关键词 6%羟乙基淀粉130/0.4;血浆胶体渗透压COP;非体外循环冠状动脉旁路移植术OPCAB
刘扬 首都医科大学北京朝阳医院麻醉科, 邮编100020
Changes of plasma colloid osmotic pressure after hydroxyethyl starch
infusion during operation
LIU Yang ZHANG Yong-qian WU Di YUE Yun Abstrct Objective The effects of 6% hydroxythyl starch 130/0.4 (voluven) infusion on plasma colloid osmotic pressure (COP) were studied in patients during off-pump coronary artery bypass (OPCAB) surgery. Methods Thirty four patients (NYHAⅠ~Ⅱ) underwent OPCAB were infused with voluven at a dose of 25~30 ml·kg-1 from induction of anaesthesia until the end of bypass. We determined COP at beginning of infusion (T0), after the transsection of artery (T1) and at the end of bypass (T2). Hemodynamics, requirement for voluven, blood loss, Hb,Hct and cardiac index (CI) were record consequently. Results Circulatory conditions were generally stable during operation. In three measurement points, the COP were always within the normal range. At T1, patients received 998110 ml of Voluven, the loss of blood was 12030 ml, the COP increased significantly compared to T0 (p<0.05): from 21.7 1.4 mmHg to 22.3 1.3 mmHg; At T2, patients received a totle of 2190 135 ml of Voluven, the loss of blood was 778179 ml, the COP decreased to 21.5 1.4 mmHg. It was similar at both T0 and T2 (p>0.05). Hb and Hct were always within normal range, but decreased significantly at T2 compared to T0 (p<0.05). CI were higher at T2 than T0 (p<0.05). Conclution When the loss of blood was below 10.9 ±1.2% of blood
volume,infusion of voluven at an average dose of 27.92.5 ml·kg-1 can maintain COP at stable level.
Key words 6% hydroxythyl starch 130/0.4; Colloid osmotic pressure (COP); Off-pump coronary arteral bypass (OPCAB)
血浆胶体渗透压(COP)主要由血浆蛋白(主要是白蛋白和纤维蛋白原)形成,可对抗血浆中水份向血管外转移,对于调节毛细血管内、外水分的正常分布,维持血浆容量和预防组织水肿具有重要作用。在手术过程中,外科操作和术中出血可能造成血流动力学剧烈波动,而术程的合理输液可以补充有效血容量、维持正常的血浆COP,这两者都将直接影响血流动力学稳定、内环境稳态、组织灌注以及愈后。目前,血浆代用品——6% 羟乙基淀粉130/0.4(万汶TM,Voluven)在术中得到了广泛应用。万汶不仅可以提供稳定可靠的容量效应和持续时间,还能够改善心排量和体内氧运输[1]。万汶作为高COP的人工胶体液,在非体外循环冠状动脉旁路移植术(OPCAB)中大剂量应用对血浆COP的影响尚无报道。本实验通过监测OPCAB中输注万汶后血浆COP的变化,研究胶体液在维持血浆COP方面的作用,从而为围术期制定安全有效的输液方案提供依据。
资料与方法
一般资料 选择NYHAⅠ~Ⅱ级择期行OPCAB的患者34例(男24例,女10例),年龄45~72岁,体重62~78 kg,体表面积( BSA ) ≤
1.8 m2。经冠脉造影显示均为冠状动脉三支病变,其中5例曾行冠脉腔内支架置入(PTCA)术。所有患者左心室射血分数( LVEF ) ≥ 50%,血红蛋白(Hb) >120 g·L-1,血浆白蛋白≥25 g·L-1,血浆渗透压为 280~310 mmol·L-1,无肝肾功能不全及凝血功能异常。若术前合并室壁瘤、瓣膜病、对羟乙基淀粉过敏或术中出血量≥ 25%血容量、血管吻合过程需要输血及血浆者排除本实验。
麻醉方法 所有患者于入手术室前30 min肌注安定10 mg、吗啡10 mg、东莨菪碱0.3 mg。入室后面罩吸氧,在ECG、SpO2监测下建立外周静脉通路,局麻下桡动脉穿刺置管测MAP。麻醉诱导采用静注咪达唑仑0.03~0.05 mg·kg-1、依托咪酯0.2 mg·kg-1、舒芬太尼1~2 µg·kg-1、阿端0. 1~0.15 mg·kg-1,气管插管后机械通气,依血气结果调整呼吸参数,维持PaCO2在35~40 mmHg。经右锁骨下静脉置入三腔中心静脉管,经右颈内静脉置入Swan-Ganz漂浮导管(7 F, Baxter, Irvine, CA,美国),用Baxter Edwards心输出量和Viridia 24 c血液动力学监测仪(Hewlett-packard公司,美国)、连续监测心排血指数(CI)、肺毛细血管楔压(PCWP)和中心静脉压(CVP)。麻醉维持采用静脉持续泵注异丙酚,按需间断追加舒芬太尼和阿端。术中维持血流动力学相对稳定,持续泵注硝酸异山梨醇(0.05~0.1 mg·kg-1·min-1 ),根据需要静脉泵注多巴胺(3~8 µg·kg-1·min-1 )。
手术过程 所有手术由同一组外科医生完成。胸部正中切口,纵劈胸骨,取左乳内动脉及大隐静脉备用。离断左乳内动脉前给予肝素150U·kg-1,维持全血激活凝血时间( ACT ) ≥ 350 s。用心脏固定器固
定目标血管,行左乳内动脉与左前降支原位端侧吻合,然后大隐静脉与左回旋支、第一对角支和/或钝缘支、右冠等目标血管行远端吻合,最后行大隐静脉近端与升主动脉前壁吻合。所有病人均行桥血管血流定量测定,确认每根桥血流满意。冠脉血管吻合完成后静注鱼精蛋白,以1: 1的比例拮抗肝素效应。应用自体血液回收仪(Haemonetics, cell saver 5+ 2005,USA)回收术野中的出血。手术时间为4~5 h。
输液方法 麻醉诱导前静脉预注乳酸林格液( RL ) 5~8 ml·kg-1,诱导即刻开始输注万汶(北京费森尤斯卡比有限公司),并根据MAP、HR、CVP调整补液速度。术中万汶输注总量控制为25~30 ml·kg-1,其余容量需要用RL补充,维持CVP 7~12 mm Hg,PCWP 6~12 mm Hg,尿量1~2 ml·kg-1· h -1。术中维持Hb > 90 g·L-1(有明显心肌缺血时则Hb> 100 g·L-1 ) 、Hct >28%,监测血浆COP前不输血(包括自体血)和血浆。
血样采集及监测指标 分别于万汶输注前(T0)、离断乳内动脉后(T1)、桥血管吻合完毕时(T2)应用抗凝注射器抽取静脉血1 ml于BMT- 923胶体渗透压测定仪(德国,Osmomat 050, Gonotex, Berlin, molecular cut-off at 20 kDa)测定血浆COP,同时经血气分析仪 (GEM Premier 3000)检测Hb 、Hct。记录术中输液量,失血量(血液回收仪储血量和敷料含血量)及尿量。
统计分析 采用SPSS13.0统计软件进行统计分析,数据以均数±标准差(xs)表示。组间采用随机区组方差检验 (two-way ANOVA)进行处理,并用SNK法进行两两比较。P <0.05为差异具有统计学意
义。
结果
入选患者一般资料见表1。所有患者均顺利完成OPCAB手术,平均搭桥3.0 0.3支,搭桥时间1.3 0.2 h。血管吻合过程中有2例患者出血> 25%血容量(> 20 ml·kg-1),需在测定血浆COP前输血而被排除本实验。
术中麻醉平稳,MAP、HR控制在正常范围,CVP、PCWP保持稳定(表2 ),且在T0、T1、T2三个时段差异无显著性 (P >0.05 ),T2时段的CI比T0显著提高 (表2,P <0.05)。
T0、T1、T2的血浆COP均在正常值范围 (表3)。T0血浆COP为21.71.4 mmHg,T1血浆COP升至22.31.3 mmHg,与T0相比,差异具有统计学意义 ( P <0.05 );T2血浆COP降至21.51.4 mmHg,与T0接近,两个时段间差异无显著性 (P >0.05)。
T1 和T2的万汶输注剂量分别为998110 ml和2190135 ml,输注最大剂量为33 ml· kg-1,截至T2时段RL输注总量为825 110ml。T1出血量为 120233 ml,Hb和Hct分别由T0的138.33.7 g·L-1和45.60.9%下降至124.110.6 g·L-1和41.13.9%,两个时段差异不具有显著性(P >0.05);T2出血量为 778179 ml (13.8±1.2%血容量),Hb和Hct分别下降至95.77.5 g·L-1和28.53.4%,与T0相比差异具有显著性 (P <0.01)。
血浆COP测定完毕,自体血均回输给患者。11例患者由于凝血原因输注了血浆。
讨论
众所周知,有效的血容量和正常的血浆COP是保证良好的组织灌注、避免细胞代谢紊乱和器官功能损害的关键。血浆COP过低,液体向组织间隙转移,聚积在肺、心肌、肠壁及外周组织引起水肿。当血浆COP低于16 mmHg,可能出现呼吸功能、心肌功能、肠道运动功能障碍以及伤口愈合延迟[2,3];较高的血浆COP可以降低血中乳酸的含量[4],提高肺氧合指数、肺顺应性、以及改善肺组织显微结构
[5]
,降低外周及肺血管阻力[6]。不过血浆COP过高则降低肾小球滤过,
致患者少尿甚至无尿,不利于肾保护及术后肾功能恢复。液体治疗是术中维持血流动力学稳定的重要环节,尤其是大手术需谨防手术和麻醉过程出现血液稀释和血浆COP的下降[7]。OPCAB手术失血较多,术程既要保证足够的心输出量,又要防止心脏过负荷,保持血浆COP接近生理状态以避免组织和肺水肿[8],扩容方式的选择尤为重要。
据报道,心脏手术中输入1300~1800 ml晶体液的扩容效果仅相当于胶体液(750~1800 ml)的1/6,并且导致血浆COP显著下降,增加了肺水肿、心功能损害和出血量增多的危险[7-12];而输入人工胶体液能提高血浆COP,随之产生的扩容作用可以增加心脏前负荷和心排指数,通过提高组织氧合和氧运输,利于防止围术期心肌缺血和并发症的发生[13,14],尤其适用于高龄和心脏部位的大手术[15,16]。目前术中晶体液与胶体液的输注选择还没有定论。血浆COP作为血液特性的重要指标,反映了维持血容量的能力,术中监测血浆COP为合理补液提供了依据。万汶属第三代HES,为中分子量、低取代级,分
子渗透压为308 mosm·L-1(36.71.2 mmHg),血管内保留时间4~6 h,可达100%的扩容效果[17],每天最大安全用量为50 ml· kg-1[18-20]。万汶通过稳定血浆COP、维持COP与PCWP的压力梯度来维持血管内有效容量。我们在OPCAB术中首先应用RL补充基础液体需要,麻醉诱导开始后血管扩张,有效血容量相对不足,应用大剂量万汶扩容至血管吻合完毕,少量RL补充组织间质、细胞内液以及尿液丧失。术中COP监测结果显示:以胶体液输注为主的输液方式在失血量较低时(12030 ml),由于万汶的高COP特性,输注998110 ml万汶能显著提高机体血浆COP(正常范围);随着手术进展,失血量增多至778 179 ml,输注万汶2190135 ml替代血浆的丢失,COP达术前水平,即血管吻合过程输注27.92.5 ml·kg-1万汶能达到机体血浆COP的相对恒定。可见大剂量万汶在冠脉搭桥术中维持血浆COP方面作用明显[21,22]。
术中机体血浆COP的变化除了与出入量相关外,据报道麻醉也可能是导致血浆COP下降的因素之一[7],因此非生理条件下血浆COP的测定可以作为输液方式正确与否的参考。另外,在不输注血液制品前提下,补充胶体液在多大限度还能维持血浆COP在正常范围还将受到失血(白蛋白丢失)的速率和量的影响,因此容量治疗除了参考血浆COP外,还应结合血流动力学指标以及Hb和Hct。该实验除了两例患者因为出血量> 25%血容量而被排除实验外,其余患者血管吻合过程血流动力学保持稳定,CVP平稳,CI较术前显著提高,Hb和Hct均在安全范围而无需输血。
研究结果提示在OPCAB术中,失血量≤13.8±1.2% 血容量情况下,输注大剂量6%羟乙基淀粉130/0.4能够使患者血浆COP处于正常范围,是手术容量治疗的理想选择。
表1患者一般情况(xs)
年龄(yr) 体重(kg) 体表面积(BSA) LVEF(%) Hb(g.L-1) Hct(%)
表2. 患者术中血流动力学变化(n=32, MAP(mmHg) HR(bpm) CVP(mmHg) PCWP(mmHg) CI(ml.min.m2)
T0 77.312.8 61.68.4 7.62.7 10.54.1 2.20.5
T1 69.79.3 75.96.5 7.92.6 9.82.2 2.40.4
xs)
n=32 (男22 女10)
62.6 6.9 73.6 2.1 2.10.2 62.0 5.5 138.33.7 45.60.9
T2 72.28.1 83.29.7 7.72.1 9.73.2 2.90.6*
注:T2与T0相比,*P <0.05
表3. 患者术中血浆COP、Hb/Hct和出入量的变化(n=32,
T0
T1 22.3±1.3* 124.110.6* 41.13.9* 120 30 260 50 998110 23550
T2
xs)
1.4 COP (mmHg) 21.7±Hb(g·L-1) Hct(%) 出血量(ml) 尿量(ml) 万汶剂量(ml) RL(ml)
138.313.7 45.91.9 -- -- -- 23550
21.5±1.4 95.77.5** 28.53.4** 778 179 750 108 2190 135 825110
注:T1、T2与T0相比,*P <0.05,**P <0.01
参考文献:
1. Chen S, Zhu X, Wang Q, et al. The early effect of Voluven, a novel hydroxyethyl starch (130/0.4), on cerebral oxygen supply and consumption in resuscitation of rabbit with acute hemorrhagic shock. J Trauma. 2009 ; 66(3): 676-682.
2. 胡小琴,主编。心血管麻醉及体外循环。第一版,北京:人民出版社,1997;421-423。
3. Van der Linden P. Clinical practice interpretation of oncotic pressure, serum albumin and protein determination and their ability for guiding therapeutics in cases of disturbances of capillary exchanges. Ann Fr Anesth Reanim. 1996; 15(4): 456-463.
4. Zabala MS, Leombruni E, Di Stefano S. The effects of colloidal and crystalloidal fluids on acidosis and lactacidemia in cardiopulmonary bypass. Ann Ital Chir. 1993; 64(4): 387-391.
5. Margarido CB, Margarido NF, Otsuki DA, et al. Pulmonary function is better preserved in pigs when acute normovolemic hemodilution is achieved with hydroxyethyl starch versus lactated Ringer's solution. Shock. 2007; 27(4): 390-396.
6. G.P. Eising, M. Niemeyer, Th. Günther, et al. Does a hyperoncotic cardiopulmonary bypass prime affect extravascular lung water and cardiopulmonary function in patients undergoing coronary artery bypass surgery? Eur J Cardiothorac Surg 2001; 20: 282-289.
7. Wright BD, Hopkins A. Changes in colloid osmotic pressure as a function of anesthesia and surgery in the presence and absence of isotonic fluid administration in dogs. Vet Anaesth Analg. 2008; 35(4): 282-288.
8. Girish P. Joshi, MB, BS, et al. Intraoperative fluid restriction improves outcome after major elective gastrointestinal surgery. Joshi GP. Anesth Analg. 2005; 101(2): 601-605.
9. Boldt J, von Bormann B, Kling D, et al. Colloid osmotic pressure and extravascular lung water following cardiopulmonary bypass. Herz 1985; 10: 366-375.
10. Boldt J, von Bormann B, Kling D, et al. Theinfluence of extracorporeal circulation on extravascular lung water in coronary surgery patients. J Thorac Cardiovasc Surg 1986; 345: 110-115. 11. Foglia RP, Lazar HL, Steed DL, et al. Iatrogenic myocardial edema with crystalloid primes: effects on left-ventricular compliance, performance and perfusion. Surg Forum 1978; 29: 312-315.
12. Goto R, Tearle H, Steward DJ, et al. Myocardial edema and ventricular function after cardioplegia with added mannitol. Can J Anaesth 1991; 38: 7-14.
13. Sümpelmann R, Schürholz T, Marx G, et al. Haemodynamic, acid-base and electrolyte changes during plasma replacement with hydroxyethyl starch or crystalloid solution in young pigs. Paediatr
Anaesth. 2000; 10(2): 173-179.
14. Jansen PG, te Velthuis H, Wildevuur WR, et al. Cardiopulmonary bypass with modified fluid gelatin and heparin-coated circuits. Br J Anaesth. 1996; 76(1): 13-19.
15. Zabala MS, Leombruni E, Di Stefano S. The effects of colloidal and crystalloidal fluids on acidosis and lactacidemia in cardiopulmonary bypass. Ann Ital Chir. 1993; 64(4): 387-391.
16. Margarido, Clarita B, Margarido, Nelson F, et al. Pulmonary function is better preserved in pigs when acute normovolemic hemodilution is achieved with hydroxyethyl starch versus lactated ringer’s solution. Shock. 2007; 27(4): 390-396.
17. Waitzinger J, Bepperling F, Pabst G, et al. Effet of a new hydroxyethyl starch (HES0 specification (HES 130/0.4) after single-dose infusion of 6% or 10% solutions in healthy volunteers. Clin Drug Invest 1998; 16: 151-160.
18. SchuÈpbach R, Pappova E, Schilt W, et al. Influence of oncotic pressure during cardiopulmonary bypass on tissue edema, metabolic acidosis and renal function. In: Hagl S, KloÈvekorn WP, Sebening F, editors. Thirty years of extracorporeal circulation. MuÈnchen, Germany: Carl Gerber Verlag 1984; 247-253.
19. Jansen PG, te Velthuis H, Wildevuur WR, et al. Cardiopulmonary bypass with modified fluid gelatin and heparin-coated circuits. Br J
Anaesth. 1996; 76(1): 13-19.
20. Boldt J, Kling D, Zickmann B, Jacobi M, et al. Acute plasmapheresis during cardiac surgery: volume replacement by crystalloids versus colloids. J Cardiothorac Anesth. 1990; 4(5): 564-750.
21. Verheij J, van Lingen A, Beishuizen A, et al. Cardiac response is greater for colloid than saline fluid loading after cardiac or vascular surgery. Intensive Care Med. 2006; 32(7): 1030-1038.
22. J Verheij, A van Lingen, P. G. H. M. Raijmakers, et al. Effect of fluid loading with saline or colloids on pulmonary permeability, oedema and lung injury score after cardiac and major vascular surgery. British Journal of Anaesthesia 2006; 96(1): 21-30
因篇幅问题不能全部显示,请点此查看更多更全内容