+throughionexchange.Theintegratedcoagulation–flocculation–UASB-Zeolitesystemeffec-tivelydecreasedtheinfluentTSSandCODupto88%andmorethan90%,respectively.Thenitrogenandphosphorusweredecreasedto99%and94%,respectively.Pathogenindicators(fecalcoliform)werereducedto105cfu/Lfrom107cfu/Loftheinfluent.ThefinaleffluentcontainedlowCODandTSSvaluesaround50and35mg/L,respectively,whichcanbeusedforcropirrigationordischargedinstreams.Theauthorshavefurthersuggestedexploringthepossibilityofrecycling/reusingordisposalofthesidestreamsgen-eratedshouldbeexploredfurtherandevaluatedinfutureresearch,togetherwiththeenergyrecoverypotentialoftheCEPTsludge.
2.3.Physicalandbiologicalmicro-aerobicmethods(includingremoval/orrecoveryofdissolvedgases)
TheUASBeffluentcontainsreducedorganicandinorganicspeciesanddissolvedmethanegaswhichcanberemovedbymicro-aeration.Micro-aerationimpliesaerationoftreatedeffluentforabout30min.Theroleofmicro-aerationistostripoffandtooxi-dizethereducedspeciessuchassulfidesandferrousions,whichexertimmediateoxygendemandandremainingeasilybiodegrad-ableorganicpollutantsandtoremovethedissolvedmethanegas.Generally,thesesystemshaveveryshortHRTandtheamountofexcesssludgegeneratedisnegligible.Thesimplephysicalmicro-aerationcanbesufficientlyremoveorstripoffthedissolvedsulfidesormethanefromtheUASBeffluent.Howevertheremovalofsus-pendedsolidsisinsignificantfromthisprocess.
Walia(2007)investigatedtheaerationofUASBeffluentbydif-fusers,surfaceaeratorsandcascadeonbenchscaleinRoorkee,India.Theoutcomeofthestudyhasgivenaconceptualmodelwhereinitdemonstratedthattheaerobicnatureoftheeffluentdependsondissolvedoxygen(DO),ORPandBOD.AnaerobicUASBefflu-entbecomesaerobicifitsBODisreducedtolessthan30mg/LandminimumvaluesofDOandORPareobserved,4–5mg/Land120–135mV,respectively.Basedonexperimentalresultsempiri-calcorrelationsbetweenBOD,ORPandDOhavebeendevelopedandtheresultsindicateda50%reductioninBODoftheUASBeffluentatHRTof∼100min.Subsequentlytreatmentofsewageina60LpilotscaleUASBreactorfollowedbyacontinuousdif-fusedaerationsystemandthefullscaleplant(111MLDcapacity;UASB+aeration+FPU)wasinvestigatedbyKhan(2011)inIndia.TheUASBreactorwaskeptat8hHRTwhichisidenticaltofullscaleUASBreactorsfunctioninginIndia.TheHRTofcontinuousaerationsystemwasmaintainedat15,30and60min.Duringaer-ationateachdetentiontimebulkliquidDOof5-6(high)and1–2(low)mg/Lweremaintained.ThefinaleffluentconcentrationsofCOD,BODandTSSoperatingunderhighDO(5–6mg/L)obtainedat30minHRTwere40–60,25–35,30–40mg/L,respectivelyand30–50,18–30,20–30mg/Lat60minHRT.Thecombinedreduc-tionefficiencyoftheintegratedUASB-CASsystematHRTof30and60minrangedfrom80to85%COD,85to90%BOD,65–75%TSS.Thetreatedeffluent,however,stillcontainedsignificantnum-berofFC,whichwasgreaterthanthepermissiblelimitforbathingandunrestrictedirrigationassetbyWHO(1989).TheremovalofNH4–Nandtotal-PwasinsignificantatanyofthemaintainedHRTinaerationofUASBeffluent.TheIntegratedUASB-continuousaer-ationsystem(CAS)forsewagetreatmentcouldberecognizedasasustainableandcosteffectiveoptionasthecombinedHRTofthesystemis(8hforUASB)+(0.25–1.0hforaeration)8.25–9.0h.The
A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
1239
resultsinferredthatperformanceofexistingUASBbasedSTPscanbeupgradedbyinstallingcontinuousaerationsystemthroughfineporediffuserandtheenergyproducedbyUASBreactorintermsofbiogascouldbeusedtooperatetheaerationsystem.
Forthelasttwodecadesprogresshasbeenmadeontheuseofhighratemicro-aerobicmethodsfortheremovalorrecoveryofdissolvedsulfidescontainedinanaerobiceffluents.Besides,sulfidepurgingintotheatmosphere,micro-aerationcanalsobeutilizedforbiologicaloxidationofsulfidesintoelementalsulfur,whichoffersanexcellentpotentialforreuseandithasbeenshowntobeacosteffectivealternative(Valleroetal.,2003;Chuangetal.,2005;Chenetal.,2010).Theprocessisgenerallyfocusedonthetreat-mentofbiogas,off-gas,naturalgasorlowstrengthwastewaters,likeinthecaseofanaerobiceffluents.Inaddition,micro-aerationintotheanaerobicsystemmaybeanoptionforincreasehydrogensulfidestrippingandmethaneproduction(vanderZeeetal.,2007).Buismanetal.(1990)developedalow-cost,high-ratebiotechno-logicalaerobicprocessfortheoxidationofsulfideintoelementalsulfurbyagroupofcolorlesssulfurbacteria,wherethesulfideoxi-dationratewasdependentontheoxygenlevel.Thebiofilmonareticulatedpolyurethanewasmoresuitabletoproducesulfatethanafreecellsuspensionofbiomass,forthesamegivenoxygenandsulfideconcentrations.Forefficientachievementofelemen-talsulfur,highsulfideloadsorlowoxygenconcentrationsmustbeapplied(Stefessetal.,1996).Valleroetal.(2003)utilizedthemicro-aeratedreactorsfortheoxidationofsulfidestoelementalsulfurfromtheliquidphaseofanaerobicallytreatedsewage.Theresultswereencouragingandpartialconversionofsolublesulfides(HS−)intocolloidalelementalsulfurwasobserved.
Analternativetothebiologicaloxidationofsulfideisthechemi-caloxidationofaqueoussulfidetoelementalsulfurbyferricsulfateatlowpH,whichyieldselemental,orthorhombic␣-sulfur(deSmulandVerstraete,1999).Theprocesscanbecoupledtoamembrane-assistedextraction(e.g.permeablesilicon)ofH2Soutoftheliquid.Aftertheremovalofthesulfurfromtheferricsolution,theferricsolutioncanberegeneratedbyaeration.Excellentremovalofsul-fidehigherthan99%wasobservedduetoimmediateformationofelementalsulfur.Anotheroptionistheformationofinsolublemetalprecipitatesbytheadditionofanexogenoussourceofheavymet-als(e.g.Fe2+)(JohnsonandHallberg,2005).However,thisprocessiseconomicallyandenvironmentallynotviableandnevertheless,thereareotheralternativewaystopromotetheformationofmetalprecipitatesfor,theremovingofsulfidefromanaerobiceffluents.Tothebestofourknowledge,however,thishasnotbeentestedfordomesticsewageanaerobictreatmentsofar.
Theproducedelementsulfurformstransparentglobulesofupto1micro-meterindiameter,whicharedepositedinsideoroutsidethebacteria.Animportantissueistherecoveryofthecol-loidalsulfurparticles.Janssenetal.(1999)studiedthepropertiesofthecolloidalsulfurparticlesanddevelopedanup-sidedownconesexpanded-bedbioreactorforspatiallyseparationoftheaer-ationandoxidationphases.After50daysofoperation90%ofthesludgesettledatavelocitygreaterthan25m/handcouldbeeasilyremoved.Althoughtheresultsareveryencouraging,morestud-iesontheapplicationofhighmicro-aerobicsystemsforcolloidalmatterremovalarenecessary.
Oneofthemostpromisingtechnologiesforsulfideremovalfrombiogasesisatwo-stepprocesswheregaseoussulfideisdissolvedintotheliquidinthefirststep,followedbysulfideoxidationtoelementalsulfur.AlthoughlittleresearchhasbeenconductedonthesubjectChuangetal.(2005)treatedasulfate-richwastew-aterinaUASBfollowedbyafloatedbedmicro-aeratedreactor.ThefloatedbedwasoperatedatshortHRT(2.8h)andduringlong-termsteadystateoperationresultsshowedthatalmostallsulfides(>96%)wasoxidizedtoelementalsulfurandsulfate.AnnachhatreandSuktrakoolvait(2001)observedasulfideconversionhigher
than90%atsulfideloadingratesof0.13–1.6kgS/m3/dandatDOslowerthan0.1mg/Lsulfurwasthemajorendproduct.
Thesimplestmethodofsulfideoxidationistheintroductionofmicro-aerobicconditionsintheanaerobicreactor.Despitethetoxicityexertedbyoxygenagainstobligatoryanaerobes,itsmod-erateintroductionisnotexpectedtohaveaharmfulimpacttothebiomass,mainlytothelimitedpenetrationdepthofoxygeninbiofilm.vanderZeeetal.(2007)determinedtheairinjectedtosulfideratiotobe8–10:1(O2:Sinmolunits),whichwassufficienttoreducethebiogasH2Scontenttoundetectablelevels.Elementsulfurandsulfatewerethemainproducts.
Matsuuraetal.(2010)investigatedatwostageDown-flowHangingSponge(DHS)systemfortheposttreatmentofUASBefflu-entinNagaoka,Japaninordertorecoverthedissolvedmethanegas.Mostofthedissolvedmethane(99%)wasrecoveredbythetwostagesystem,whereasabout76.8%ofinfluentdissolvedmethanewasrecoveredbythefirststageoperatedat2hHRT.ThesecondclosedDHSreactorwasusedforoxidationoftheresidualmethaneandpolishingoftheremainingorganiccarbons.TheremovalofCODandBODinthefirststagewasinsignificantastherewasnoairsupply;however,highremovalswereexpectedinthesecondstageduetosufficientsupplyofair,whichisquicklyoxidizetheresidualdissolvemethaneintheupperreactorportionbeforebeingemittedtotheatmosphereasoff-gas.
2.4.Highratebiologicalaerobicmethods(includingnitrification–denitrificationsteps)
Thepoorlybiodegradablesolublematter,hazardouscom-poundsormicropollutantsincludingammonia–nitrogenandphosphorousineffluentofUASBreactorsometimesaredifficulttoremovebymicro-aerobicorsimplesettling.Therefore,secondaryposttreatmentisrequiredafterthefirststep,micro-aerobicorset-tlingtreatmentmethods.Anumberofsecondaryposttreatmentprocesseshavebeencategorizedintomethodsresponsiblefortheremovalof(i)poorlybiodegradablesolublematterincludingmicropollutantandhazardousmaterial,(ii)finelydispersedorganicmat-ter,i.e.colloidalandpathogensremovaland(iii)ammonia–Nandphosphorous.
Theremovalofresidualbiodegradablecarbon,ammonianitro-genandphosphorouscanalsobeachievediftheeffluentofUASBistreatedbyhighrateaerobicbiologicaltreatmentmethods.
Thesequencingbatchreactor(SBR)isafillanddrawtypemod-ifiedactivatedsludgeprocess,wherefourbasicstepsoffilling,aeration,settlinganddecantationtakeplacesequentiallyinabatchreactor.TheoperationofSBRcanbeadjustedtoobtainaerobicandanoxicphaseswithinthestandardcycles(DrosteandMasse,1995;Surampallietal.,1997;Wildereretal.,1999).TheUASBfollowedbySBRsystemwasmainlyinvestigatedinBrazil,MiddleEastregionandinIndiaforthesewagetreatmentunderambientconditions.SousaandForesti(1996)proposedacombinedsystemcom-posedofanaerobic-aerobicprocessesconsistingofaUASBreactorfollowedbySBR.Thesystemperformancewasevaluatedthrougha4LbenchscaleUASBreactorandtwoSBRsof3.6Leach.TheUASBreactorwasfedwithpartiallymixedsyntheticsubstrateinsewagewhiletheSBRreceivedeffluentofUASBreactor.Thecom-binedsystemwasoperatedcontinuouslyfor38weeksatcontrolledtemperatureof31±1◦C.TheUASBreactorwasoperatedat4hHRTthroughoutthestudy.TheSBRsweremaintainedat4hcyclesinthefollowingsequenceoffill(0.10h),reaction(1.9h),sedimen-tation(1.6h),discharge(0.25h)andidle(0.15h).Thecombinedsystemremoved∼85%TKNthroughnitrification.TheCODremovalinUASBreactorwasaround86%whileinSBRitwasaround65%oftheremaining.Thecombinedsystemsremoved95%COD(residualeffluentCODwas20mg/L).Theperformanceofcombinedsys-1240A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
temwas96%intermsofTSSremoval(residualeffluentTSSwas9mg/L)and98%intermsofBODremoval(residualeffluentBODwas6mg/L).
TorresandForesti(2001)studiedtheeffectofaerationontheperformanceofSBRtreatingUASBeffluent.TheUASBreactorwasoperatedataconstantHRTof6hwhiletheSBRperformancewasmonitoredat24,12,6and4hcyclescorrespondingtoaerationtimes(AT)of22,10,4and2h,respectively.TheoverallremovalefficienciesofCODandTSSwere91%and84%,respectivelyandobservedindependentofaerationtimegiveninSBR.However,thenutrientsremovalwasfoundtobedependentonaerationtime.TKNremovalofapproximately90%wasachievedforaerationtimeequaltoormorethan10h;completenitrificationoccurredforaerationtime>4h;significantphosphateremoval(72%)occurredonlyattheaerationtimeof2h.
Moawadetal.(2009)alsoinvestigatedtheperformanceofthecombinedUASB-SBRsystemunderdifferentoperatingconditionsforthetreatmentofdomesticwastewater.TheretentiontimeintheUASBwaschangedfrom4to3handtheaerationtimeintheSBRcyclevariedfrom2to5h,andthento9h.Theyobserved94–98%removalofCOD,BODandTSSforthethreeruns.TheresidualCOD,BOD,andTSSwere26,5.8and5.0mg/L,respectively.Completenitrificationofammoniawasachievedafter5haerationintheSBR.Theaveragepercentageremovalofphosphorusreachedupto65%.IncreasingtheHRTintheSBRfrom2to9hcausedasig-nificantimprovementinFCremovalasthegeometriccountofFCwasreducedto7.5×102MPN/100mLintheeffluentofthe3rdrun(HRT9h).TheresultsoftheabovestudiesofcombinedUASBandSBRsystemrevealedthattheadditionofSBRwithUASBreactorcouldbeafeasibleoptionforthetreatmentofsewage.
Again,Khanetal.(2011)investigatedtheperformanceofapilotscaleintegratedUASB-CFIDsystemfortreatmentofsewage.TwodifferentvariantofSBRviz.processContinuousFlow-IntermittentDecantSequencingBatchReactor(CFID)andIntermittentFill-IntermittentDecantSequencingBatchRector(IFID)wereinvestigatedforabout18monthsinconjunctionwithUASBreactoratambientenvironment.InphaseI,theUASB-CFIDsystemwasoperatedatanHRTof8hinUASBreactorwhileitwasvariedinCFIDfrom20,8and6hwithdifferentdissolvedoxygen(DO)regimeof4.0to5.0and<0.5mg/L,2.5–3.5and<0.5mg/Land2.5–3.5and<0.5mg/L,respectivelyateveryHRT.TheBODandTSSremovalefficiencyofcombinedUASB-CFIDsystemwasupto90%and90%,respectively.TheFCreductionwasachievedmorethan99%inanintegratedsystem.ItwasobservedthataveragereactorMLVSSconcentrationreducedaround30%atDOof2.5–3.5mg/Lshowinghighdegreeofmineralization.Insecondphase,aninte-gratedUASBfollowedbyIFIDsystemforthetreatmentofsewagewasevaluatedfortheremovaloforganicsandnutrientformorethansixmonthsatambientconditions.TheHRTinUASBreac-torwasmaintainedconstant,i.e.8h.TheIFIDwasoperatedat6hHRTatDOconcentrationrangedbetween2.5and3.5mg/L.ResultsrevealedthattheremovalofBOD,CODandTSSwereachieved90,95and90%,respectively,inIFID.DuringhigherorganicloadingconditionsandlowSRT,theremovalofphosphorouswassignif-icantlyhigherthanthatoflowerorganicloadingsandhigherSRT.ThesuitablerangeofCOD:Pwas105–160effectivelyremovingthephosphate.TheTNremovalwassufficientlygood.
Also,classicalactivatedsludgeprocess(ASP)canbeappliedtotreatUASBeffluents.Apilotplantcomprisingofa416LUASBreactorfollowedbya23Lactivatedsludgesystemwasmonitoredfor261dbyvonSperlingetal.(2001),treatingactualmunicipalwastewaterfromalargecityinBrazil.Theaerationwasdonebydiffusedairanddissolvedoxygenwaskeptaround2.0mg/L.Thewholestudywasdividedintofivephases.Constantinflowandvari-ableHRTwasstudiedinphasesIandIIandsubsequentlyconstantHRTandvariableinflowinphaseIII,reductioninvolumeofUASB
settlerinphaseIVand20%sewagebypassedtoactivatedsludgewasinvestigatedinphaseV.TheUASBreactorremoved69–84%CODandASPremoved43–56%oftheremainingCODresultingin85–93%removal.Theperformanceofthecombinedsystemintyp-icalphasesII,IIIandIVwasverygood.TheoveralleffluentfilteredCODonanaveragereducedto50,56,58and128mg/LinphasesI–IV.DataontheeffluentBODhowever,isnotavailable.ThefinaleffluentSSconcentrationwas13–18mg/L.Therefore,UASBandASPconfigurationwassuggestedtobeabetteralternativeforwarm-climatecountriesthantheconventionalactivatedsludgesystemalone,consideringthetotallowhydraulicdetentiontimeof7.9h(4.0hUASB;2.8haerobicreactor;1.1hfinalclarifier),offeringtheadvantagesintermsofsavingsinenergyconsumption,absenceofprimarysludgeandpossibilityofthickeninganddigestingtheaerobicexcesssludgeintheUASBreactoritself.
Tawfiketal.(2010)investigatedalaboratory-scaleintegratedUASBreactorfollowedbyamovingbedbiofilmreactor(MBBR)forsewagetreatmentatthreedifferentcombinedHRT’sof13.3h(8+5.3),10h(6+4)and5.0h(3+2)undertemperaturerangeof22–35◦Cfor290dinEgypt.TheworkingvolumesofUASBreactorandMBBRwere10and8.0L,respectively.Thecylindricalcarriermediaof1.85cmdiameterand1.8cmlongmadeofpolyethylenewasusedinMBBR.Itsspecificgravityandeffectivespecificsurfaceareawere0.95and363m2/m3,respectively.Thedissolvedoxy-genwasmaintainedat2.0mg/Lthroughouttheexperiment.TheperformanceoftheintegratedUASB-MBBRsystemwasmonitoredintermsofCODfractionsandFC.AtanHRTof5–10h,anoverallreductionof80–86%fortotalCOD;51–73%forcolloidalCODand20–55%forsolubleCODwasachieved,respectively.Theremovalefficiencieswereincreasedupto92,89and80%,fortotal,colloidalandsolubleCODrespectivelybyincreasingtheHRTto13.3h.How-ever,theremovalefficiencyofsuspendedCODinthecombinedsystemremainedunaffectedwhenincreasingthetotalHRTfrom5to10handfrom10to13.3h.ThisindicatedthattheremovalofsuspendedCODwasindependentoftheHRT.FinaleffluenttotalCODatthreedifferentHRTswere54,95and142mg/L,respec-tively.ThefinalaverageFCcountswere8.9×104,4.9×105and9.4×105MPN/100mL,correspondingtooveralllog10reductionof2.3,1.4and0.7,respectively.ThemainmechanismsobservedfortheremovalofFCwereadsorptionintothemediaandpredationbyhighermicrobessuchasprotozoaandmetazoa.
TheremovalofammonianitrogenwasalsoinvestigatedinMBBR.Theresultsrevealedthattheremovalofammonianitro-gengreatlydependsonorganicloadingrate(OLR).About62%ofammonianitrogenwasremovedatOLRof4.6gCOD/m2/daybuttheremovalefficiencydecreasedby34and43%atthehigherOLR’sof7.4and17.8gCOD/m2/day,respectively.Thenitrogenmainlyreducedbyassimilationintobiomassanddenitrificationinanoxiczoneinthebiofilm.ThesludgeproducedbyMBBRshowedpoorset-tleability,however,thecombinedsystemstillproducedlesssludgecomparedtoconventionalASP.Theauthorsreportedthattheinte-gratedUASB-MBBRsystematanHRTof8and5.3haretechnicallyfeasibleforsewagetreatment.
DHS(Down-flowHangingSponge)reactorwasdevelopedbyHidekiHaradaandhisresearchgroupatNagaokaUniversityofTechnology,Japan,asanaerobicpost-treatmentforUASBeffluent.InDHScubesprovidedalargespecificsurfaceareatoaccommodatemicrobialgrowthundernon-submergedconditions.Thewastewa-tertrickledthroughthespongecubessuppliesnutrientstoresidentmicroorganisms;oxygenissuppliedthroughnaturaldraughtofairinthedownstreamwithoutanyequipment,i.e.noexternalaer-ationrequirement.Moreover,nowithdrawalofexcesssludgeisnecessary.TheDHSevolvedfromthehangingspongecubespro-cessbasedonextensivestudiescarriedoutindownflowandupflowmode.Agrawaletal.(1997)forthefirsttimeevaluatedtheperformanceofcombinedUASBandDHSsystemattwodif-A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
1241
ferenthydraulicloadingratesof30L/dduringwinter(7◦C)and60L/dinsummer(30◦C)forthetreatmentofrawsewageinJapan.TheUASBreactorvolumewas47.1LandtheDHShadthreefallsof2mheighteach.Eachhangingfallcontained120spongecubesof1.5cminsizediagonallylinkedthroughnylonstring.Initially,toinoculate,thespongeswerekeptfor48hinexcesssludgeofanactivatedsludgeplanttreatingsewage.TheUASBreactoreffluentwasthenallowedtopassthroughthesethreefalls.Thefinalefflu-entcontainedanegligibleamountofSSandtotalCODwasonlyintherangeof10–25mg/L.Lownitrificationrateswereobservedevenatthelowtemperatureof10◦C,however,whentemperatureroseabove24◦Ccompletenitrificationwasachieved.
Machdaretal.(1997)alsostudiedanUASBandDHSsystemasanovelsewageanaerobic–aerobictreatmentfordevelopingcoun-tries.Thecombinedsystemachieved94%CODremovalandnearlytotalSSandBODremovalattheoverallHRTof8.3h(7hinUASBand1.3hinDHSunit).Also,theDHSreactorwascapableofstabi-lizingTKNthrough73–78%nitrification.Inanotherstudy,Machdaretal.(2000)observedthatthecombinedUASB+DHSsystemsuc-cessfullyachieved94–97%BODremoval,81–84%CODremoval,and63–79%TSSremovalatanoverallHRTof8h(6hforUASBand2hforDHSunit)producingafinaleffluentof10mg/LBOD,58mg/LCODand46mg/LTSS.Tandukaretal.(2005,2006a,b,2007)eval-uatedtheperformanceofapilot-scaleDHSmodifiedbychangingthearrangementofcubestoenhancethedissolutionofairintothewastewaterandtoavertthepossiblecloggingofthereactorespe-ciallyduringsuddenwashoutfromtheUASBreactor.ThecombinedprocesswasoperatedattheHRTof6hinUASBand2hinDHSforaperiodofover600days.Theefficiencyofthecombinedsystemwas96–98%forBODremoval,whichwasreducedto6–9mg/L.CODandSSremovalrangedfrom91to98%and93–96%,respectively,reaching46and17mg/L,respectivelyinthefinaleffluent.Simi-larly,FCremovalwas3.5log-units,withaneffluentcountof103to104MPN/100mL.NitrificationanddenitrificationinDHSaccountedfor72%TKNremoval,whereaseffluentTKNwas11mgN/L.A60%ammoniumnitrogenremovalwasobservedforaneffluentconcen-trationof9mgN/L.Tawfiketal.(2008)studiedthecombinedUASBandDHSsystemoperatedatdifferentHRTs,16,11and8h.ItwasobservedthatincreasingthetotalHRTfrom8to16hsignificantlyimprovedtheCODandBODremoval,asexpected.ThecombinedsystemachievedasubstantialTSSreductionwiththeincreaseinHRT,from89.5%at8hHRTto94%at16hHRT.
Therotatingbiologicalcontactor(RBC)offersmanyadvantagessuchaslowpowerrequirementsincomparisontootherinten-siveaerobicsystems,longbiomassretentiontime,lowsludgeproduction,goodprocesscontrolandcapableofworkingatfluc-tuatingflows.FormorethanadecadeDr.TawfikandProf.LettingaperformedextensivestudiesondifferentpatternsofRBCsystemtreatingtheeffluentofUASBreactorforsewagetreatment.TheapplicationofpilotscalestudieswereperformedinEgyptandNetherlandsunderambientconditions.Tawfiketal.(2002a)stud-iedatwo-stageRBCsystemconnectedinseriesandobservedthattheCODremovalefficiencyincreasedatlongerHRTandlowerorganicloadingrates(OLR).ThehighestperformancewasobservedatanHRTof10handOLRof6.4gCOD/m2/day.Theresultsindicatedthattwo-stageRBCsystemprovideforabettereffluentqualityoverasinglestageRBC.MostoftheCODreductionwasobservedinfirst-stage,whileinsecond-stagenitrificationproceedsefficiently.Thenitrificationremovalefficiencywas92%atanammonialoadingor1.1g/m2/day.TheE.coliremovalwas99.5,99and89%foranHRTof10,5and2.5h,respectively.
InNetherlands,Tawfiketal.(2002b)evaluatedathree-stageRBCsystematdifferentHRTs(1.25+1.25+0.5=3hand4+4+2=10h)withthecorrespondingOLR(47,25and1.8gCOD/m2/dand15.3,6.5and0.5gCOD/m2/d)underambienttemperaturerangedfrom11to17◦C.TheeffluentconcentrationatanoverallHRTof10hwas
43mgCOD/L,2.2mgNH4–N/Land2.0×103MPN/100mLE.coli.IncreasingtheoverallHRTfrom3to10hledtoareductioninE.colicountby99.9%whichfurtherimprovedto50%bymaintaining10hHRTwith50%recirculationofthefinaleffluent.TheE.colicountinfinaleffluentofRBCwasstillhigherthanthelimitssetbyWHO(1989)thatcanbeusedforrestrictedirrigationbutcannotbereuseinunrestrictedirrigation.
Inanotherstudy,Tawfiketal.(2003)examinedtheremovaloforganicmatter,ammoniaandE.colibyUASB-RBCsystemunderdif-ferentOLRandtemperature(11,20and30◦C)conditions.TheRBCsystemwasoperatedataconstantHRTof2.5handfedwithsewageandUASBeffluentwithmeanCODvaluesof527±160(sewage)and276±38mg/L(UASBeffluent)atvariableratiostoreachOLRsof47,27,20and14.5gCOD/m2/d.TheprimaryobjectiveofthisstudywastooptimizetheRBCsystemfortheposttreatmentofUASBeffluenttreatment.Theresultsshowedclearlyagoodper-formanceofthesystemwhenoperatedatthelowerOLRsof27,20and14.5gCOD/m2/dforalltemperaturesstudied.TheeffluentCODvalueswere100,85and72mg/LfortheOLRof27,20and14.5gCOD/m2/d,respectively.Moreover,ahighammoniaremovalandlowE.coliresidualvalueswereobservedforthehighopera-tionaltemperatureof30◦Cascomparedtothelowertemperaturesof11and20◦C.Theeffluenthowever,didnotcomplywithWHOguidelinesforunrestrictedirrigation.
Tawfiketal.(2005)comparedtheperformanceofUASBcom-binedwithasinglestageRBCandwithatwo-stageRBC.Moreover,thenitrifiedeffluentwastreatedfornitrogenremovalusingathreestagessystemconsistingofanattachedgrowthanoxicup-flowsubmergedbio-filterfollowedbyasegmentaltwostageRBC.TheemphasiswasgiventoassesstheimpactofbiodegradableCOD(bCOD)ontheremovalefficiencyofdifferentCODfractions,E.coli,ammoniaandapartialnitrateremovalforthedifferentreactorcombination.
Thetwo(singlestage)RBC’swereoperatedataconstantHRTof2.5handtemperatureof21◦CbutatdifferentOLR’s,10and14gbiodegradableCOD/m2/day.TheresultsshowedsignificantlylowresidualvaluesofCOD,ammoniaandE.coliinthefinaleffluentatOLRof10gbCOD/m2/day.
Theperformanceofasingle-stageversustwo-stageRBCsystematlowtemperatureof12◦Cwasevaluated.Bothsystemswereoper-atedatthesameOLRof18gbCOD/m2/dayandatHRTof2.5h.TheresultsshowedthattheCODfractions,ammoniaandE.colicontentinthefinaleffluentofthetwo-stageweresignificantlylowerthaninthesinglestage,72,9.0and3.2×104MPN/100mL,respectively.
Thenitrifiedeffluentofthetwo-stageRBCwasrecycledtotheanoxicup-flowsubmergedbio-filterfornitrogenremoval.TheresultsshowedthattheintroductionofananoxicreactorasafirststagecombinedwithrecirculationofthenitrifiedeffluentofthesecondstageRBCwasaccompaniedwithaconversionofnitrateintoammonia,atleastincasethecontentofbCODintheUASBeffluentwaslow.Insuchasituationtheammonianeedstobenitri-fiedtwotimes,whichobviouslyshouldbeavoided.ThereforeinsuchsituationsofatoohighqualityanaerobiceffluentintermsofbiodegradableCODcontent,theintroductionofaseparateanoxicreactorfordenitrificationasfinalpost-treatmentstepcannotberecommended.ThereactorperformanceissummarizedinTable3.
Thetricklingfilterconsistsofafixedbedofrocks,grav-els,slag,polyurethanefoam,sphagnumpeatmosses,orplasticmediaoverwhichsewagehttp://en.wikipedia.org/wiki/Sewageorotherwastewaterflowsdownward.Aerobichttp://en.wiktionary.org/wiki/aerobicconditionsaremaintainedbysplashing,diffusion,eitherbyforcedairflowingthroughthebedornaturalconvec-tionofairifthefiltermediumisporous.Theprocessmechanisminvolvessorptionoforganicpollutantsbythelayerofmicrobialslime.Diffusionoftheairwithwastewateroverthemediafurnishesdissolvedoxygenhttp://en.wikipedia.org/wiki/Oxygenwhichthe
1242A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
slimelayerrequiresforthebiochemicaloxidationoftheorganiccompoundsandreleasescarbondioxidegas,waterandotheroxi-dizedendproducts.ChernicharoandNascimento(2001)studiedtheapplicabilityofpilotleveltricklingfilter(TF)forpolishingofeffluentofUASBreactorfor16monthscontinuouslyinBrazil.ThevolumeofUASBreactorwas416LoperatedatanaverageHRTof4handthetricklingfilter(TF)volumewas60Lwithblastfurnaceslagof4–6cminsizeusedasmedia.TheoperationalconditionsinUASBreactorwaskeptconstantthroughoutthestudyperiodwhiletheTFwasoperatedathydraulicandorganicloadingratesvary-ingfrom3.4to30.6m3/m2dand0.3to3.9kgBOD/m3dineightphasesaslowrate,intermediateandhighrateTF.TheperformanceofUASBreactorwasconsistentwithabove70%efficiencyintermsofBODandCODremoval.TheaverageCODandBODremovaleffi-cienciesofcombinedsystemwerevariedfrom74to88%and80to90%,respectively.Thefinaleffluentvalueswererangedbetween60and120mgCOD/L,lessthan60mgBOD/Landbelow30mgSS/L,respectivelyatlowandintermediaterateTF.Thesystemprovedveryefficientunderlowloadingconditions.ThehighrateTFwork-ingathighorganicloadingconditionswasnotefficienttoremovetheBOD,COD&SS.Incontinuationofthisstudy,againPontesetal.(2003)investigatedtheperformanceofUASB-TFsystemusingcom-bineddomesticsewageandexcesssludgeproducedfromTFasinfluent.Nodetrimentaleffectwasobservedduetofeedingofaero-bicexcesssludgetoUASBreactor.Oncontrary,theresultsindicatedthattheperformanceintermsofCODwasincompliancewiththedischargestandardssetbyBrazilianenvironmentallegislation.TheresultsofthisstudyshowedthattheTFcanbepromotedastheposttreatmentoptionforthetreatmentofUASBeffluentforloworganicandhydraulicratesathightemperatureintropicalcountries.
Suminoetal.(2007)investigatedthefeasibilitystudyofpilotlevel17m3UASBfollowedbyaeratedfixedbedreactor(AFB)underambientconditions.Thecombinedsystemfollowasequenceofdenitrification(DN)reactor,up-flowanaerobicsludgeblanket(UASB),aeratedfixedbedreactor(AFB)andsettlingunitstreatingsewage.ThesystemwasinstalledatamunicipalsewagetreatmentplantsiteinHigashi-Hiroshima,Hiroshima,Japan.TheDNandAFBreactorscontainedspongesheetsmediafixedtoboththesurfacesoftheboardsorientedvertically.Theairwassuppliedthroughthebot-tomoftheAFBreactor.GranularsludgeobtainedfromfoodwastetreatmentplantwasusedastheinoculumfortheUASBreactorandactivatedsludgefromasewagetreatmentplantwasusedastheinoculumfortheAFBreactor.TherecirculationofSSfromsettlingtankwasmadetodenitrificationtank(DN).Thepoly-aluminumchloridePACwasinjectedtoABFthroughapumpforphosphorousremoval.Thewholesystemwasstudiedformorethan300daysunderconstantHRTof24hinthreedifferentseason’sviz.summer,autumnandwinter.TheperformanceofthecombinedsystemwasfoundsatisfactorywithfinalmeaneffluentvaluesofsolubleCODwere54,66and65mg/Lintherespectiveseason’s,whilethemeantotalsolubleBODvalueswere11,18and25mg/Lforthecorre-spondingperiods.Theinformationonnitrogenandphosphorousremovalandindicatorsofpathogenswasnotincludedinthisstudy.
Thesubmergedaeratedbiofilters(SABF)iscomposedoffloatingporousmedia,throughwhichwastewaterandairflowsfromthebottomofreactorandliquidflowsinupflowordownflowmode.Thedevelopmentofthin,homogeneousandactivebiofilmlayerhasbeenobservedasthemainmechanismofbiofilterstoremovethesolubleorganiccompoundandsuspendedsolidsfromthewastew-ater.Besidesservingassupportmediumformicroorganisms,thegranularmaterialalsoworksasaneffectivefilter(vonSperlingandChernicharo,2005).Goncalvesetal.(1998)investigated46LUASBreactorand6.3LSABFsystemfordomesticsewagetreatmentinBrazil.ThefloatingandtotallysubmergedgranularmediumintheSABFwasmadeofS5typepolystyrenespheresof3mmdiameter,1200m2/m3specificsurfacearea,0.04densityand0.50mheight.
Theairco-currentwithwastewaterwasinjectedintheSABFbot-tomandcrossedthebedinupstreamflowmode.TheUASBreactorwasinitiallyoperatedat8hhydraulicretentiontimeandsubse-quentlyreducedto6and4h.The4hHRTinUASBreactorwasmaintainedtoinvestigatetheperformanceofreactorunderbreak-downsituation.VieiraandGarcia(1992)andvanHaandelandLettinga(1994)recommendedHRT<5hinUASBasdeterminantparameterinordertokeepanadequatemethanogenicactivityinUASBreator.However,theperformanceofUASBreactorwasstableandnoticedthattheefficiencyofreactorwassimilaratallHRTs.ThefinalmeanremovalefficiencyofthecombinedsystemintermsofSS,BODandCODwere94,96and91%,respec-tively.Thecorrespondingconcentrationintheeffluentwere10,10and49mg/L,respectively.AboutsixyearlaterGoncalvesetal.(1999)studiedthecombinedUASB-SABFsysteminBrazilandobservedsimilarresults.ExperimentsconductedwithUASBreac-toroperatedatanHRTof6hwithoutsludgerecirculationandthebio-filteratHRTof0.5h,theaverageremovalefficienciesofSS,BODandCODwere95,95and88%,respectively.Thefinalefflu-entqualityobservedwiththefollowingcharacteristics;suspendedsolids=10mg/L,BOD=10mg/LandCOD=50mg/L,althoughtheefficiencyoftheUASB-SABFsystemwassatisfactoryintermsoforganicmatterremoval,buttheremovalofthepathogenicmicroorganismswasverylow.Kelleretal.(2004)investigatedthecombinedUASB-SABFsystemfollowedbyConventionalandUVdisinfectionsystemtoenhancetheefficiencyofthesystemtoremovethepathogenicmicroorganisms.Theresultsrevealedthatthe84%ofCOD(finaleffluentCOD,78mg/L),86%ofBOD(finaleffluentBOD,26mg/L)and86%ofTSS(finaleffluentTSS23mg/L)removalwasachieved.TheremovalofE.coli,salmonellaeandcol-liphagesreducedtoverylowdensitiesinthefinaleffluentofthesystem.TheassociationofUASB-SABFconfirmedtheviabilityofthesystemwithexcellentfinaleffluentqualityofthesystem.TheUVdisinfectioncaneffectivelydestroythepathogenicmicroorganismsuptoreusestandardcriteria.
2.5.Lowrateprimaryposttreatmentsystems(includingvalorization/orremovalofnutrients)
Low-rateprimarytreatmentsystemsareanaerobic,aerobicandfacultativetypeespeciallypondssuchaswastestabilizedponddesignedtohandlewastewatersthatarehighinsuspendedsolidsand/orfats,nutrients,variableinflowand/orcharacteristics,ortreatedunderlessidealconditions,suchaslowtemperatures.Theorganicloadingsarelow(typically1.0–3.0kg/m3d)andhydraulicretentiontimesrelativelylong(typicallygreaterthan2days),arerobustandstableallowingforsignificantdigestionofinfluentsolidsandwastesludge.Thesetreatmentsystemsrequirelessmanpower,lowoperatingandmaintenancecostandnegligibleenergyrequire-ment.ManyresearchersinvestigateddifferentpondssinglyorinseriesfortheposttreatmentofUASBeffluentstreatingsewageundertemperateclimateregionssuchasBrazilandIndia.
Pilotscaleintegratedduckweedpond(DP)andalgaepond(AP)systemforthepost-treatmentofUASBreactoreffluentwasinves-tigatedbyVanderSteenetal.(1998)inIsrael.RemovalofnitrogenfromtheUASBeffluentwastheprimegoalofthisstudy.Thesystemconsistedof10pondsinseries,arrangedin3stagesof2DPfollowedby3APand5DPinsecondandthirdstages.TheUASBeffluentcon-tainedhighnutrientstherefore;thefirststageofDPwasincludedtoincreasetheduckweedproductionandsettlingofsolidsaswell.Thesecondstagewasmeantfortheremovalofpathogens.Thenutri-entconversionandremovalofalgaeandpolishingofeffluentwasmainlyachievedinfinalstage.Thesystemwasmainlydesignedinseriestoachievetheconceptofplugflowregimeknowntobemoreefficientforpathogensremoval.
A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
1243
TheremovalofammonianitrogeninintegratedDPandAPsys-temtakesplaceviauptakebytheduckweed,sedimentationofparticleswithorganicnitrogen,volatilizationofNH3andnitrifi-cation/denitrification.Theauthortriedtoindicatetheimportanceofeachprocessratherthanexactcontributionofeachprocess.Basedonnitrogenbalance,about59–66%ofNH3wasremovedbyvolatilizationfromshallowDP,probablythemostimportantnitrogenremovalmechanisms.Theammoniauptakebyduckweedcontributedto18%ofthetotalnitrogenremoval.Sedimentationwasoflessimportanceas90%ofnitrogeninthepondinfluentwasinammonium(NH4+)form.Thetotalcontributionofremovalfromsedimentationwasabout6%.Approximately3%ofincomingnitro-genwasnitrifiedwithoutsubsequentdenitrification.Insignificantdenitrificationwasduetoconsistentaerobicconditionprevailinginponds.ThepHhasgreatimportanceinpondsfortheremovalofnitrogen.
Thefinaleffluentofthecombinedsystem(UASB-integratedDP&APsystem)hadahighqualityandsatisfiedthebacterialstan-dardsforunlimitedirrigationsetbyWHO(1989).Thelayoutoftheintegratedsystemwasadjustedtoachievehighalgalremovalalongwithremovalofbacterialpathogens.TheconcentrationofCODandTSSinthefinaleffluentwaslowduetoalgaeremovalinthesecondduckweedstage.
Theconstructedwetland(CW)systemforwastewatertreatmentacceptedasatechnicallyandeconomicallyfeasiblealternativeforsmallcommunities(Okurutetal.,1999).Sousaetal.(2001)investi-gatedthedemonstrationscalewetlandsystemforthetreatmentofeffluentofUASBreactorfortheremovalofresidualorganicmatter,suspendedsolids,nutrients(nitrogenandphosphorus)andfecalcoliformsinBrazil.TheUASBreactorof1500Lcapacitywasoper-atedatvariedHRT(3and6h)whiletheeffluentoftheUASBreactorwastreatedinfourparallelunitsofartificialwetlandseachof10mlongand1.0mwidewithcoarsesandunderdifferenthydraulicandorganicloads.Macrophytes(Juncussp.),wereplantedinthreeCW’s,whereasoneCWwasoperatedasacontrolunitwithoutplants.ResultsdidnotrevealanyeffectofvariedhydraulicloadappliedaswellaspresenceofplantsinCW’sontheremovalefficiencyofCODandphosphate.CODwasmainlyremovedviabiosorptionwhereasphosphorouswasremovedbysorption,precipitationandassimilationbythebio-filmdevelopedonsandgrains.
TheTKNremovalefficiencyvariedfrom59%to87%inwetlandscontainingmacrophytes.Thetwobasicfactorsfortheremovalofnitrogeninwetlandscontainingmacrophyteswereobservedasassimilationbyplantsandmicroorganismspresentinwetlandsandprobablynitrificationduetouptakeofoxygenfromatmospherebytheplants.Thepresenceofmacrophytesenhancedthenitro-genremovalefficiencysignificantly.ThehighestremovalefficiencyoccurredintheunitwithlowesthydraulicloadcorrespondingtoHRTof10d.ThepresenceofmacrophytesdidnotappeartohaveanyeffectontheremovalofTKN.Theremovalefficiencyoffecalcoliformswasobservedveryhighinwetlandswithmacro-phytesthanwetlandunitswithoutplantsbutthedifferenceinremovalefficiencywasnotsignificantinwetlandwithandwithoutmacrophytes.Theincreaseinhydraulicloadreducedtheremovalefficiency.
Theaquaticmacrophytebasedtreatmentsystemssuchasduck-weedpondscanbeusedtorecoverthenutrientsandtransformedthemintoeasilyharvestedprotein-richby-products.TheUASBeffluentsarehighlyrichinnutrientsandshouldthereforebepost-treated,notonlytoremove;buttorecoveraswell.Therefore,duckweedpondscanbeusedforpolishingoftheeffluentofUASBreactortreatingsewagethroughnutrientsrecovery.Duckweedpondsarecoveredbyfloatingmatofmacrophytes,thusprevent-inglightpenetrationintothepond.Thehighgrowthrateofthemacrophytepermitsregularharvestingofthebiomassandhencenutrientsareremovedfromthesystem.Theproducedbiomasshas
economicvalue,becauseitcanbeappliedasfodderforpoultryandfish.
El-Shafaietal.(2007)evaluatedtheperformanceofacombinedUASBandDuckweedPonds(3pondsinseries)systemforthetreat-mentofdomesticsewageinEgypt.TheeffluentfromUASBreactorof40Loperatingat6hHRTwasfedtoduckweedpondsof1m2sur-faceareaand0.48mdepth.TheHRTofeachpondwas5dprovidingtotalHRTof15dinallponds.Theduckweedpondswereinocu-latedwithL.gibba,obtainedfromalocaldrain,containing600gfreshduckweedperm2.Thesystemremoved93%COD,96%BODand91%TSSduringwarmseason.Residualvaluesofammonia,TKNandtotalphosphoruswere0.41mgN/L,4.4mgN/Land1.1mgP/L,withremovalefficienciesof98%,85%and78%,respectively.Thesystemachieved99.998%fecalcoliformsremovalduringthewarmseasonwithfinaleffluentcontaining4×103cfu/100mL.Duringwinter,thesystemefficientlyremovedCOD,BODandTSSbutnotthenutrientsandfecalcoliforms.Thecoliformcountintheeffluentwas4.7×105cfu/100mL.Theauthorsreportedthatthefecalcol-iformsremovalinduckweedpondswasaffectedbythedeclineintemperature,nutrientavailabilityandduckweedharvestingrate.IncontinuationwiththeexperimentonpondsVanderSteenetal.(1999)integratedduckweedandstabilizationpond(SP)forthepost-treatmentofUASBreactoreffluentmainlyfortheremovalofbacterialpathogensandfurtherpolishingtheeffluentqualityinIsrael.Thesystemconsistedof10shallowpondsinseries,arrangedin3stages.InitiallytheeffluentofUASBreactorfedtofirststageconsistedof2duckweedpondssubsequentlytosecondstagecon-sistedof3stabilizationpondsandfinally5duckweedpondsinthethirdstage.Severalresearcherselucidatedtheremovalmechanismofpathogensinstabilizationpondsandorganicmatterremovalinduckweedponds.TheuseofSPandDPindividuallyfortheposttreatmentofUASBeffluenthadmanydrawbacksnamely;verylowTSSandBODremovalinshallowSPduetothepresenceofalgaeintheeffluent,whilepoorbacterialpathogensremovalinDPduetopreventionoflightpenetration.Therefore,themainpurposeofintegratingtheDPandSPwastoconverttheabove-mentionedshortcomingstotheirrespectiveadvantage.Eachpondof0.29mdepth,0.24m2surfaceareaandaneffectivevolumeof63Lweremaintainedatanoverallretentiontimeof4.2dinallthreestages.Pondsreceived300–600W/m2averageintensityofglobalradiationduringdaytime.TheBOD,CODandTSSoftheefflu-entfromUASBreactorwere23±13,126±81and35±30mg/L,respectively.TheremovalefficiencyofcombinedDPandSPsystemintermsofBOD,CODandTSSwere60±32,54±24,and57±29%,respectively.TheoverallBODremovalofcombinedUASBandinte-gratedDPandSPsystemwasabout90%;approximately75%BODremovalinUASBreactorandanadditional60%ofremaininginintegratedDPandSPsystem(fromUASBeffluent).TheaveragefinaleffluentBOD,CODandTSSconcentrationsofcombinesys-tem(UASB-integratedDPandSP)were9,55and15mg/L.Thefecalcoliformremovalintheintegratedsystemwasapproximately99.9to99.99%.Coliformcountreducedto330–5000MPN/100mLfrom105to106MPN/100mLpresentintheinfluent.
Khan(2011)studieddifferentfullscalewastestabilizationponds(WSP)treatingeffluentofUASBreactortreatingsewageinIndia.ThemainoperatingparameterofthesepondswastheHRT.TheHRTofthesepondsvariedfrom1to2days.TheperformanceoftheWSPdependsonmanyfactorssuchastemperature,dissolvedoxygenandpH.TheremovalofBOD,CODandSSweremainlyduetothesettlingofsolidsorparticulateBOD.ThemainmechanismofremovalofBODandSSobservedsedimentation.Theanalysesof8sewagetreatmentplantshavingUASBfollowedbyWSPweremoni-toredatvaryingtemperaturerangeof20–40◦C.TheaverageHRTofthesepondswereabout1day.Insignificantremovalofnutrientwasobserved.Theremovalofpathogenswasalsoverypoor.OnedayHRTdidnotsufficientforthealgalgrowth.Thepercentageremoval
1244A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
ofBOD,CODandSSinWSPwerevariedfrom20to30%,25to35%and30to40%,respectively.ThefinaleffluentBODandSSvariedfrom40to50and40to50mg/L,respectively.
2.6.Finalpolishingsteps
Toachievenearlycompleteremovalofpathogens,colorandhaz-ardouscompounds,theUASBeffluentneedtopolishaftergivingfirststepmicroaerationtreatmentorsecondaryposttreatmentsuchashighrateaerobictreatmentbeforereusingforintendedpurposeordischargingitintoreceivingwaterbodies.Thus,thefol-lowingmethodsdiscussedasunderthatwereresponsiblefortheremovalofpathogens,color,etc.
Tesseleetal.(2005)invesitgatedtheperformanceofcom-binedUASBandtwostageflotationandUVdisinfection(TSF-UV)systemtreatingsewageinBrazil.ResultswerecomparedwithUASB-stabilizationpond(SP)systemwhichwasrunningparalleltoUASB-TSF-UVsystem.Thetreatmentsystemwasoperatedatahydraulicloadofupto50m3/d.InTSF-UVsystem,thefirststageunitwasaflocculation–flotation(FF)processreferredasF1whichremovedthesuspendedsolidsonthebasisofaeratedflocsfor-mationinthepresenceofhighmolecularweightpolymerunderhighshear.Insecond-stageflotation,i.e.DAFreferredasF2phos-phateionswereremovedbyprecipitationandcoagulationwithFe3+(FeCl3)whichalsoseparatingtheresidualfinesolids.
Thetwostageflotationunithadtheadvantageofseparatingthebiomassandsludgethatcontainedthephosphateandhydox-ide.TheairflowinFFprocesswas3.0NL/minwhileDAFairflowratewas0.9–1.2NL/min.Thehydraulicloadingratewaskeptabout49m3/m2.hatanHRTof2mininDAFwhichwashigherthancon-ventionalDAFrateofabout6–10m3/m2h.AfterF2,theeffluentwasdisinfectedwithlowpressureUVlampoperatedatatheoreticalvalueof25mJ/cm2.TheresultspresentedthatthecombinedUASB-TSF-UVprocessismoreefficientthanUASB-stabilizationpond(SP)system.ThefinaleffluentcontainedlowCOD<20mg/Landverylowturbidity<1.0NTUandair/watersurfacetensionisashighasthatoftapwaterwhiletheammoniaremovalwasinsignificant.Thecoliformswerewellbelowtheemissionstandards.
VariousresearchersinvestigatedtheeffectivenessofslowsandfilterfortertiarytreatmentofsewageatlaboratoryandpilotscaleandfoundthatSSFwascapableofremovingBODupto86%,SSupto68%,turbidityupto88%andtotalcoliformsover99%(Ellis,1987;Suhail,1987;A1-Sawaf,1986;A1-Adham,1989;Gersbergetal.,1989)inmiddleeastregion.Allthesestudieswerefocusedoneffluentpolishingofaerobicallytreatedsewage.However,lim-iteddataisavailableontheapplicabilityofslowsandfilterfortreatmentofUASBeffluentandrecently,Tyagietal.(2009)studiedthefeasibilityofabenchscaleslowsandfilterof0.10mdiameterand0.54mmediaheightinIndia.Thisstudywasperformedintotwophases;inphaseI,theflowwasoptimizedwhileinphaseII,theperformancewasevaluatedthoroughlyatoptimizedflowrateof1.0L/hor0.14m/h.Thesandfiltercolumnoperatedformorethan60dathydraulicloadingrateof0.14m3/m2handfoundtobemosteffectiveinremovingturbidity(91.6%),TSS(89.1%),COD(77%),BOD(85%),TC(99.95%)andFC(99.99%).Theaverageval-uesofCOD,BODandSSinSSFeffluentwere27,12and20mg/L,respectively.ThemechanismsoftheremovalofBODandSSinSSFwerestrainingandattachmenttomedia.Theremovalofcoliformswasobservedwithintheupperlayersofthesandbedmainlyduetolowfiltrationrate,effectivesizeofthesandandbiologicalprocessesinthelayeraccumulatedabovethesandsurface(schmutzdecke).ThehighgrowthofbiomassinupperlayeralsocontributedtohighremovalefficiencyofBOD,SSandFC.Thefecalcoliformsinthefiltratewerelessthan1000MPN/100mL,standardsetbyWHO(1989).However,SSFwaseffectiveupto7daysatahydraulicloadof0.14m3/m2hascomparedtothehydraulicloadsof0.19m3/m2h
and0.26m3/m2h.Hence,slowsandfiltrationcouldalsobeaneffec-tivetechnologyfortheposttreatmentofUASBreactoreffluent.However,themajordrawbackofSSFwasfrequentcleaningandmaintenancerequirement.
ThreeshallowpolishingpondsinseriesfortheUASBeffluentandonecoarserockfilterforthepolishingofthepondeffluentwerealsostudiedasanoptionfordifferenttypesofreuse(vonSperlingandAndrada,2006)inBrazil.Thetotalhydraulicretentiontimeofthesystemwasof12.7d(UASB:0.3d;pond1:3.1d;pond2:3.1d;pond3:4.2d;filter1:2.0d).TheoverallBODandSSremovalefficien-cieswere90and85%,respectively.MeaneffluentconcentrationsofBOD,SS,andE.coliwere27,26mg/Land450MPN/100mL,respectively.Therefore,theeffluentcouldbeusedforunrestrictedagricultureandrestrictedurbanandindustrialusesWHO(1989).TheE.coliremovalwasobserved5.68logarithmicunits(99.9998%).TheabovearrangementwithminormodificationwasvalidatedbyvonSperlingetal.(2008)inasmallfull-scalewastewatertreat-mentsystemcomprisingofUASBreactorfollowedbythreepolishingpondsandonecoarserockfilter.Therockfilter,madeofcommer-cialcrushedstone(diameters3–8cm)wasinsertedinsidethelastpolishingpond.MostoftheorganicmatterwasremovedinUASBreactor,whereaspondsinserieswereresponsiblefortheremovalofcoliformandammonia.Thecoarsefilterdecreasedthealgalcon-centrationintheeffluent,thusleadingtocomplementaryBODandSSremoval.Systemworkedefficientlyatanoveralldetentiontimeof13days.Coliformremovalof5.70logunitswasobserved.ThefinalaverageeffluentBOD,COD,SS,ammonia,E.colioftheefflu-entwere39,109,41,10mg/Land540MPN/100mL,respectively.Thepositiveaspectsofthissystemweresimplicity,absenceofmechanization,lowpowerrequirementsandlowchemicalcon-sumption,therebymakingiteconomicallyviable.However,thelargearearequirement(approximately2–3m2/inhabitant)wasthemajordisadvantage.Nevertheless,thetreatmentconfiguration,attotalhydraulicretentiontimeoflessthan13days,ismorecompactthanmostothernaturaltreatmentsystems.
Recentlylargenumberofmembranetechnologieswasinvesti-gatedforsecondaryandtertiarytreatmentofsewage.Therefore,inordertoachievethequalityoftreatedeffluentuptoreusestan-dardfromUASBreactor,YingYuetal.(2009)evaluatedthepilotscalecrossflowmembranefiltrationsystemforpolishingtheUASBeffluenttreatinglowstrengthsewageinSingapore.ThepilotscaleUASBreactor(volume=34L)wascoupledwithasidestreammem-branemodulehavingacentrifugalpumptofeedtheeffluentofUASBreactorintothemembranefiltrationunit.TheHRTofUASBreactorwasreducedfrominitial10hto5.5hafter119daysofoper-ationandkeptconstantthroughoutthestudyperiod.Thepreciseandconstantholdingtankwasusedpriortomembranefiltrationmoduleunitinordertofeedconstantpermeateflowrate.ResultsclearlyrevealedhighperformanceofUASBreactorfortotalsolidsremovalatHRTof10hwhich,however,significantlyreducedfrom91.1to83.6%atHRTof5.5h.AfterachievingstableconditionsinUASBreactor,theaverageTOCremovalefficiencyofUASBreactorwasobtained65%whichincreasedto81%bytreatingtheeffluentofUASBreactorthroughmembranefiltrationatHRTof10h.But,theperformanceofthissystemintermsofTOCremovalfurtherincreasedto73and85%respectivelyatanHRTof5.5h.Thismightbeduetotheincreasedup-flowvelocitywhichprovidesbettercon-tactanddistributionofwastewaterwithmembrane.Butfoulingofmembranelimitsitsuseforthestatedpurpose.Therefore,exten-sivestudieswererequiredregardingitcontrollingfactorssuchasmembranetubediameterandcrossflowvelocity.
YingYuetal.(2010)againproposedmembranefiltrationforthepost-treatmentoftheeffluentofUASBreactorinSingapore.ThesystemcomprisedofUASBreactorandmembranefiltration.TheUASBreactorwithworkingvolumeof30Ldividedintotwoparts,i.e.asludgezoneandamembranezone.Agas/liquidseparator
A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
1245
wasinstalledatthetopofthesludgezonetoseparatethebio-gasfromtheliquidsuspension.Twoflat-sheetmembranemodules(0.22m,PVDF,0.1m2)weredirectlysubmergedintotheuppermembranezoneofthereactorabovegas/liquidseparator.Themod-ulesofflatsheetmembraneweresubmergedintotheUASBreactortoasabarriertoretainthesuspendedsolidspresentintheeffluentofUASBreactoratintermittentpermeationandairspargingoperat-ingconditions.ThewholesystemwasoperatedataconstantHRTof12h(basedonpreviousstudy)atatemperatureof35◦Candnosludgewasremovedfromthereactor,exceptforsampling.Theexperimentalstudywasconductedintwophaseswithvariedflux.InphaseI,Intermittentpermeationwasstudiedatthreedifferentfluxof15,20and25L/m2hwithvariedsuctionpressurewhileinphaseII,airspargingwasinvestigatedatfourdifferentairflowratesof0,1,2and4L/hwithconstantfluxof25L/m2h.
TheaveragesupernatantTOCwas10.88mg/LwithfairlystableTOCremovalefficienciesofover89%duringthewholeoperation.Finallythisstudyinfluencethatintermittentpermeationwasmoreeffectiveformembranefoulingcontrolcomparedwithairsparging.
ThecouplingofmembranefiltrationwithUASBrepresentedasanefficienttreatmenttechnologyforrawmunicipalwastew-aterattheambienttemperature.Butlimitedstudiedareavailableonthissystemtherefore,detailedinvestigationsondemonstrationscale.
3.Discussion/summary
Thedecisionofapost-treatmentmethodfortheUASBreactortreatingsewageisachallengingtaskastofindaproper,reliableandefficientsystem,thatiseasyinoperationandmaintenance;technicallyfeasible,andeconomicallyviable(Chernicharo,2006).Variousphysico-chemicalandbiologicalprocessesarereportedintheliteratureandaresummarizedinTable3.Mostofthestud-iesreportedinthispaperhighlightedthetreatmentperformanceanddescribedtheiradvantages–disadvantagesintermsofspacerequirement.However,fewtreatmentsystemswereevaluatedonlifecyclecost,totalannualexpenditureandenergyconsumption.
Theoverlandflowsystemandfinalpolishingunitsormatura-tionponds,whichareclassifiedassettlingprocesses,arenowadayswidelyusedatfullscalelevelwithUASBreactor.ThesesystemsareabletoremoveremainingwellstabilizedsuspendedmatterintheeffluentofUASBreactor.InIndia,thesepondsarerunningatonedaydetentiontime;however,theeffluentisnotabletocomplywithdischargestandards.
MostoftheexistingfullscaleUASBbasedSTPsinIndiaareinte-gratedwithfinalpolishingunit/orponds;whileinBrazil,UASBarefollowedbyactivatedsludgeprocess(ASP),submergedaeratedfil-tersorstabilizationponds.TheSTPsbasedonUASB+pondsrarelyattaintheeffluentdischargestandardsofanyregulatoryagency.However,theUASBfollowedbyASPandotherhighrateaerobicmethodsattainstheeffluentwithlowresidualCOD,lowerthan50mg/L.Theproducedmethaneisnormallyburnedinflaresduetoimpropergascollectionfacilitiesandpooroperationandmain-tenance.Therefore,inordertoremovethecolloidalmatterandorganicmatter,DAFwasstudied.TheDAFsystemisabletoremovethefinelydispersedorcolloidalorganicmatteruptothelevelrequiredtomeetthereusestandards.Fecalcoliformsarehowever,notremoved.Theeffluentcanbeusedtorecoverphosphatesandnitrogen.
Thepartialsulfidesoxidationtoelementalsulfurwasobservedfromtheapplicationofthesetechnologiesfortheanaerobicefflu-entscontaininglowsulfides.However,thepost-treatmentofanaerobiceffluentscarriedoutbyhighratemicro-aerobicpro-cesses,wheresulfideswereoxidizebacktosulfate,offersexcellentadvantagesatlowconcentrations.
Theotherpossibleoptionswouldbetointroducecertainmod-ificationsinconfigurationoftheexistinganaerobicreactorsinordertoencouragetheoxygenlimitedenvironmentwhichfavoredtheformationofelementalsulfur,thereby,enablingitssepara-tionfromtheliquidphasebeforepost-treatmentunits.Bothways,biologicaloxidationofsulfidetoelementalsulfurinamicro-aerobicsystemcanbeasolutiontoremovesulfidefromtheliquidphasewiththeproductionofavaluablecompoundwhichcanbere-usedfortheproductionofsulphuricacidorinbioleach-ingprocesses.However,moreresearchontheapplicationofhighmicro-aerobicsystemsforcolloidalelementalsulfurremovalisnecessary.
Besidesbiologicalposttreatment,physic-chemicalprocessescanalsobeusedaspostandpre-treatmentforUASB.Twophysico-chemicalprocessesnamelychemicalcoagulation–flocculationandCEPT(pre-treatment)andZeoliteColumn(posttreatment)systemwerecovered.Thesesystemscaneffectivelyremovethefinelydis-persedorcolloidalorganicmatteruptothelevelrequiredtomeetthereusestandards.Theremovaloffecalcoliformsispoor.Themajordrawbacksoftheseprocessesarethehighdoseandcostofchemicalsusedandthelargesludgevolumegeneration.However,therecoveryofnutrientfromCEPTandZeoliteColumnsystemispossible.ThetreatedeffluentobtainedfromCEPT-Zeolitecolumnsystemcanbeusedforcropirrigationor/anddischargeinwaterbodies.
Fewmethodssuchasduckweedpondshavebeenreviewedinthispaperfortheremovalandrecoveryofnitrogenandphospho-rous.Besidesremoval/recoveryofnitrogenandphosphorous,theseprocessesalsoreducedtheorganicimpurities.Forahighereffluentstandard,theUASBeffluentmaybetreatedinanintegratedDPandAPsystem,whichsatisfiedthestandardsforunlimitedirrigationsetbyworldhealthorganization(WHO,1989)ifthelayoutoftheinte-gratedsystemisadjustedtoachievehighalgalremovalalongwithremovalofbacterialpathogens.CODandTSSconcentrationofthefinaleffluentislowduetoalgaeremovalinthesecondduckweedstage.
Theperformanceofduckweedpondandconstructedwetlandsystemwasobservedtodependonthetemperature,hydraulicload,harvestingofplants,etc.Theeffluentofthesesystemshasnotbeenfoundtocomplywithdischargestandardsdespitetheirgoodnutrientremovalefficiencies.
Alsoanumberofaerobicposttreatmentsystems(bothsuspendedandattachedgrowthtype)wereevaluatedasthemethodswhichweremainlyresponsiblefortheremovalofresid-ualbiodegradablesolublematterincludingmicro-pollutantsandhazardouscompounds.Theactivatedsludgeprocessasaposttreatmentyieldsaneffluentwhichsatisfiesdischargestandards;however,theprocessishighlyenergyintensive.
DHSandRBCaretheotheraerobicposttreatmentoptionsforthetreatmentofUASBeffluent.DHSandRBCreducetheBODandcoliformswellbelowtheeffluentdischargestandardsasreportedintheliterature.However,theseprocessesrequiregrowthmediasuchasspongeanddiscs,whichhaveveryhighcostandarenoteasilyavailable.ThecloggingofspongemediaisamajordrawbackofDHSanditscleaninghasnotbeingdiscussed.
Thesubmergedaeratedbio-filter(SABF)resultsinsignificantremovalofBODandSS.However,airoptimizationhasnotbeenperformed.Further,frequentbackwashingofSABF,whichiscarriedoutevery72hhascauses(i)sludgehandlingand(ii)greatlyaffectedthebiofilmgrownonthemedia.
StudiesoncontinuousaerationofUASBeffluentarestillinprogress.SuchatreatmentsystemhasbeenshowntoreduceBODoftheUASBeffluentby50%,andcanbeinstalledatexistingUASBbasedSTPspriortofinalpolishingunit.
OnlylimitedstudyisavailableontheTFasaposttreat-mentoption.GenerallytheUASBreactorsareconstructedone-half
1246A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
undergroundand,ifTFiscoupledwithUASBreactorthecostofpumpingfortheapplicationofUASBeffluenttoTFwouldessentiallyincrease.SequenceofUASB-MBBRhasbeenstudiedonlaboratoryscaleandalthoughthecombinedsystemshowsgoodremovalefficienciesoforganics,itwasadverselyaffectedbytem-peraturevariationforthenitrogencompoundsremoval.
TheeffluentpolishingisthethirdsteponUASBeffluenttreatment.Thetermpolishingmeansthecompleteremovalofpathogens,coloraswellasthehazardouscompoundsfromtheUASBeffluent.Areviewonvariousphysico-chemical,physicalandnaturalprocessescategorizedforpolishingtheeffluentofUASBhasbeenpresentedinthispaper.TheTSF-UViscapableofreducingorganicpollutantsandturbidityuptothelevelrequiredtomeetthereusestandards.Theslowsandfiltrationsystemwasabletoreducethephysical,chemicalandmicrobiologicalpollutantsnotonlytothedesiredstandardsbutalsosatisfiedwastewaterreusecriteriasetbyWHO(1989).However,therearefewdrawbackssuchasfrequentcloggingasfilterrunsonlyforshortperiod,i.e.7dayswithoutanynutrientremoval.Thecombinationofduckweedandpolishingpondsystemwasreportedtobeveryefficient.Themajordisadvantagesarethelargepondarea,lowpathogensremovalandhigheffluentTSSconcentration.Anothercombinationisthepol-ishingpondandcoarserockfiltersystem;however,theydonotprovideaneffluentwiththedesiredquality.
TheapplicationofmembranefiltrationmethodforpolishingUASBeffluentdefinitelyproducestheeffluentqualityuptotherequireddischargestandardsbutitsuffersfromseveraldrawbackssuchashighcapitalcost,membranereplacementcost,frequentfoulingofmembrane,frequentcleaningandrequirementofsophis-ticatedautomation.
Amongallreviewedposttreatmentsystems,fewofthealter-nativeproducefinaleffluentwithlowCOD,BODandTSS.Betweenallaerobicposttreatmentsystemspresented,theSBRfoundtobethemostcompactmethodandallowtheremovalofnutrientalongwithresidualCOD.ScantlyinformationisavailableintheliteratureoncouplingoftheSBRwithUASB.ThemajoradvantageofSBRoverotheraerobicsystemsisthesystemflexibilityforBODandnutrientremoval.
Generallylowcostsewagetreatmenttechnologiesarepreferredbydevelopingcountries.Therefore,itisnecessarytoevaluatethetreatmentsequencekeepinginviewoftotalinvestmentinclud-ingcapitalcost,operationandmaintenance(O&M)costandlandrequirement.AcomparisonhasthereforebeenmadeamongUASBreactorsanditsfewposttreatmentsystemswithconventionalASPsystem.ValuesobtainedonthebasisofthecriteriaofenergyrequirementandgenerationfromUASBreactor,i.e.energyauditofUASBreactorperMLD,aredescribedinthissectionandcom-parativereviewoflandrequirement,O&McostandcapitalcostaresummarizedinTable4.
ThebasisofenergyauditofaMLDUASBisgivenbelow:
•Negligibleenergyrequirement∼6kW-h/MLD(onlyforinitialpumping)(Tassou,1988).
•EnergyproductionintheformofBiogas(60–70%methane)50m3biogas/MLDsewagetreated(Arceivala,1998).
•Theelectricityproducedfrom1.0m3ofmethanegasgeneratedbyUASBis36,846kJatstandardconditionandapprox.7.0kW-hunderfieldconditions,since3600kJisapproximately1kW-h(Arceivala,1998;MetcalfandEddy,2003).
•Energysavingthroughreduceddieselconsumptionbymorethan70%byfeedingmethanegasintotheDual-FuelModeDieselEngine(Arceivala,1998).
ThebasisofenergyauditofaMLDaerobicposttreatmentsystemisgivenbelow:
•Energyrequirementofaerobicprocessasthesolewastewatertreatmentprocess,includinginitialpumpingisapproximately195kW-h/MLD(Tassou,1988).
Salientfeaturesofcomparativeenergyconsumptionaregivenasunder:
•Energyrequirementofposttreatmentaerobicsystemtreatingonly35%BOD(as65%BODremovaltakesplaceinanaerobicsys-tem)is195kW-h/MLD×0.35=68.25kW-h/MLD.
•HencetotalenergyconsumptionofintegratedUASB-aerobicpro-cessis(6+68.25)kW-h/MLD=74.25kW-h/MLDcomparedto195kW-h/MLDfortheaerobicprocessonly.
InTable4anefforthasbeenmadetosummarizeunitcost,effectonenvironmentandtheirfinaleffluentqualityinrelationtoadherencetoeffluentdischargingstandardsofvariousintegratedsystems.
Basedonexistingwasteandwastewatertreatmenttech-nologies,Lettinga(2008)suggested(i)aNaturalBiologicalMineralizationRoute(NBMR)followedbyphysico-chemicalmeth-odsforachievingthequalityoftreatedwastewaterforreuse/orintendedpurposesuchasforirrigationandindustrialreuseand,(ii)decentralizationofthesanitationandresourcerecoveryandreuse(DESAR),thatis,aconceptwhichincorporatesenvironmen-talprotection(EP)wherethewasteandwastewatertransportationiskeptatminimumlevelandwherepollutantsarebroughttoanacceptablevalueatthelocation.
3.1.Solutionsforsustainabilityandenvironmentalprotection
Theenvironmentalprotectionisamatterofeminentconcernforresearchers,policymakersandengineers.Drasticchangestowardsprotectionofenvironmentfrompollutionandtomaintainahighdiversityoflife,atlocalandgloballevels,andtopreventtheexhaustionofresourcesarenecessary.Sustainableenvironmentalprotectiontechnologiesmustbeneededforthesocietyinordertomakesustainablelifestyleandtoprotectenvironment.Althoughthesustainabilityapproachisnotnew,itisdifficulttounderstandandtoimplement.Quantificationofsustainabilityisvagueduetolackingofproperparameterswhichleadstoambiguouslythetargetsorproposedactionstakenbypoliticiansand/orpolicymak-ers.Forinstance,ifgovernmentimplementingextremelystringentstandardsforprotectingtheaquaticenvironmentfrompollution,manyquestionarises,likewhyasinglecountryorregionpursuingaparadisiacalnaturalenvironmentwhileatthesametimelittleifanymoneyortechnologyismadeavailabletocontributetothehighlyneededenvironmentalimprovementinlessprosperouscountries.Thewellevaluated,adequateandoverviewofthestateoftheartofthetechnologyforthepolicy/decisionmakersinpublicsanitation(PuSAn)wassummarizedinTable5andthesepotentialcombina-tionscanbeconsideredassustainablesolutionsifadoptedbasedonNBMR.
3.2.Selectionofsustainabletechnology
Thesuperiorityofsequentialanaerobic–aerobictreatmentsys-temsoverconventionalaerobicismoreprofoundwithincreaseinsewageconcentration.Incountriesoflimitedpercapitashareofwater,likeinAfrica,MiddleEastandIndiathetreatmentofconcen-tratedsewageviaconventionalaerobicsystemishighlyexpensive,especiallywithrespecttooperationalcosts.
BasedonthedataofTable3,theadvantagesofintroducingUASBreactoraheadofaerobicsystemisobvious,mainlyintermsofsludgeproductionandenergyconsumption.Inviewofthefactthataerationcostsincreaselinearlywithincreasingorganicloads,
Table4
SummaryofcapitalandannualO&McostandlandrequirementforvariousIntegratedUASBposttreatmentsystems(Satoetal.,2007).
ProcessTreatmentUnitcost
CapitalUnitrequirement
LandUnit(O&M)
AnnualUnitCountryReferenceRemarkscapacityUASB36,000
m3/d
44114/m3/d20US$/m3/d
IndiaTareetal.US$/m3/d
m2(2003)
US$1=Rs.48.27(2002/03)
UASB+pond20,000–400,000m3/d34.7–45.63US$/m/d1.70–1.98m2/m3//d––IndiaBinnieThamesWater(1996)UASB+pond
–
–
68.5–85.6
US$/m3/d
1.1–1.7
m2/m3//d––IndiaArceivala(1998)
US$1=Rs.32.43(1995)
UASB50,000PE17.8US$/PE0.12m2/PE
0.53
US$/PE
Egypt
Schellinkhout(1993)
CapitalcostincludeLandS$1=3.37LE(December1993)UASB+pond
50,000PE27.9US$/PE0.64m2/PE
0.53US$/EgyptSchellinkhout(1993)
CapitalcostincludePEland
S$1=3.37LE
(December1993)UASB+TF
50,000PE31.5US$/PE0.22m2/PE
0.71US$/PEEgyptSchellinkhout(1993)
CapitalcostincludelandS$1=3.37LE(December1993)
WSP30,0003m/d167US$/m3/d15.3m2/m3//d1.67US$/m3/dYemenArthur(1983)
WSP50,000
PE
35.6
US$/PE
1.7
m2/PE
0.53
US$/PE
Egypt
Schellinkhout(1993)
CapitalcostincludelandS$1=3.37LE(December1993)ASP2150
m3
/d
3
23
186US$/m/d
9.5m/m/d
47
US$/m3
/d
IndiaTareetal.(2003)
US$1=Rs.32.427(1995)
ASP
7000–650,000
PE
313×PE−0.3
US$/PE
Sweden
BalmerandMattsson(1994)
U$1=8SEK(July1993)
ASP40,000–540,000PE212×PE−0.328US$/PEGreeceTsagarakisetal.(2003)
WSP3
23
20,000–400,000
m3/d
12.4–18.0US$/m/d12.5–14.0m/m/d–
–
IndiaBinnieThamesWater(1996)WSP25.7–34.3
US$/m3/d
5.6–15.6
m2/m3/d
India
Arceivala(1998)
US1$=Rs.32.427(1995)
ASP20,000–400,000
2m3/d
50.0–60.8US$/m3/d0.73–1.01m/m3/dIndiaBinnieThamesWater(1996)ASP102.8–119.9
US$/m3/d
1.1–1.4
m2/m3/d
India
Arceivala(1998)
US1$=Rs.32.427(1995)
ASP638×Q−0.219
US$/m3/d
ChinaLi(1987)
ASP334.3×Q−0.332m2/m/dChinaLietal.(1990)
ASP120,000–540,000PE4.05×PE−0.228m2/PEGreeceTsagarakisetal.(2003)ASP
10,000–500,000
3m/d
212×PE−0.328
m2/m3/d
Japan
JSWA(1999)
US$1=127.36JPyen(December2001)
Q=treatmentcapacity,PE=populationequivalent,capitalcostdoesnotincludelandcostunlessitmentionedinremark.
A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–12511247Table5
ComparisonofvariousoptionsofintegratedUASBpost-treatmentsystemsofdomesticsewage.
Integratedsystems
Economicaspects
EffectofRiskof
CompliancewithstringentTrackrecord
climaticenvironmentaleffluentstandards/reuseconditions
problems(odor,standards
insects,noise,aerosols)
ConstructionOperationLand
ProcessSludgeBOD&TSS
FecalcoliformsNitrogen
Phosphorus
cost
maintenancerequirementreliabilitygenerationcostUASB+CETP+++++++++++NIL√+√UASB+DAF
+++++√XX√+++++++NIL+UASB+coagulation++
+++
√XX√++
+++
+++
NIL
+X
NR++–flocculationUASB+SSF++++++++++++√√NR+UASB+WSP
++++++++++++√
√NR√X+X+++UASB+constructed+
+++
+
+
+++
+++
XX
+
X
++wetlands
UASB+duckweedponds++++++++++++X√X+XX++UASB+DHS+++++++++++√
X++XX+UASB+SBR+++√
++++++++++X√
+UASB+RBC+++++++++++XX+UASB+AFBR+++++++++++√XX+NR+UASB+SAB
+++++++++++√
XX+XXX+UASB+tricklingfilter+++++++++++++XNRNRNR+UASB+anaerobicfilters++++++++++XNRNRNR+UASB+EGSB
++++++++++++XXXX+UASB+overlandflow++
+
+++
+
+
+++
+++
X
X
X
X
+system
UASB+ASP(EA)+++√++++++++++NRNRNR+++UASB+CAS
++
+
+
+
NIL
+
+
X
X
X
X
+
+++=high;++=average;+=low;NR=notreported;
√=yes;X=no.
1248A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
1249
adoptingtheactivatedsludgesystemforpolishingofanaerobiceffluentsmaynotbethemostsustainableoptionforconcentratedsewage.However,otheraerobicsystems,suchasDHS,SBRandCFIDtypeSBRforUASBeffluentsposttreatmentreviewedinthispaperarepromisingoptionsforsewagemanagementatlowcost,lowlandrequirementandlowsludgeproduction.
Moreover,thepotentialofnutrientsrecoveryandpathogensremovalinanaerobicpost-treatmentforUASBeffluentsisconsid-erableandtheeffluentdischargestandardsestablishedbyvariousnationalandinternationalenvironmentalagenciescanbeachieved.
4.Conclusions
Basedonthesuitabilityfortheremovalofreducedcompounds,wellstabilizedsuspendedmatterorpoorlybiodegradablesolublematterandfortherecovery/removalofnutrients,theentireposttreatmentsystemsforUASBreactortreatingdomesticwastew-aterwereclassifiedintothreemaincategoriesnamelyprimary,secondaryandtertiarymethods,respectively.However,mostoftheseupcomingposttreatmentsystemslackinscaleupstudiesandimplementationonfullscale.Furtherstudiesarerequiredtoevaluatetheperformanceofthesesystemsondemonstrationandfull-scale.
Besidesfurtherresearch,theapplicationofthesecombinedsys-temstodevelopingcountriesnecessarilyneedtobeevaluateintermsofenergyconservationandtheireconomicalaspectstomeetthechallengesforfullscaledevelopment.Finally,basedontheover-allanalysisofvariousposttreatmentsystems,itwasconcludedthatthereisnoidealsystemapplicabletoallconditions.Eachsitu-ationmustbeanalyzedindividually,withtheconstantconcernofincorporatingthelocalspecialtiesinthestageofinvestigationanddecision.Onlythroughtheopeningofmultipleavenuesonecanreallyreachanefficient,economicalandadequatesolution,notatthedesignstagebutthroughouttheoperationallifeofthetreat-mentplant.However,itcanbesaidthattheUASBsystemfollowedbyanaerobicsystemcanbetheidealconceptforfeasibleandsus-tainableenvironmentprotectioninadecentralizedsanitationwithresourcerecovery.
References
ArthurJP.Notesonthedesignandoperationofwastewaterstabilizationponds
inwarmclimatesofdevelopingcountries.WorldBanktechnicalpaperno.7.Washington,DC,USA;1983.
ArceivalaSJ.ExperienceswithUASBforsewagetreatmentinIndia.JIAEM
1995;22:90–4.
ArceivalaSJ.Wastewatertreatmentforpollutioncontrol.2nded.NewDelhi,India:
TataMcGrawHill;1998.
ArceivalaSJ.Wastewatertreatmentforpollutioncontrol.NewDelhi,India:Tata
McGrawHill;2001.
ArceivalaSJ,AsolkarSR.Wastewatertreatmentforpollutioncontrolandreuse.3rd
ed.NewDelhi,India:TataMcGraw-HillPublishingCo.Ltd.;2007.
AgrawalLK,OkuiH,UekiY,HaradaH,OhashiA.Treatmentofrawsewageina
temperateclimateusingaUASBreactorandthehangingspongecubesprocess.WaterSciTechnol1997;36(6–7):433–40.
AiyukS,AmoakoJ,RaskinL,vanHaandelA,VerstraeteW.Removalofcarbonand
nutrientsfromdomesticwastewaterusingalowinvestment,integratedtreat-mentconcept.WaterRes2004;38:3031–42.
A1-AdhamSS.Tertiarytreatmentofmunicipalsewageviaslowsandfiltration.MS
thesis.KingFahdUniversityofPetroleumandMinerals,Dhahran,SaudiArabia;1989.
A1-SawafMF.Tertiarywastewatertreatmentbydirectfiltration.MSthesis.King
FahdUniversityofPetroleumandMinerals,Dhahran,SaudiArabia;1986.
AnnachhatreAP,SuktrakoolvaitS.Biologicalsulfideoxidationinafluidizedbed
reactor.EnvironTechnol2001;22:661–72.
BuismanCJN,GeraatsBG,IjspeertP,Lettinga.Optimizationofsulfurproduc-tioninabiotechnologicalsulfideremovingreactor.BiotechBioeng1990;35:50–6.
BalmerP,MattssonB.Wastewatertreatmentplantoperationcost.WaterSciTechnol
1994;30(4):7–15.
BinnieThamesWater.UrbanEnvironmentalServicesMasterPlanforLucknow,India
(1996–2021).AssistedbyDepartmentforInternationalDevelopment.Govern-mentofUK;1996.
CavalcantiPFF,vanHaandelA,LettingaG.Polishingpondsforpost-treatment
ofdigestedsewagePart1:flow-throughponds.WaterSciTechnol2001;44(4):237–45.
ChenC,RenN,WangA,LiuL,LeeDJ.Enhancedperformanceofdenitrify-ingsulfideremovalprocessundermicro-aerobiccondition.JHazardMater2010;179:1147–51.
ChernicharoCAL,MachadoRMG.FeasibilityoftheUASB/AFsystemfor
domesticsewagetreatmentindevelopingcountries.WaterSciTechnol1998;38(8–9):325–32.
ChernicharoCAL,NascimentoMCP.Feasibilityofapilot-scaleUASB/tricklingfilter
systemfordomesticsewagetreatment.WaterSciTechnol2001;44(4):221–8.ChernicharoCAL,CotaRS,ZerbiniAM,vonSperlingM,BritoLHNC.Post-treatmentofanaerobiceffluentsinanoverlandflowsystem.WaterSciTechnol2001;44(4):229–36.
ChernicharoCAL.Posttreatmentoptionsfortheanaerobictreatmentofdomestic
wastewater.RevEnvironSciBio/Technol2006;5:73–92.
ChuangSH,PaiTY,HorngRY.Biotreatmentofsulfate-richwastewa-terinananaerobic/micro-aerobicbioreactorsystem.EnvironTechnol2005;26(9):993–1001.
DraaijerH,SchaapmanJE,KhanAA.Performanceofthe5MLDUASBreactorfor
sewagetreatmentatKanpur,India.WaterSciTechnol1992;25(7):123–33.
DrosteRL,MasseDI.Anaerobictreatmentinsequencingbatchreactors.In:Interna-tionalsymposiumontechnologytransfer;1995.p.353–63.
deSmulA,VerstraeteW.Thephenomenologyandthemathematicalmodelingof
thesilicon-supportedchemicaloxidationofaqueoussulfidetoelementalsulfurbyferricsulfate.JChemTechnolBiotechnol1999;74:456–66.
EllisKV.Slowsandfiltrationastechniqueforthetertiarytreatmentofmunicipal
sewages.WaterRes1987;21(4):403–10.
ElmitwalliTA,ZandvoortM,ZeemanG,BruningH,LettingaG.Lowtemperature
treatmentofdomesticsewageinupflowanaerobicsludgeblanketandanaerobichybridreactors.WaterSciTechnol1999;39(5):177–85.
ElmitwalliTA,SayedS,GroendijkL,vanLierJ,ZeemanG,LettingaG.Decentralised
treatmentofconcentratedsewageatlowtemperatureinatwo-stepanaer-obicsystem:twoupflow-hybridseptictanks.WaterSciTechnol2003;48(6):219–26.
El-ShafaiSA,El-GoharyFA,NasrFA,vanderSteenP,GijzenHJ.Nutrientrecovery
fromdomesticwastewaterusingaUASB-duckweedpondssystem.BioresourTechnol2007;98(4):798–807.
ElmitwalliT,ZeemanG,LettingaG.Anaerobictreatmentofdomesticsewageatlow
temperature.WaterSciTechnol2001;44(4):33–40.
ForestiE.Anaerobictreatmentofdomesticsewage:establishedtechnologiesand
perspectives.In:Proceedingsofthe9thinternationalsymposiumonanaerobicdigestion;2001.p.37–42.
ForestiE,ZaiatM,ValleroM.Anaerobicprocessesasthecoretechnologyforsustain-abledomesticwastewatertreatment:consolidatedapplications,newtrends,perspectives,andchallenges.RevEnvironSciBio/Technol2006;5:3–19.
GersbergRM,GearheartRA,IvesM.Pathogenremovalinconstructedwetlands.In:
HammerDA,editor.Constructedwetlandsforwastewatertreatment:munic-ipal,industrialandagricultural.Chelsea,MI:LewisPublishers,Inc.;1989.p.431–45.
GnanadipathyA,PolprasertC.TreatmentofdomesticwastewaterwithUASBreactor.
WaterSciTechnol1993;27:195–203.
GoncalvesRF,AraujoVL,ChernicharoCAL.AssociationofaUASBreactoranda
submergedaeratedbiofilterfordomesticsewagetreatment.WaterSciTechnol1998;38(8–9):189–95.
GoncalvesRF,deAraujoVL,BofVS.Combiningupflowanaerobicsludgeblan-ket(UASB)reactorsandsubmergedaeratedbiofiltersforsecondarydomesticwastewatertreatment.WaterSciTechnol1999;40(8):71–9.
Halalsheh,M.M.,Anaerobicpre-treatmentofstrongsewage,Ph.D.Thesis,Wagenin-genUniversity,Wageningen,TheNetherlands;2002.
HulshoffPLW,LettingaG.Newtechnologiesforanaerobicwastewatertreatment.
WaterSciTechnol1986;18:41–53.
JanssenAJH,LettingaG,deKeizerA.Removalofhydrogensulphidefromwastewater
andwastegasesbybiologicalconversiontoelementalsulphur:colloidalandinterfacialaspectsofbiologicallyproducedsulphurparticles.ColloidsSurfA:PhysicochemEngAspects1999;151:389–97.
JSWA.Manualforintegratedsewagedevelopmentinriverbasin.Tokyo,Japan:Japan
SewageWorksAssociation;1999.
JohnsonDB,HallbergKB.Acidminedrainageoptions:areview.SciTotalEnviron
2005;338:3–14.
KellerR,Passamani,FrancaRF,PassamaniF,VazL,CassiniST,etal.Pathogenremoval
efficiencyfromUASB+BFeffluentusingconventionalandUVpost-treatmentsystems.WaterSciTechnol2004;50(1):1–6.
KhanAA.IntegratedUASBreactoranditsdifferentaerobicposttreatmentoptions
forsewagetreatment,PhDthesiswouldbesubmitted.Roorkee,India:IndianInstituteofTechnology;2011.
KhanAA,GaurRZ,MehrotraI,KazmiAA.IntegratedUASBandContinuousFlow
SequencingBatchReactor(CFID)SystemforSewageTreatment.ProceedingsIWAConferenceonMicrobesinWastewaterandWasteTreatment,Bioremedi-ationandEnergyProductionpp.97,January24–27,2011,Goa,India.
LettingaG,vanVelsenAFM,HobmaSW,DeZecuwW,KlapwijkA.Useoftheupflow
sludgeblanket(USB)reactorconceptforbiologicalwastewatertreatment,espe-ciallyforanaerobictreatment.BiotechnolBioeng1980;22:699–734.
LettingaG,RoersmaR,GrinP,deZeeuwW,HulshofPolL,vanVelsenL,etal.Anaer-obictreatmentofsewageandlowstrengthwastewaters.In:Proceedingsofthesecondinternationalsymposiumonanaerobicdigestion;1981.p.271–91.
1250A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
LettingaG,RoersmaR,GrinP.Anaerobictreatmentofrawdomesticsewageat
ambienttemperaturesusingagranularbedUASBreactor.BiotechnolBioeng1983;25(7):1693–911.
LettingaG,HulshoffPolL.Advancedreactordesign,operationandeconomy.Water
SciTechnol1986;18(12):99–108.
LettingaG,deManA,vanderLastARM,WiegantW,vanKnippenbergK,FrijnsJ,etal.
Anaerobictreatmentofdomesticsewageandwastewater.WaterSciTechnol1993;27(9):67–73.
LettingaG.Towardsfeasibleandsustainableenvironmentalprotectionforall.Aquat
EcosystHealthManage2008;11(1):116–24.
LewB,BelavskiM,AdmonS,TarreS,GreenM.TemperatureeffectonUASBreac-toroperationfordomesticwastewatertreatmentintemperateclimateregions.WaterSciTechnol2003;48(3):25–30.
LewB,TarreS,BelavskiM,GreenM.UASBreactorfordomesticwastewatertreat-mentatlowtemperatures:acomparisonbetweenaclassicalUASBandhybridUASB-filterreactor.WaterSciTechnol2004;49(11–12):295–301.
LiXW.Studyofthestrategyofmunicipalsewagetreatmenttechniques.Reportof
specialresearch.ConstructionMinistryofChina;1987.
LiXW,QianY,NieMS.Handbookofmunicipalwastewaterstabilizationponddesign;
1990.
MonroyO,NoyolaA,RamirezF,GuyotJP.Anaerobicdigestionandwaterhyacinth
asahighlyefficienttreatmentprocessfordevelopingcountries.In:Pro-ceedingsofthefifthinternationalsymposiumonanaerobicdigestion;1988.p.747–51.
MachdarI,HaradaH,OhashiA,SekiguchiY,OkuiH,UekiK.Anovelandcost-effectivesewagetreatmentsystemconsistingofUASBpre-treatmentandaerobicpost-treatmentunitsfordevelopingcountries.WaterSciTechnol1997;36(12):189–97.
MachdarI,SekiguchiY,SuminoH,OhashiA,HaradaH.CombinationofaUASB
reactorandacurtaintypeDHS(downflowhangingsponge)reactorasacost-effectivesewagetreatmentsystemfordevelopingcountries.WaterSciTechnol2000;42(3–4):83–8.
Mahmoud,N.Anaerobicpre-treatmentofsewageunderlowtemperature(15◦C)
conditionsinanintegratedUASB-digestersystemPh.D.Thesis,Sub-departmentofEnvironmentalTechnology,WageningenUniversity,TheNetherlands;2002.MahmoudN,ZeemanG,GijzenH,LettingaG.Anaerobicsewagetreatmentina
one-stageUASBreactorandacombinedUASB-Digestersystem.WaterRes2004;38(9):2348–58.
MatsuuraN,HatamotoM,SuminoH,SyutsuboK,YamaguchiT,OhashiA.ClosedDHS
systemtopreventdissolvedmethaneemissionsasgreenhousegasinanaero-bicwastewatertreatmentbyitsrecoveryandbiologicaloxidation.WaterSciTechnol2010;61(9):2407–15.
MoEF.Managementinformationsystem,technicalreport,NationalRiverConserva-tionDirectorate.NewDelhi,India:MinistryofEnvironmentandForests;2005and2006.
MoawadA,MahmoudUF,El-KhateebMA,El-MollaE.Couplingofsequencingbatch
reactorandUASBreactorfordomesticwastewatertreatment.Desalination2009;242:325–35.
MendozaL,CarballaM,SitorusB,PietersJ,VerstraeteW.Technicalandeconomi-calfeasibilityofgradualconcentricchambersreactorforsewagetreatmentindevelopingcountries.ElectronJBiotechnol2009;12(2):1–13.
Metcalf,Eddy.Wastewaterengineeringtreatmentandreuse.3rded.NewDelhi,
India:TataMcGrawHillCo.;2003.
NobreCA,GuimarãesMO.Experimentosemdigestãoanaeróbiadeesgotosurbanos.
RevistaDAE1987;47:75–85.
OkurutTO,RijsGBJ,vanBruggenJJA.Designandperformanceofexperimentalcon-structedwetlandsinUganda,plantedwithCyperusPapyrusandPhragmitesMauritianus.WaterSciTechnol1999;40(3):263–5.
PenetraRG,RealiMAP,ForestiE,CamposJR.Post-treatmentofeffluentsfromanaer-obicreactortreatingdomesticsewagebydissolved-airflotation.WaterSciTechnol1999;40(8):137–43.
PontesPP,ChernicharoCA,FradeEC,PortoMT.PerformanceevaluationofanUASB
reactorusedforcombinedtreatmentofdomesticsewageandexcessaerobicsludgefromatricklingfilter.WaterSciTechnol2003;48(6):227–34.
PrakashKJ,TyagiVK,KazmiAA,KumarA.Post-treatmentofUASBreactorefflu-entbycoagulationandflocculationprocess.AIChEEnvironProg2007;26(2):164–8.
RealiMAP,PenetraRG,CarvalhoME.Flotationtechniquewithcoagulantandpoly-merapplicationappliedtothepost-treatmentofeffluentsfromanaerobicrectortreatingsewage.WaterSciTechnol2001;44(4):205–12.
SayedS,FergalaM.Two-stageUASBconceptfortreatmentofdomesticsewage
includingsludgestabilisationprocess.WaterSciTechnol1995;32(11):55–63.SchellinkhoutA,LettingaG,vanVelsenAFM,LouweKooijmansJ,RodríguezG.The
applicationoftheUASBreactorforthedirecttreatmentofdomesticwastewaterundertropicalconditions.In:SwitzenbaumMS,editor.Proceedingsofthesemi-nar/workshoponanaerobictreatmentofsewage.Amherst,MA,USA:UniversityofMassachusetts;1985.
SchellinkhoutA,JakmaFFGM,ForeroGE.Sewagetreatment:theanaerobicwayis
advancinginColombia.In:Proceedingsofthefifthinternationalsymposiumonanaerobicdigestion;1988.p.767–70.
SchellinkhoutA,CollazosCJ.Full-scaleapplicationoftheUASBtechnologyfor
sewagetreatment.WaterSciTechnol1992;25(7):159–66.
SchellinkhoutA.UASBtechnologyforsewagetreatment:experiencewithafullscale
plantanditsapplicabilityinEgypt.WaterSciTechnol1993;27(9):173–80.
Seghezzo,L.,Anaerobictreatmentofdomesticwastewaterinsubtropicalregions,
Ph.D.Thesis,WageningenUniversity,Wageningen,TheNetherlands;2004.
SeghezzoL,GeemanG,vanLierJB,HamelersHVM,LetingaG.Areview:the
anaerobictreatmentofsewageinUASBandEGSBreactors.BioresourTechnol1998;65:175–90.
StefessGC,TorremansRAM,deSchrijverR,RobertsonLA,KuenenJG.Quantitative
measurementofsulfurformationbysteadystateandtransient-statecontin-uousculturesofautotrophicthiobacillusspecies.ApplMicrobiolBiotechnol1996;45:169–75.
SeghezzoL,GuerraRG,Gonza’lezSM,TrupianoAP,FigueroaME,CuevasCM,etal.
Removalefficiencyandmethanogenicactivityprofilesinapilot-scaleUASBreactortreatingsettledsewageatmoderatetemperatures.WaterSciTechnol2002;45(10):243–8.
SiddiqiRH.TreatmentofmunicipalwastewaterbyUASBreactor,performanceof
5MLDPlantatKanpur.Aligarh,India:Dept.ofCivilEngineering,AligarhMuslimUniversity;1990.
SinghKS,ViraraghavanT.Impactoftemperatureonperformance,microbiological
andhydrodynamicaspectsofUASBreactorstreatingmunicipalwastewater.In:ProceedingsofSeventhLatinAmericanWorkshopandSymposiumonAnaerobicDigestion;2002.p.613–20.
SouzaME.Criteriafortheutilization,designandoperationofUASBreactors.Water
SciTechnol1986;18(12):55–69.
SousaJT,ForestiE.Domesticsewagetreatmentinanup-flowanaerobicsludge
blanket—sequentialbatchsystem.WatSciTechnol1996;33(3):73–84.
SousaJT,vanHaandelAC,GuimarãesAAV.Post-treatmentofanaerobiceffluentsin
constructedwetlandsystems.WaterSciTechnol2001;44(4):213–9.
SuhailA.Tertiarywastewatertreatmentbysedimentationandsandfiltration,MS
thesis.Dhahran,SaudiArabia:KingFahdUniversityofPetroleumandMinerals;1987.
SuminoH,TakahashiM,YamaguchiT,AbeK,ArakiN,YamazakiS,etal.Feasibility
studyofapilot-scalesewagetreatmentsystemcombininganup-flowanaer-obicsludgeblanket(UASB)andanaeratedfixedbed(AFB)reactoratambienttemperature.BioresourTechnol2007;98:177–82.
SatoN,OkuboT,OnoderaT,Agrawal,LalitK,OhashiA,etal.Economicevaluationof
sewagetreatmentprocessesinIndia.JEnvironManage2007;84:447–60.
SurampalliRY,TyagiRD,ScheibleOK,HeidmanJA.Nitrificaticon,denitrifica-tionandphosphorusremovalinsequentialbatchreactors.BioresourTechnol1997;61:151–7.
TsagarakisKP,MaraDD,AngelakisAN.Applicationofcostcriteriaforselec-tionofmunicipalwastewatertreatmentsystems.WaterAirSoilPollut2003;142:187–210.
TandukarM,UemuraS,OhashiA,HaradaH.Alow-costmunicipalsewagetreatment
systemwithacombinationofUASBandthe“FourthGeneration”down-flowhangingsponge(DHS)reactors.WaterSciTechnol2005;52(1–2):323–9.
TandukarM,MachdarI,UemuraS,OhashiA,HaradaH.Potentialofacombination
ofUASBandDHSreactorasanovelsewagetreatmentsystemfordevelopingcountries:along-termevaluation.JEnvironEng(ASCE)2006a;132(2):166–72.TandukarM,UemuraS,OhashiA,HaradaH.CombiningUASBandthe‘FourthGener-ation’down-flowhangingspongereactorformunicipalwastewatertreatment.WaterSciTechnol2006b;53(3):209–18.
TandukarM,OhashiA,HaradaH.Performancecomparisonofapilot-scaleUASB
andDHSsystemandactivatedsludgeprocessforthetreatmentofmunicipalwastewater.WaterRes2007;41(4):2697–705.
TawfikA,KlapwijkB,El-GoharyF,LettingaG.Treatmentofanaerobicallypre-treated
domesticsewagebyrotatingbiologicalcontactors.WaterRes2002a;36:147–55.TawfikA,KlapwijkB,El-GoharyF,LettingaG.Treatmentofanaerobicallytreated
domesticwastewaterusingrotatingbiologicalcontactor.WaterSciTechnol2002b;45(10):371–6.
TawfikA,ZeemanG,KlapwijkA,SandersW,El-GoharyF,LettingaG.Treatment
ofdomesticsewageinacombinedUASB/RBCsystem.Processoptimizationforirrigationpurposes.WaterSciTechnol2003;48(1):131–8.
TawfikA,KlapwijkB,El-GoharyF,LettingaG.Potentialsofusingrotatingbiological
contactorsforposttreatmentofanaerobicallypre-treateddomesticwastewater.BiochemEngJ2005;25:89–98.
TawfikA,El-GoharyF,OhashiA,HaradaH.Optimizationoftheperformanceof
anintegratedanaerobic–aerobicsystemfordomesticwastewatertreatment.WaterSciTechnol2008;58(1):185–94.
TawfikA,El-GoharyF,TemminkH.Treatmentofdomesticwastewaterinanupflow
anaerobicsludgeblanketreactorfollowedbymovingbedbiofilmreactor.Bio-processBiosystEng2010;33:267–76.
TorresP,ForestiE.DomesticsewagetreatmentinapilotsystemcomposedofUASB
andSBRreactors.WaterSciTechnol2001;44(4):247–53.
TyagiVK,KhanAA,KazmiAA,MehrotraI,ChopraAK.Slowsandfiltrationof
UASBreactoreffluent:apromisingposttreatmenttechnique.Desalination2009;249:571–6.
TareV,GuptaS,BoseP.Casestudiesonbiologicaltreatmentoftanneryeffluentin
India.JAirWasteManageAssoc2003;53:976–82.
TassouSA.Energyconservationandresourceutilizationinwastewatertreatment
plants.ApplEnergy1988;30:2–8.
TesseleF,MonteggiaLO,RubioJ.TreatmentofmunicipalwastewaterUASBreac-toreffluentbyunconventionalflotationandUVdisinfection.WaterSciTechnol2005;52(1–2):315–22.
VieiraSMM,SouzaME.DevelopmentoftechnologyfortheuseoftheUASBreac-torindomesticsewagetreatment.In:ProceedingsoftheIAWPRCinternationalseminaronanaerobictreatmentintropicalcountries;1986.
VieiraSMM.AnaerobictreatmentofdomesticsewageinBrazil—researchresults
andfullscaleexperience.In:Proceedingsofthefifthinternationalsymposiumonanaerobicdigestion;1988.p.185–196.
A.A.Khanetal./Resources,ConservationandRecycling55 (2011) 1232–1251
1251
VanderSteenP,BrennerA,OronG.Integratedduckweedandalgaepondsystemfor
removalandconversionofnitrogenfromwastewaterintovaluableproducts.In:PresentedattheIAWQwaterqualityinternationalconference;1998.
VanderSteenP,BrennerA,vanBuurenJ,OronG.PosttreatmentofUASBreactor
effluentinanintegratedduckweedandstabilizationpondsystem.WaterRes1999;3:615–20.
vanHaandelAC,LettingaG.Anaerobicsewagetreatment:apracticalguidefor
regionswithahotclimate.Chichester,UK:JohnWiley&Sons;1994.p.226.VerstraeteW,VandevivereP.Newandbroaderapplicationsofanaerobicdigestion.
CritRevEnvironSciTechnol1999;28:151–73.
vonSperlingM,FreireVH,ChernicharoCAL.Performanceevaluationofa
UASB—activatedsludgesystemtreatingmunicipalwastewater.WaterSciTech-nol2001;43(11):323–8.
vonSperlingM,ChernicharoCAL,SoaresAME,ZerbiniAM.ColiformandHelminth
eggsremovalinacombinedUASBreactor–baffledpondsysteminBrazil:performanceevaluationandmathematicalmodeling.WaterSciTechnol2002;45(10):237–42.
ValleroMVG,SipmaJ,AnnachhatreA,LensPNL,Hulshoff,PolLW.Biotechnological
treatmentofsulfur-containingwastewaters.In:FingermanM,NagabhushanamR,editors.Recentadvancesinmarinebiotechnology:bioremediation,vol.8.Enfield,NH,USA:SciencePublishers;2003.p.233–68.
vonSperlingM,ChernicharoCAL.Biologicalwastewatertreatmentinwarmclimate
regions.London:IWAPublishing;2005,1452.
vonSperlingM,MascarenhasLCAM.Performanceofveryshallowpondstreating
effluentsfromUASBreactors.WaterSciTechnol2005;51(12):83–90.
vonSperlingM,BastosRKX,KatoMT.RemovalofE.coliandHelmintheseggsin
UASB:polishingpondsystemsinBrazil.WaterSciTechnol2005;51(12):91–7.vonSperlingM,AndradaJGB.Simplewastewatertreatment(UASBreactor,shallow
polishingponds,coarserockfilter)allowingcompliancewithdifferentreusecriteria.WaterSciTechnol2006;54(11–12):199–205.
vonSperlingM,OliveiraCM,AndradaGJB,GodinhoVM,AssuncaoFAL,MeloWRJ.
PerformanceevaluationofasimplewastewatertreatmentsystemcomprisedbyUASBreactor,shallowpolishingpondsandcoarserockfilter.WaterSciTechnol2008;58(6):1313–9.
VieiraSMM,GarciaJrAD.SewagetreatmentbyUASBreactor.Operation
resultsandrecommendationsfordesignandutilization.WaterSciTechnol1992;25(7):143–57.
VlyssidesA,BarampoutiEM,MaiS.Effectofferrousiononthebiologicalactivity
inaUASBreactor:Mathematicalmodelingandverification.BiotechnolBioeng2007;96(5):853–61.
vanderZeeFP,VillaverdeS,GarciaPA,PolancoFFdz.Sulfideremovalby
moderateoxygenationofanaerobicsludgeenvironments.BioresourTechnol2007;98:518–24.
WangK.Integratedanaerobicandaerobictreatmentofsewage,PhDthesis.
Wageningen,TheNetherlands:WageningenAgriculturalUniversity;1994.
WildererPA,IrvineRL,GorzonszyMC.Sequencingbatchreactortechnology.Lon-don:InternationalWaterAssociation;1999.
WorldHealthOrganization.Healthguidelinesfortheuseofwastewaterinagricul-tureandaquaculture.Technicalreportseries,vol.778.Geneva;1989.
WaliaR.PolishingofeffluentfromUASBreactor:ORPasamonitoringparameter,
PhDthesis.Roorkee,India:IndianInstituteofTechnology;2007.
YingYuA,YangFL,BuccialiB,WongFS.Municipalwastewatertreatment
usingaUASBcoupledwithcross-flowmembranefiltration.JEnvironEng2009;135(2):86–91.
YingYuA,BingW,WongFS,YangF.Post-treatmentofup-flowanaerobicsludge
blanketeffluentbycombiningthemembranefiltrationprocess:foulingcon-trolbyintermittentpermeationandairsparging.WaterEnvironJ2010;24:32–8.
Furtherreading
CastilloA,CecchiF,Mata-AlvarezJ.Acombinedanaerobic–aerobicsystemtotreat
domesticsewageincoastalareas.WaterRes1997;31(12):3057–63.
CavalcantiPFF,vanHaandelA,LettingaG.Sludgeaccumulationinpolish-ingpondstreatinganaerobicallydigestedwastewater.WaterSciTechnol2002;45(1):75–81.
KasevaME.Performanceofasub-surfaceflowconstructedwetlandinpol-ishingpre-treatedwastewater—atropicalcasestudy.WaterRes2004;38:681–7.
KeithBrindleTS.Theapplicationofmembranebiologicalreactorsforthetreatment
ofwastewaters.BiotechnolBioeng1996;49(6):601–10.
MbuligweSE.Comparativeeffectivenessofengineeredwetlandsystemsin
thetreatmentofanaerobicallypre-treateddomesticwastewater.EcolEng2004;23:269–84.
MahmoudN.HighstrengthsewagetreatmentinaUASBreactorandanintegrated
UASB-digestersystem.BioresourTechnol2008;99:7531–8.
TawfikA,KlapwijkB,El-GoharyF,LettingaG.Treatmentofanaerobicallypre-treateddomesticsewagebyarotatingbiologicalcontactor.WaterRes2001;36(1):147–55.
因篇幅问题不能全部显示,请点此查看更多更全内容