您的当前位置:首页正文

Simplified High Accuracy Calculation of eddy current losses in round wire winding

2022-05-21 来源:步旅网
SimplifiedHigh-AccuracyCalculationofEddy-CurrentLossesinRound-WireWindings

XiNanC.R.Sullivan

FoundinIEEEPowerElectronicsSpecialistsConference,June2004,pp.873–879.

c2004IEEE.Personaluseofthismaterialispermitted.However,permission󰀁

toreprintorrepublishthismaterialforadvertisingorpromotionalpurposesorforcreatingnewcollectiveworksforresaleorredistributiontoserversorlists,ortoreuseanycopyrightedcomponentofthisworkinotherworksmustbeobtainedfromtheIEEE.

2004 35th Annual IEEE Power Electronics Specialists ConferenceAachen, Germany, 2004

SimplifiedHigh-AccuracyCalculationofEddy-CurrentLossinRound-WireWindings

XiNan

ThayerSchoolofEngineeringDartmouthCollege,USAEmail:xi.nan@dartmouth.edu

CharlesR.Sullivan

ThayerSchoolofEngineeringDartmouthCollege,USA

Email:CharlesR.Sullivan@dartmouth.edu

Abstract—Ithasrecentlybeenshownthatthemostcommonlyusedmethodsforcalculatinghigh-frequencyeddy-currentlossinround-wirewindingscanhavesubstantialerror,exceeding60%.Previousworkincludesaformulabasedonaparametricsetoffinite-elementanalysis(FEA)simulationsthatgivesproximity-effectlossforalargerangeoffrequencies,usingtheparametersfromalookuptablebasedonwindinggeometry.Weimprovetheformulabydecreasingthenumberofparametersintheformulaandalso,moreimportantly,byusingsimplefunctionstogettheparametersfromwindinggeometrysuchthatalargelookuptableisnotneeded.Thefunctionwepresentisexactinthelowfrequencylimit(diametermuchsmallerthanskindepth)andhaserrorlessthan4%athigherfrequencies.

Wemakeournewmodelcompletebyexaminingthefieldexpressionneededtogetthetotalproximity-effectlossandbyincludingtheskin-effectloss.Wealsopresentexperimentalresultsconfirmingthevalidityofthemodelanditssuperioritytostandardmethods.

Hhv󰁇Odd SymmetryEven SymmetryRegion for FEA simulationI.INTRODUCTION

Inthedesignandoptimizationofmagneticcomponentssuchasinductorsandtransformersusedinpowerelectronicsapplications,accuratepredictionofhigh-frequencywindinglossisveryimportant.Eddy-currentwindingloss,whichincludesskin-effectlossandproximity-effectloss,increasesrapidlywithfrequency.Duetothecomplexityofwindinggeometriesandinteractionsbetweenconductorsinwindings,itisdifficulttofindageneralanalyticalsolutionfortheeddy-currentlossesinwindings.Severalmethodshavebeenusedtopredicthigh-frequencywindinglossesinwindingsofroundconductorsasreviewedin[1].Onetypeofthesemethods[2],[3],[4],[5],[6],oftencalledtheDowellmethod,istousetheanalyticalsolutionforafoilconductorasanequivalenttoroundconductorsinthesamelayerwiththesametotalcross-sectionalarea.AnothertypeofmethodiscalledtheFerreiramethodortheBessel-functionmethod[7],[8],[9],[10],[11],whichistousetheanalyticalfieldsolutionofasingleisolatedroundconductorwhichissubjectedtoanexternaluniformfield.

BoththeDowellmethodandtheBessel-functionmethodcanhavelargeerror(upto60%to150%)athighfrequencies[12].Anotherkindofapproachusedtocalculateeddy-currentlossistoemploynumericalmethodssuchasfiniteelementanalysis(FEA)tofindthefieldsolutions.ThroughFEA,itispossibletofindthelossforanygivenconfigurationtoanydesireddegreeofaccuracy,thoughitmaybeverytime-consumingandonesolutioncanonlybeappliedtoonecertainconfiguration.Severalapproaches[13],[14]havebeenusedtoovercomethelimitationsofdirectnumericalmethodsasdiscussedin[12].

0-7803-8399-0/04/$20.00 ©2004 IEEE.

Fig.1.FEAsimulationconfigurationforarectangularwindingofroundconductors.Thepowerlossintheshadedarearepresentshalftheproximity-effectlossperunitlengthineachturnofawindingwithinterwiredistancevandinterlayerdistanceh.

Tofindthebehaviorofaroundwireinawinding,[12]usedFEAforasinglewirewithsymmetryboundaryconditionsasshowninFig.1.Lossinthesimulationregioncanrepresentproximity-effectlossinhalfofaroundconductorinawindingwithinterlayerdistancehandinterwiredistancev.Thesetupoftheboundaryconditionswasdiscussedindetailin[12].Reference[12]collecteddataofpowerlossandfieldsolutionsforarangeofwirespacingsintwodirectionsandforratiosofwirediametertoskindepthrangingfrom0.6to60,andshowedthattheproximity-effectlossfactor,whichisproximity-effectlossinaconductornormalizedbythesquareoftheexternalfield,notonlyincreaseswithfrequency,butalsodependsontheinterwiredistanceinalayerandtheinterlayerdistance.Basedontheseresults,[12]givesafunctionthatapproximatesthesimulationresultsmuchbetter(errorlessthan2%),andprovidesatableinwhichtheparametersofthefunctioncanbelookedupaccordingtothewirespacings.Inthispaper,weimproveonthemodelprovidedin[12].Asin[12],thenewmodelgivesamoreaccuratelosspredictionthantheDowellmethodortheBessel-functionmethod,andworksforalargerangeoffrequenciesandforanywiresizeandwindinggeometryusedinpractice.However,thefunctionshavebeensimplifiedandadjustedtogiveexactresultsmatch-inganalyticalsolutionsinthelow-frequencylimit,andthenewmodeldoesnotrequirealargetableofparametersasin[12],butinsteadusessimplefunctionstogettheparametersfromwindinggeometry.Inadditiontopresentingthisimprovedmodelforproximity-effectlossfactor,weexaminethefieldexpressionneededtogetthetotalproximity-effectloss,discuss

873

2004 35th Annual IEEE Power Electronics Specialists ConferenceAachen, Germany, 2004

theinclusionoftheskin-effectloss,andshowthatusingasimplemodelforskin-effectlossgivesonlysmallerrors.Thus,weareabletoprovideacompletemodelforcalculatingthewindinglossesforroundconductorsconfiguredasshowninFig.1.Wealsopresentexperimentalresultsconfirmingthevalidityofthemodelanditssuperioritytostandardmethods.SectionIIdiscussesindetailhowwedecomposeeddy-currentlossintoskin-effectlossandproximity-effectloss.InSectionIII,themodelforcalculatingproximity-effectlossfactorispresentedanditsaccuracyisanalyzed.SectionIVshowshowtocalculatethetotal‘proximityfield’inawinding,whichisanotherimportantfactorthatdeterminesthetotalproximity-effectlossbesidesproximity-effectlossfactor.InSectionV,wediscussthecalculationofskin-effectloss.ExperimentalresultsaregiveninSectionVIthatprovethevalidityofourmodel.

II.DEFINITIONSANDDECOMPOSITIONOFSKIN-EFFECT

LOSSANDPROXIMITY-EFFECTLOSSWindinglossathighfrequenciesiscausedbyeddy-currenteffects.Generally,eddy-currenteffectsaredividedintoskineffectandproximityeffect.Theclassicaldefinitionofskin-effectlossistheextraAClossinasingleisolatedconductorwhichiscarryingatime-varyingcurrent.Andthecorrespond-ingdefinitionofproximity-effectlossinawindingisdefinedasthetotaleddy-currentlossminustheclassicalskin-effectloss.

Theclassicaldefinitionsofskin-effectlossandproximity-effectlosscanhelpusbetterunderstandthebehaviorofaconductorathighfrequencies.However,theydon’thelpmuchinsolvingtheeddy-currentproblem.Tocalculatetheproximity-effectlossbasedontheclassicaldefinition,onehastoknowthefielddistributionandcurrentdistributionbeforehand,whichisalmostimpossible.Todecomposelossintotwopartsthatareeasytocalculateandavoidanalyzingthelocalproximityfieldineachconductor,weuseadifferentdefinitionofproximity-effectloss.Wedefineproximity-effectlossinawindingasthelossduetotheexternalfieldappliedonamatrixofwire(thewinding),andthecorrespondingdefinitionofskin-effectlossisthetotaleddy-currentlossminusthatproximity-effectloss,whichisequaltothelossinaconductorcarryingtime-varyingnetcurrentandsubjectedtospecifiedboundaryconditionsasshowninFig.2.

Fig.2showsindetailhowthetotalcurrent(includingeddycurrent)inawindingisdecomposedintoskin-effectcurrentinAandproximity-effectcurrentinBbyourdefinitionsandalsohowthefieldonthewindingisdecomposedcorrespondingtothecurrentdecomposition.Thefactthatthecurrentsincon-figurationAandBadduptocurrentinCdoesn’tnecessarilymeanthatthelossinAandthelossinBadduptolossinC.ThetotallossescanbeobtainedbyaddinglossesinAandBonlyifwecanprovethatorthogonalityexistsbetweenskineffectandproximityeffectinFig.2.

Reference[7]discussedconditionsunderwhichorthogo-nalityisvalid.Asufficient(butnotnecessary)conditionforthesumofthelossinAandthelossinBtobeidenticaltothetotallossisthattheconductorhasanaxisofsymmetryingeometryandthecurrentdistributioninAhasanodd

Symmetry axisCurrent: Even symmetrySymmetry axisCurrent: Odd symmetrySymmetry axisH1H2…..Layer analyzed-H0H0HH….….Total Loss in one layerBoundary conditionsFig.2.Decompositionoftotallossintoskin-effectlossandproximity-effectlossinawinding.

symmetryaboutthisaxiswhilethecurrentdistributioninBhasanevensymmetry,orviceversa.ItisstraightforwardthattheconfigurationandcurrentdistributionsinAandBinFig.2satisfythesetwoconditions.Thusthetotaleddy-currentlossinoneconductorinCwillbe:

Ptotal,ac=Pproximity−effect+Pskin−effect

Pproximity−effect

ˆ2GH=

σ

(1)(2)

ˆisthenormalizedunitlessproximity-effectlossfactorwhereG

asin[12]:theproximity-effectlossperunitlengthinaconductorinawinding,normalizedbytheexternalfieldwhichthewindingsubjectedtoandbytheconductivity,andHisthemagnitudeofexternalfieldorso-called‘proximityfield’thewindingissubjectedto.FromFig.2,wecanseethatthetotalfieldontheconductorcanbedecomposedintoauniform‘externalfield’componentHplusH0or−H0causedbynetcurrentintheconductor,whereHistheexternalfieldusedtocalculateproximity-effectlossandistheaverageofthefieldsoneachsideofthewindingH1andH2:

H1+H2

(3)

2

Similarfielddecompositionmethodandorthogonalitybetweenskineffectandproximityeffectalsoapplytofoil-conductorwindings.Intheappendix,weshowthattheanalysisofwindinglossbasedonorthogonalityleadstothesameresultastheanalyticalsolutionoffieldandlossinfoil-conductorwindings.

H=

III.MODELFORCALCULATINGPROXIMITY-EFFECT

LOSSESINAWINDINGIn[12],weperformed4000simulationsforvariouswindinggeometriesandvariousfrequenciesandthendidcurvefittingˆbasedonthesimulationdata.TheresultsweregiveninofG

theformofafunctionwhoseparametersaredeterminedby

…..CASkin-effect lossWire carrying currentI/l: net current per height.BProximity-effect lossWire carrying no net currentH=H1+H22H2−H1=I/l=2H0874

2004 35th Annual IEEE Power Electronics Specialists ConferenceAachen, Germany, 2004

thewindinggeometryandcanbelookedupinatable.Ouraimhereistocreateasimilarfunctionbasedonthesamedatafrom2-Dsimulationsbuttoavoidtheunwieldytableneededin[12]byprovidingafunctiontocalculateparametersdirectlyfromthegeometry.

Thenewfunctionalformofourmodeloftheproximity-ˆistheweightedaverageoftwodifferenteffectfactorG

functions.OneiscalledthemodifiedDowellfunction:

ˆ1(X)=3πk−3Xsinh(kX)−sin(kX)G

16cosh(kX)+cos(kX)

(4)

w,kandbversush/dandv/d.Bylookingatplotsofkand

b,wefoundthatthemodel

s1−s2

f(Y,s1,s2,q)=−1+s2(8)

Y+q−1wouldbeabletodescribeaccuratelyhowbandwchangewith

normalizedinterwiredistancev/dandnormalizedinterlayerdistanceh/d,whereYistheinput—wirespacingv/dorh/d—whereass1,s2andqareparameters.Itisasimplifiedformofthedual-slopefunctionwheres1ands2decidethetwoslopes,andqdefineswherethecurvetransitionsbetweenthesetwoslopes.

ˆshowsanSimulationdataofproximity-effectlossfactorG

overshootatthetransitions.ThisovershootisexhibitedbythemodifiedDowellfunctionanddoesnotexistinthedual-slopefunction.Thus,weightingwdeterminestheextentofovershootin(7).Amodelforthevariationofwforvariouscombinationsofv/dandh/dcanbeconstructedusingcurvesoftheform

w(Y)=c1±(u1−u0e−Y0)2.

Y

wherekisafunctionofwirespacingsv/dandh/dandXisdefinedas:

󰀂d

X==dπσµf(5)

δwheredisthediameteroftheconductor,σistheconductivity,µisthepermeabilityoftheconductormaterial,andfisthefrequency.

Theotherfunctioniscalledthedual-slopefunction:

Xˆ2(X)=πG

32(X−3+b3)

(6)

(9)

Thedual-slopefunctionwasdiscussedindetailin[12].

Thefactorsof3π/16in(4)andπ/32in(6)ensurethat

πd4

(δ)atverylowbothofthemgivetheexactsolution32frequenciesd/δ󰀃1,whichisderivedfromtheBessel-functionmethod’ssolution.Atlowfrequencies,theTaylor

sinh(kX)−sin(kX)1333

expansionofcosh(kX)+cos(kX)is6xk.Thekfactorin

ˆ1thisexpansioncancelsthek−3factorin(4),makingG

independentofkatlowfrequencies.Sincekistheonly

ˆ1isparameterin(4)whichisrelatedtowirespacings,G

independentoftheturnspacing,whichmakesphysicalsense,becauseatlowfrequencies,thefieldcausedbyeddycurrentinnearbyconductorsisverysmallandnegligible.Comparedtothefunctionformsin[12],(4)and(6)aresimplerandensuretheaccuracyofthemodelinthelow-frequencyrangewhend/δismuchsmallerthanone.

Asshownin[12],the(6)providesabetterfitforsomege-ometries,whereas(4)providesabetterfitforothergeometries.Toallowfittingdatawitheithershape,oranyintermediateshape,weusedaweightedaverageofthetwofunctions(4)and(6),withweightingw:

ˆ=(1−w)Gˆ1(X)+wGˆ2(X)G

(7)

Theshapeofthew(Y)curveislikeaparaboliccurvewitha

smallinputvalueYandturnsintoaconstantwithlargevaluesofY.Severalsuchcurvesarecombinedwithaweightingdeterminedbyh/d.

Second,wedidcurve-fittingfork,bandw.Forexample,tofindtheparametersforthemodelofk(v/d,h/d),wefirstfound10setsofs1,s2andqfor(8)fordifferentvaluesofh/d,andthenchosethecurve-fittingfunctionss1(h/d),s2(h/d)andTp(h/d).Aftertheinitialfunctionformsandparametervaluesarefoundfork,bandw,weadjustalltheparametersofk(v/d,h/d),b(v/d,h/d)andw(v/d,h/d)simultaneouslytomake(7)fitthesimulationdatabest.Finally,thefunctionsforb,kandwcanbegivenas:

󰀃

b(v/d,h/d)=fv/d,f(h/d,s1b,1,s2b,1,qb,1),

󰀁

f(h/d,s1b,2,s2b,2,qb,2),f(h/d,s1b,3,s2b,3,qb,3)(10)

󰀃

k(v/d,h/d)=fh/d,f(v/d,s1k,1,s2k,1,qk,1),

󰀁

f(v/d,s1k,2,s2k,2,qk,2),f(v/d,s1k,3,s2k,3,qk,3)(11)w(v/d,h/d)=(h/d)w1(v/d)+w2(v/d)w1(v/d)=c11−(u11−u01e−Y01)2w2(v/d)=c21+(u21−u02e

−Yv/d02v/d

Byfitting(7)tothe100setsofdata(ineachsetofdatad/δsweepsfrom0.6to60with40samplesevenlydistributedonalogscale),weobtained100setsofw,k,andbvalues,definingcurveswhichfitthedatafrom2-DFEAsimulationsmuchbetterthanoriginalDowellmodel.Eachsetofvaluescorrespondstoadifferentv/dandh/d.

Tousetheresultsofcurve-fittingandtoavoidalargetableasprovidedin[12],westudieddifferentpossiblecurve-fitfunctionsthatwouldgivevaluesofw,kandbbasedonthevaluesofv/dandh/d.

Inordertofindw(h/d,v/d),k(h/d,v/d)andb(h/d,v/d),first,wechosetheappropriatemodelsforthecurve-fittingof

)2

(12)

Theparametersin(10),(11)and(12)areinTable.I.

Theerrorofourmodel((4),(6),(7),(8)and(10)–(12))iswithin4%intherangeoffrequencyuptod/δ=60,v/dfrom0.02to1.40,andh/dfrom0.02to1.90,comparedtoFEAresultsbothfromtheoriginal4000simulationsonwhichourcurve-fittingisbased,andalsoanother800simulationswedidfordifferentinterpolationvaluesofh/d,v/dandfinthesamerange.

Fig.3comparesmaximumerrorforanygeometryatacertainfrequencygivenbyeachofthreemodels:ourmodel,theDowellmethod,andtheBessel-functionmethod.Errorsare

875

2004 35th Annual IEEE Power Electronics Specialists ConferenceAachen, Germany, 2004

TABLEI

PARAMETERSFORb,kANDwTOBEUSEDIN(10),(11)AND(12)

s1b,j−0.00371.81670.7053s1k,j1.02610.47320.0930u11=0.1558u21=0.1912s2b,j0.04320.00740.8378s2k,j0.81490.80230.2588u01=0.3477u02=0.2045qb,j−0.06610.219523.8755qk,j9.39181.2225−0.0334Y01=1.0673Y02=1.3839100b

Maximum error (%)j=1j=2j=3j=1j=2j=3=0.0596=0.001851k

c11c21

0.1w

Below the simulation error 0.1% Our modelDowell methodBessel−function method0.11d/δ101000.01relativetothesimulationresultswhichhavelessthan0.1%error.Wecanseethatatfrequencieswhered/δislargerthanone,boththeBesselfunctionmethodandtheDowellmethodcangiveverylargeerror,from60%to120%,whileourmodelonlygiveserrorlessthan4%.Atlowfrequencies,theDowellmethod’serrorgoesto4.7%,whileboththeBessel-functionmethodandourmodelgiveerrormuchsmallerthanthat.Atd/δ󰀃1,theproximity-effectfactorsgivenbyBessel-functionmethodandourmodelconverge,andtheirerrorisbelowthesimulationerrorof0.1%.

AcontourplotofmaximumerrorswithvariousgeometriesisshowninFig.4.FromFig.4,wecanseethatthelargesterrorofourmodel—exceeding3%—happensingeometrieswheretheinterlayerdistancehissmallandtheinterwiredistancevislarge,whichisararesituationinpracticaldesign—errortheredoesn’tmattermuch.Thelargesterroralsohappenswhenbothvandhareverylarge.Basedon2-Dsimulationresultsshownin[12],proximity-effectfactorincreaseswiththeincreaseofv/dandthedecreaseofh/d.Tominimizetheproximity-effectloss,generallywewouldliketohavesmallv/dandlargeh/d.Fig.4showsthatintheregionofsmallv/dandlargeh/d,ourmodelgiveserrorsmallerthan3%.

IV.FIELDCALCULATIONFORATRANSFORMER

AsdiscussedinSectionII,thefieldmagnitudeHusedforcalculatingproximity-effectlossistheaverageofthefieldsoneachsideoftheconductor.InthissectionwewilldiscusshowtocalculateHforasimpletransformerwinding.However,the

ˆisindependentoftheoverallproximity-effectlossfactorG

fieldandcanbeusedbroadlyinvariousfieldshapes.

Inthepthlayerofasimplelayer-woundtransformerwindingofmlayers,themagnitudeofexternalfieldis:(2p−1)NmI

(13)

2bw

wherebwisthebreathofwindingwindow,Nisthetotalnumberofturns,andIisthepeakcurrentcarriedbyeachturn.

Fortheconvenienceofusing(13)in(1),wecanobtaintheaverageofsquareofthefieldinmlayers:

H=H2=

1(NI)21

(1−)

3bw24m2(14)

Fig.3.Thisplotcomparesthemaximumerrorforanygeometryata

certainfrequencygivenbyeachofthethreemodels:ourmodel,theDowellmethod,andtheBessel-functionmethod.Atlowfrequencies,theDowellmethod’serrorgoesto4.7%,whileboththeBessel-functionmethodgiveerrormuchsmallerthanthat.Atd/δ󰀁1,theproximity-effectfactorsgivenbyBessel-functionmethodandourmodelconverge,andtheirerrorisbelowthesimulationerrorof0.1%.Athigherfrequencies,ourmodelalwaysgivesamoreaccuratepredictionthantheDowellmethod(upto60%error)andtheBessel-functionmethod(upto120%error).

3.53.232.22.52.82.81.23.82.8333.233.53.83.53.533.212.80.8v/d2.83.233.80.63.23.52.582.2.23.2.550.42.52.53.22.8330.2Fig.4.Maximumerror(%)ofourmodel((7)-(12))relativetosimulationresultsoverthefrequencyrangecorrespondingtod/δfrom0.6to60iswithin4%.Generallyourmodelgivesasmallererror(within3%)atsmallerinterwiredistancev,whichisthegeometrymostfrequentlyusedinpractice.

themostgenerallyusedaveragefieldforamultilayerwindingis[15]:

1(NI)22H=(15)

3b2wAlthough(14)isabetterformulatouseespeciallyforaone

ortwolayerwinding,whenthenumberoflayersislarge,theerrorof(15)comparedto(14)isverysmall.Forexample,theerrorislessthan3%atm=3.

V.DISCUSSIONOFSKIN-EFFECTLOSSESOFA

CONDUCTORINAWINDING

Thelossincreaseathighfrequenciescausedbyskineffectforasingleisolatedroundconductorcanbeexpressedinthe

3.80.22.83.232.82.52.20.40.60.81h/d

1.21.41.61.8Assumingthatthefieldvarieslinearlyoverthewindinglayerthicknessandthatthenumberoflayersisverylarge,

876

2004 35th Annual IEEE Power Electronics Specialists ConferenceAachen, Germany, 2004

formoftheratioofACresistanceandDCresistance[6]:

γberγbei󰀁γ−beiγγber󰀁γRac,skin=−1Rdc2ber󰀁2γ+bei󰀁2γ

whereγis:

1d1

γ=√=√X

2δ2(16)

1002010Rac/RdcEquation(16)isforaconductorcarryingaspecifiedcurrent

whichisnotsubjectedtoanyexternalfield.Butaccordingtoourdefinitionofskin-effectloss,theskin-effectlossofconductorsinawindingwillbelargerthanthatin(16)becausethecurrentdistributionwillbeaffectedbyotherconductors,eveninalayerwhichisnotsubjectedtoanyexternal‘proximity’field.

Weperformed2-DFEAsimulationforaconfigurationasshowninFig.5tofindoutthescopeoferrorcausedbyusing(16)tocalculateskin-effectlossinourdefinition.Fig.5isanequivalentsetupforAinFig.2.Atd/δ=8,thedifferencebetweenthelosspredictionof(16)andthesimulationresultisabout20%oftheskin-effectlossand11%oftheskin-effectlossplusresistiveloss.However,thisdifferenceisonlyabout1%ofthetotallosswhichalsoincludestheproximity-effectlossinaone-layerwinding.Whenthenumberoflayersincreases,proximity-effectlossbecomesmoresignificantanddominatesthetotalloss,theerrorincalculatingskin-effectlossisnegligibleinthetotalloss.

Inaone-layerwinding,thepercentageoferrorcausedbyusingapproximateskin-effectlosscalculationisgiveninFig.6.Inamulti-layerwinding,thiserrorwillcontinuetodecreaseasthenumberoflayersincreases.Thuswecanuse(16)forcalculatingtheskin-effectlossinourmodel.Error (%)(17)

10.10.01Percentage (%) of total lossPercentage (%) of skin−effect loss% of skin−effect loss plus resistive loss0.00112d/δ10100Fig.6.Inaccuracyproducedbyusingapproximateformula(16)isbelow1%ofthetotalwindingloss.Thoughusing(16)tocalculatetheskin-effectloss(byourdefinition)canproduceerroraslargeas20%,thiserrorisnegligibleinthetotaleddy-currentloss,inwhichskin-effectlossisalwaysasmallpartoverthefrequencyrange.Theplotisforaone-layerwindingwithv/d=0.4286andh/d=0.4286.Inamultilayerwinding,inaccuracyincalculatingskin-effectlosswillbeevenmoreinsignificantcomparedtothetotalloss,becauseproximity-effectlossdominates.

10090807060504030Bessel function methodDowell methodExperimental DataOur model0.4 mm0.4 mmOdd symmetry2010Even symmetry00246d/δ81012Diameter of the conductor is 0.28 mmFig.7.ComparisonofexperimentaldataforwindingtypeAtotheresultsgivenbyournewmodel

Fig.5.ConfigurationofFEAsimulationforskin-effectlossVI.EXPERIMENTALRESULTS

Tovalidatetheaccuracyofournewmodel,wedidlossmeasurementsonthreedifferenttypesofwindings.Allofthethreewindingsareonpotcores(42mm×29mm)ofMnZnferrite(Philips3F3).Allofthethreewindingscontainthreelayersofprimarywindingandthreelayersofsecondarywinding.Thetwowindingsarewoundinoppositedirectionsandareconnectedinseriesoppositiontoachievesmallinductanceinthewindingsothataccuratemeasurementofsmallwindingresistanceiseasier.Weusedanimpedance

analyzertomeasuretheACresistanceoverthefrequencyrangeof1kHzto2.5MHz.Also,theerrorcausedbytheparasiticcapacitancewascompensatedusingthecircuitmodelin[16].SpecificationsofthethreewindingtypesareinTableII.

InFig.7,Fig.8andFig.9,wecanseethatourmodelfitstheexperimentaldatabetterthaneithertheDowellmodelandtheBessel-functionmodel.

WindingtypeAandwindingtypeChavethesameinterwiredistancevandsamewirediameter,whilewindingChasalargerinterlayerdistancehthanwindingtypeA.WindingAwillhavelargerwindinglossaccordingtoourmodel’sprediction.ThoughthedifferenceinlossbetweenexperimentaldatainFig.7and9isnotobvious,acloserexaminationoftheexperimentaldatarevealedthatatd/δaround3the

877

2004 35th Annual IEEE Power Electronics Specialists ConferenceAachen, Germany, 2004

TABLEII

SPECIFICATIONSOFTHEWINDINGSMEASURED

WindingtypeABCWire22AWGmagnetwire22AWGsolidwire22AWGmagnetwireInsulationonwiresinglebuild0.25mmteflonsinglebuildInsulationbetweenlayersonelayeroftape—5layersofpolypropylenetape

Actualaveragev/d0.281.430.29Actualaverageh/d0.291.431.5040353025Rac/Rdc201510500Bessel function methodDowell methodExperimental DataOur modellargeinterlayerdistance,willbethebest.

VII.CONCLUSION

Inthispaper,basedon2-DFEAsimulationdata,wepresentacompletemodelforcalculatingtheeddy-currentwindinglossesinawindingofroundconductors.Comparedtoothermethods,ourmethodofcalculatingwindinglosshasthefollowingadvantages:First,ourmethod’sresultsarebasedonFEAsimulationsona2-Dmodelofthewinding,whichareinherentlymoreaccuratethanthepreviouslyusedapproximatemodelssuchasDowell’s1-DmodelandtheBessel-functionmodel,whichneglectstheinteractionsbetweenconductors.Second,ourlossmodelisabletodescribethebehaviorofawindingwithvariousgeometryparametersoverawidefre-quencyrange,andourmethodseparatesoverallfieldanalysisfromtheanalysisoflocaleddycurrentsthustheresultcanbeextendedtoanyfieldshape.Third,ourmodelispresentedasaclosed-formfunction,suchthatdesignerscanuseitdirectlytocalculatelossandthusavoidthepainofFEAsimulations.

ACKNOWLEDGMENT

ThisworkwassupportedinpartbytheUnitedStatesDepartmentofEnergyundergrantDE-FC36-01GO1106.

REFERENCES

[1]GlennR.SkuttThomasG.WilsonAudreyM.Urling,VanA.Niemela,

“Characterizinghigh-frequencyeffectsintransformerwindings–aguidetoseveralsignificantarticles”,JournalofCircuits,Systems,andComputers,vol.5,Dec.1996.

[2]P.L.Dowell,“Effectsofeddycurrentsintransformerwindings”,

ProceedingsoftheIEE,vol.113,no.8,pp.1387–1394,Aug.1966.[3]P.S.Venkatraman,“Windingeddycurrentlossesinswitchmodepower

transformersduetorectangularwavecurrents”,ProceedingsofPower-con11,PowerConceptsInc.,pp.1–11,1984.

[4]M.P.Perry,“Multiplelayerseriesconnectedwindingdesignfor

minimumlosses”,IEEETransactionsonPowerApparatusandSystems,vol.PAS-98,pp.116–123,Jan./Feb.1979.

[5]E.BennetandS.C.Larson,“Effectiveresistanceofalternatingcurrents”,

AmericanInstituteofElectricalEngineers,vol.59,pp.1010–1017,1940.

[6]RichardL.Stoll,Theanalysisofeddycurrents,ClarendonPress.Oxford,

1974.

[7]J.A.Ferreira,“Improvedanalyticalmodelingofconductivelossesin

magneticcomponents”,IEEETransactionsonPowerElectronics,vol.9,no.1,pp.127–31,Jan.1994.

[8]MassimoBartoli,NicolaNoferi,AlbertoReatti,andMarianK.Kaz-imierczuk,“Modelinglitz-wirewindinglossesinhigh-frequencypowerinductors”,in27thAnnualIEEEPowerElectronicsSpecialistsConfer-ence,June1996,vol.2,pp.1690–1696.

[9]WilliamR.Smythe,StaticandDynamicElectricity,McGraw-Hill,1968,

page411.

[10]J.A.Ferreira,“Analyticalcomputationofacresistanceofroundand

rectangularlitzwirewindings”,IEEProceedings-BElectricPowerApplications,vol.139,no.1,pp.21–25,Jan.1992.

[11]J.A.Ferreira,ElectromagneticModellingofPowerElectronicConvert-ers,KluwerAcademicPublishers,1989.

246d/δ81012Fig.8.ComparisonofexperimentaldataforwindingtypeBtotheresultsgivenbyournewmodel

10090807060Rac/Rdc504030201000246d/δ81012Bessel function methodDowell methodExperimental DataOur modelFig.9.ComparisonofexperimentaldataforwindingtypeCtotheresultsgivenbyournewmodel

lossintypeCis1%largerthanthelossintypeA,whichmatchesthepredictionofourmodel.Athigherfrequencies,ourexperimentaldataonwindingtypeAandCdoesn’tshowthesamelossdifference.Thismaybeduetothelimitationofourcompensationofparasiticcapacitances.

LossinwindingtypeBissmallerthanthatofwindingtypeAorthatofwindingtypeC.ThisisbecausetherearefewerturnsperlayerinwindingtypeBandsmallerH.Tominimizetheproximity-effectlossforthesamenumberofturns,windingtypeC,withminimuminterwiredistanceand

878

2004 35th Annual IEEE Power Electronics Specialists ConferenceAachen, Germany, 2004

[12]XiNanandCharlesR.Sullivan,“Animprovedcalculationofproximity-effectlossinhighfrequencywindingsofroundconductors”,inPESC03,2003,vol.2,pp.853–860.

[13]CharlesR.Sullivan,“Computationallyefficientwindinglosscalcula-tionwithmultiplewindings,arbitrarywaveforms,andtwo-orthree-dimensionalfieldgeometry”,IEEETransactionsonPowerElectronics,vol.16,no.1,pp.142–150,Jan.2001.

[14]AlexanderD.Podoltsev,“Analysisofeffectiveresistanceandeddy-currentlossesinmultiturnwindingofhigh-frequencymagneticcompo-nents”,IEEETransactionsonMagnetics,vol.39,no.1,pp.539–548,Jan.2003.

[15]E.C.Snelling,SoftFerrites,PropertiesandApplications,Butterworths,

secondedition,1988.

[16]CharlesR.Sullivan,“Optimalchoicefornumberofstrandsinalitz-wiretransformerwinding”,IEEETransactionsonPowerElectronics,vol.14,no.2,pp.283–291,1999.

[17]J.H.Spreen,“Electricalterminalrepresentationofconductorlossin

transformers”,IEEETransactionsonPowerElectronics,vol.5,no.4,pp.424–9,1990.

ThisshowsthatthedecompositionFig.2worksandthattheaverageofthevaluesofHoneachsideofawindinglayeristhecorrectvaluetousein(2)tocalculateloss.Forthepthlayerinamultilayerfoilwinding,

(p−1)I

bpIH2=

b(2p−1)IH=

2b

bρ(2p−1)2I2

Pproximity=G(h/δ)

δ4b2

H1=

(26)(27)(28)(29)

APPENDIX

Thedecompositionoforthogonalskineffectandproximity

effectinFig.2worksforanyconductororgroupofconductorswhichhasasymmetricshape.WecanusethefoilconductorasanexampletoexplainhowtheorthogonalityworksandshowthattheaverageofthefieldsoneachsideofthewindingistherightHtousefor(2).Thelossperunitlengthinafoilconductorisgivenin[17]:

1bρ

[(H1−H2)2F(h/δ)+2H1H2G(h/δ)](18)2δ

wherehisthethicknessoftheconductor,bisthewidthoftheconductor,ρistheresistivityoftheconductor,H1andH2arethefieldmagnitudesoneachsideofthefoil,andFandGarefunctionsoftheskindepthδ:

P=

F(x)=

sinh(2x)+sin(2x)cosh(2x)−cos(2x)sinh(x)−sin(x)cosh(x)+cos(x)

(19)(20)

Pproximity+Pskinbρ(2p−1)2I21ρI2=(F(h/δ)−G(h/δ))G(h/δ)+δ4b22δb2ρI2=[F(h/δ)+2p(p−1)G(h/δ)]2δb1bρ

(30)=[(H1−H2)2F(h/δ)+2H1H2G(h/δ)]

TheabovecalculationsagainprovethevalidityofthedecompositioninFig.2.

G(x)=

ThelossperunitlengthinafoilconductorwhichissubjectedtoanexternalfieldofpeakvalueHis:

bρ2

HG(h/δ)(21)δ

Theskin-effectlossinafoilconductorinawindingwindowwillbe:

IρI21

H1=−H2=;Pskin=(F(h/δ)−G(h/δ))

2b2δb2

(22)

Thenifweconsideraone-layerwinding,weknowthatforthatlayer:

Pproximity=

I

(23)

b

Fortheproximity-effectloss,ifweusefieldHasaverageofH1andH2:

ρI2

G(h/δ)(24)Pproximity=

δ4b

Equation(22)givestheexpressionforskin-effectloss.Eitherbyplugging(23)into(18)orbyadd(22)and(24),wegetanidenticaltotallossexpressionforaone-layerwinding:

H1=0;

H2=

ρI2

F(h/δ)P=

2δb

(25)

879

因篇幅问题不能全部显示,请点此查看更多更全内容