Onbend-stretchformingofaluminumextrudedtubes*I:experiments
J.E.Miller,S.Kyriakides*,A.H.Bastard
ResearchCenterforMechanicsofSolids,Structures&Materials,WRW110,TheUniversityofTexasatAustin,
Austin,TX78712,USA
Received13September1999;receivedinrevisedform27April2000
Abstract
Tubularaluminumframepartsforautomotiveapplicationsarebestproducedbyextrusion.Thetubesarethencoldformedtotherequiredshapebyprestretching,pressurizingandbendingthemoverrigiddies.Tensionpreventsbucklingofthecompressedsideandsigni\"cantlyreducesthespringbackonunloading.Anunwantedbyproductoftheprocessisdistortionofthecrosssection.Ithasbeenfoundthatmodestlevelsofpressurecanreducethisdistortion.Theselectionoftheleveloftensionandpressureforoptimumformingispresentlyempirical.Thestudydiscussedhereinseekstodevelopascienti\"cbasisforoptimizingformingprocessessuchthatbucklingisavoidedanddistortionandspringbackareminimized.PartIdescribesacustombend-stretch-pressureformingfacilitydevelopedforthestudy.Thefacilityisoperatedbyonepneumaticandtwoservohydraulicclosed-loopsystems.Thisallowscomputercontroloftheprocess,anda!ordsselectableloadinghistories.Theplanarformingprocesswasmodeledbyapproxi-matingthetubeasanonlinearelastic}plasticbeamwhichcanundergolargerotations.Themodelwasshowncapableofreproducingaccuratelytheloadinghistoryexperiencedbydi!erentsectionsalongthelengthofthepartduringforming.Representativeresultsfromformingexperimentsinvolvingrectangularaluminumarepresented.Theresultsareusedtodiscussthee!ectoffriction,tensionandpressureonthecross-sectionaldistortion,springbackandnetelongationofthepart.PartIIpresentsamodelforestablishingthecross-sectionaldistortioninducedduringforming.Themodelisusedinconjunctionwithexperimentalresultstoestablishwaysofoptimizingtheprocess.PublishedbyElsevierScienceLtd.
Keywords:Bend-stretchforming;Aluminumtubes
*Correspondingauthor.Fax:00-1-512-471-5500.E-mailaddress:skk@mail.utexas.edu(S.Kyriakides).
0020-7403/01/$-seefrontmatterPublishedbyElsevierScienceLtd.PII:S0020-7403(00)00039-4
1284J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317
1.Introduction
Themajorityofcurrentcarframesaremadebystampingsteelsheetsintotherequiredshapesandspotweldingthemtogether(unibodyconcept).Bycontrast,asigni\"cantnumberofmodernautomotiveframecomponentsarecoldformed,extrudedaluminumtubes.Suchtubesareassem-bledtoformaspaceframe;arevolutionarydesignconceptwhichhasbeenusedinseverallowproductionvolumeallaluminumcarssuchastheAudiA8[1}3],themorerecentA12[4],thePlymouthProwler[5,4],thebatteryoperatedEV1ofGM[6],theLamborginiP140[7]andothers.Themainadvantageofthespaceframeisareductioninweightandcorrespondingimprovementsinfuelconsumption.IntheA8,areductionofmorethan40%intheweightofthecarwaspossible.Inadditiontobeinglighter,thespaceframeresultsinasti!erautomobilewithimprovedcrushingperformanceduetothetubularnatureofthecomponents.Anotheradvantageofthespaceframedesignisthatithasfewerparts(by30%ormore*[8,1])whichreducesthecostofmanufacturing.Therecyclablenatureofaluminummakesitattractivewhenconsideredonthebasisoftotallifecycle[9,10].
TheframeoftheA8isshowninFig.1.Itiscomposedofaluminumextrudedtubesjoinedwithcastaluminumconnectingnodes.Thejointsarearc-weldedandtheskinsareattachedtotheframebyrivets.Beforethecarcouldbebuilt,appropriatealloysfortheframe,forthenodesandfortheskinshadtobedeveloped.Innovationswerealsonecessaryinadvancedextrusionprocesses,innewcoldformingmachinesandprocesses,inroboticarc-weldingtechniques,inroboticassemblingprocesses,etc.Typically,thetubesarestretchformed.Inthisprocess,theyareprestretched,internallypressurizedandbenttotherequiredshapesoverdies.
Fig.1.AudiA8frame(reprintedwithpermissionfromCarandDriver,November1996).
J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}13171285
Automatedassemblyrequiresunusuallytightdimensionaltolerancesontheformedtubes.Typicalcross-sectionaldimensionsare50}150mmandwallthicknessrangesbetween1and4mm.Thecross-sectionaldistortionsresultingfromformingmustbekeptwithin$0.5mmandshapedeviationsalongthelengthofthemembersmustbeequallysmall.Forsuchaluminumdesignstobecomeaseriousalternativetocurrentunibodysteeldesigns,theymustbeamenabletoautomatedmanufacturingprocessesforhighproductionspeedandlowercost.Forthesereasons,thespaceframemaynotbeeasilyadaptabletomassproducedcars.However,coldformedaluminumextrudedtubesremainacompetitiveoptionforuseinotherhybridframedesignconceptswheretubularcomponentsareincorporatedintothemoretraditionalunibodydesign(e.g.HondaInsight).Theextenttowhichhollowclosedsectionscanbebentislimitedbyvariousformsofbucklingwhich,forthematerialsandgeometriesofinteresthere,occurintheplasticrange.Thus,theonsetandevolutionofprevalentbucklingmodesareastrongfunctionofthesectiongeometryandthestress}strainbehaviorofthealloy.Onewayofdelayingtheonsetofsuchbendinginstabilitiesisapplicationoftensionduringforming.Tensionreduces,andcaneveneliminate,compressivestressesduetobending,andthusbucklingisavoided.Apracticalwayofaccomplishingthisistobendthepartoveracurvedmandrel.Theaxialtensionisreactedbycontactwiththemandrel(seereviewbyWelo[11]).Contactprovidesanadditionalconstraintandcanfurtherdelaytheonsetofbuckling.Asecondimportantbene\"tfromtheaxialtensionisreductionofspringback.Presentpracticeistoprestretchalltubularcomponentsintotheplasticrange.Thisguaranteesthatonunloadingthespringbackisminimal.
Anunwantedbyproductofbendingofthin-walledsectionsisdistortionoftheircrosssection[12].Forexample,inthecaseofacirculartube,thistakestheformofovalizationofthecrosssection[13,14];inthecaseofarectangularsection,bentinoneofthesection'sprincipaldirections,thecross-sectiondeformsinawaythatmaintainstherightanglesatthecorners[15].Unfortunately,tensionappliedduringbendingoveramandrelaggravatessuchcross-sectionaldistortionsbecausethenormalcompressivereactionforcefromthemandrelhasthee!ectof#atteningthesection[16,17].Becauseofthisproblem,stretchforminghasnottraditionallybeenfavoredforcoldformingtubularmembers.Inthecaseofautomotivetubularcomponents,themethodisattractivebecauseofthespeedwithwhichpartscanbemanufactured.Theprocesswasmodi\"edtoovercometheproblemofcross-sectionaldistortionbyinternallypressurizingthepart[18].Ithasbeenfoundthatmodestvaluesofinternalpressure(usuallycompressedairatlessthan3bar)canreducedistortionofthecrosssection.Becausethepartisalreadyplasticizedbyprestretching,theselectionoftheoptimummagnitudeofpressureiscrucial.Excessivepressureofevenafractionofabarcanresultinbulgingofthetubewhich,ofcourse,isalsounacceptable.Anotherwayofreducingdeformationofthecrosssectionistoaddlateralsupporttothewalls.Thisispresentlydonebytrialanderrorrequiringseveralexpensiveandtime-consumingdiemodi\"ca-tionsbeforetheoptimumdieforthepartisfound.
Thecurrentstateoftheartremainsempirical,requiringextensivetrialanderrortesting,andseveraldiemodi\"cationsbeforeanacceptableformingprocess(i.e.,dieshape,prestretchload,levelofinternalpressure)isestablishedforanewpart.Itisimportanttonotethatthecross-sectionalshapesofmanyofthecarcomponentsarerathercomplexandtheirdesignisoftendecidedbyestheticconcernsratherthanstructuralperformance.Anynewcardesignwillhavealargenumberofdi!erenttubesforwhichformingdiesmustbemade.Theempiricismofthepresentwayofdesigningthemanufacturingprocessisine$cient.
1286J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317
Theobjectiveofthisstudywastodevelopascienti\"cbasisfordesigningaformingprocessforeachpartwhichensuresaccuracyinshapewithminimumdistortionofitscrosssection,isfreeofwrinklesandwithminimumorpredictablespringback.Thesegoalsarepursuedthroughacombi-nationofexperimentandanalysis.InPartI,we\"rstdescribeacustombend-stretch-pressureformingfacilitydevelopedforthestudy.Twoseriesofexperimentsinvolvingrectangularaluminumtubeswereperformedusingtheformingfacilitytodeterminehowtheappliedloadsinteracttodeterminethe\"nalshapeoftheformedtubes.InPartIIoftheseries,arelativelysimpletwo-dimensionalmodeloftheformingprocessispresentedwhichisabletoaccuratelycapturethecross-sectionaldistortioninducedbytheformingprocess.Themodelisvalidatedbycomparingthepredictedshapeswithcorrespondingexperimentalresults.Themodel,inconjunctionwithexperi-ments,isthenusedtoinvestigatealternativeloadinghistories.Finally,theinsightgainedisusedtoformulateamethodologyforselectingtheoptimumloadinghistoryforaparticularformedpart.
2.Experimental
Astretch-formingmachineofthetypeusedinindustrytocoldformtubesofvariouscrosssectionsisshownschematicallyinFig.2.Thepartisgrippedinopen-sidedjawsmountedontwolargehydraulicactuators.Thegripsalsosealtheends.Thetubeis\"rstpressurizedtotherequiredlevelandissubsequentlystretchedtoaplasticstressstate.Thepressureandaxialloadarethenkeptconstantwhilethehorizontaltablemovesforwardandthedieengagesthepartforcingitto
Fig.2.Industrialbend-stretchformingmachine.
J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}13171287
conformtotherequiredshape.Asthediemovesforward,theactuatorsrotatesoastoremainapproximatelytangentialtothetwoendsofthetube.Thepressureandtheaxialloadaresubsequentlyreleased,thedieisretracted,andthepartisremovedfromthemachine.Typicalformingcyclescurrentlyrangefrom30to60s.
Theformingmachinedescribedisprohibitivelylargeforlaboratorytesting.Inaddition,wewantedtoaddfeedbackandcomputercontroltoourfacility.Forthesereasons,weoptedtodevelopasmallercustomfacilityforthisexperimentalprogramwhichhadthedesired#exibilityandfeatures.
2.1.Custombend-stretch-pressuretestingfacility
Aphotographofthebend-stretch-pressuretestingfacilitydevelopedisshowninFig.3.Themajorcomponentsofthefacilityareidenti\"edinthescaleddrawingsinFig.4.Itconsistsofarigidreactionframe(length108inor2743mm)madeofstructuraltubing(8;4;0.5inor203;102;13mm).Theframeismountedhorizontallyon-framelegsequippedwithwheelsandlevelingmountsandisataheightof50in(1270mm)o!the#oor.Whiletheactualmachine(Fig.2)operatesinahorizontalplane,thisoneoperatesinaverticalplane.Thischangeremovedthebendingloadsduetogravityandeliminatedtheneedforlinearsupportslidesforthemovingdie.Bendingislimitedtojustoneplaneandtwistingofthespecimenisprecluded.(AnalternatelaboratorystretchformingfacilityisdescribedinRefs.[19,20].)
Fig.3.Custombend-stretch-pressuretestingfacility.
1288J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317
Fig.4.Schematicoftestfacility:(a)frontview,initialcon\"guration;(b)topview;(c)frontview,deformedcon\"guration.
J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}13171289
Tensionisappliedtothetestspecimenviatwohydraulicactuatorswiththefollowingcharacter-istics:bore3.25in(83mm),roddiameter1.375in(35mm)androdlength12.5in(318mm).Theyareconnectedtotheframeviatrunnionmountswhichslideintospeciallydesignedbearingsmountedtothesidesofthefame.Thebearingsallowtheactuatorstorotatefreelyaboutpivotssothattheycanfollowthemotionoftheendsofthepartandremainapproximatelytangentialtoitduringtheformingprocess(cf.Figs.4aandc).Theappliedtensionismonitoredbyin-lineloadcells(20kipsor90kNcapacity)placedbetweeneachactuatorandpinconnection.TheextensionofeachactuatorismonitoredbyanLVDTdisplacementtransducer.
Severalcircularformingdieshavebeenfabricatedoutof3in(76mm)thicksolidsteelplate.Theyweremilledtoprecisionandground\"nishedusingNCmillingmachines.Theyhaveradiiintherangeof50}20in(1270}508mm).Thediesareconnectedtotwoverticalparallelactuators14in(356mm)apartwiththefollowingcharacteristics:3.25in(83mm)bore,1.75in(44mm)rodand26in(660mm)extension.Thetwoactuatorsaremechanicallyandhydraulicallyconnectedsotheydisplaceequally(seeFig.4a).Thedoubleactuatorarrangementwasadoptedbecauseitprovidesadditionaltorsionalandbendingrigiditytothesystemrequiredduetothelengthofrodswhenfullyextended.Thisallowedustoeliminatetheslidesusedintheactualsystem(seeFig.2).Lowpro\"le,highsti!nessloadcells(20kipsor90kNcapacity)areattachedbetweeneachactuatorandtheconnectingplate.Thepositionofthedieismonitoredbyamagnetostrictivedisplacementtransducer.TheloadanddisplacementcapacitiesofthefacilityarelistedinTable1.
Theresultspresentedherecomefromrectangularcross-sectionaltubeswithdimensionsof50;30;1.8mmcustommadebyAlcoaforthisresearchprogram(Al-C210-T4).Steelend-plugsarebondedtotheendsofthetubeandpin-connectedtotheactuatorrods.High-strengthHysol(EA9430)epoxywasusedoveranareaof8in(5160mm)sothatthestrengthofthebondedjointexceededthatofthetubes.Thepin-to-pinlengthofthespecimencanvary,but1000mmistypical.Byusingdi!erentend-plugs,thespecimencanbebenteitheraboutitswideornarrowside.Switchingtotubesofothershapesmainlyinvolvestheconstructionofnewpairsofcompatibleend-plugs.
Thetestspecimencanbepressurizedinternallybycompressedairor,alternatively,itcanbeevacuatedthroughportsinthetubeend-plugs(seeFig.5).Thepressureissetbyapneumaticservovalvewithacapacityof!1}10atm(bar)andmonitoredbyapressuretransducer.
Themostsigni\"cantimprovementinthetestingfacilityovercommercialunitsistheadditionoftheinstrumentationtoeachofthethreemodesofloadingandinclusionoffeedbackcontrol.Theseinturnallowtheexecutionofaformingtestbyacomputeranda!ordsomefreedomsinthechoiceoftheloadingpathfollowed.Thestretching(H)andforming(V)modesofloadingareconnectedto
Table1
Bend-stretch-pressuretestfacilitycapacitiesCapacities
Displacementin(mm)Loadkips(kN)Pressure(atm)
Stretchingmode(H)12.5(305)20(90)*
Formingmode(V)25(635)40(180)*
Pressuremode(P)**
!1}10
1290J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317
Fig.5.Detailofconnectionbetweenspecimenandtestingfacility.
Fig.6.Controlsystem.
J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}13171291
ageneralpurposehydraulicpowerunit(3000psior207bar).Thesetwoloadingmodesarecontrolledviaclosed-loopservohydrauliccontrolsystemsshownschematicallyinFig.6.Theycanbeoperatedeitherunderloadordisplacementcontrol.Intheexperimentsthatfollow,theH-modewasoperatedunderloadcontrolwhiletheV-modewasoperatedunderdisplacementcontrol.TheP-modehasitsownfeedbackloopwithpressureasthefeedbacksignal.
Thedistortionofthecrosssectionofthetubeismonitoredbyacustom-builtbiaxialtransducershowninFig.7a,usuallymountedatthemid-spanofthespecimen.Thetransducermonitorssimultaneouslythemaximumde#ectionofthetopfaceoftherectangulartube(seeFig.7b)andthemaximumchangeinthewidthofthetube(bulgingseeFig.7c).Themovingpartsofthetransducercontactthespecimenviarollers.
Thetransducerrestsonthecirculardiewithwheelssothatbyinterruptingatestitcanberolledalongthedietorecordcross-sectionalde#ectionsalongthelengthofthespecimen.Thetransducer
Fig.7.Biaxialdistortiontransducer.
1292J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317
positionalongthedieismonitoredasfollows.Athintapewithregularlyspacedblackandsilvermarkingsisbondedtooneedgeofthecurvedsurfaceofthedie.Anemitter/receiverphotodiodepairmountedonthetravelingtransducerproducesanelectricalpulsewheneveritencountersasilverband(seeFig.7a).Positionalongthedieisthenrelatedtothecountofpulsesfromthecenterofthespecimen.Typically,asignalisrecordedevery0.2in(5.1mm)onthecurvedsurfaceofthedie.(Theimportanceofthe\"nalshapeofformedpartsandanalternatemethodofmeasuringtheshapeisdiscussedinRef.[21].)
Thesignalsofone-loadcellandone-displacementtransducerfromeachoftheV-andH-modeareconditionedviaafour-unitMTS458.20controlconsole.Theconsolealsoenablescontrolofthetwomodesviathefeedbacksignalsofchoice.TheremainingtransducersignalsfromtheV-andH-modeareconditionedseparatelyasshownintheblockdiagraminFig.8.Thepressuretransducerandtheassociatedconditionerandcontrollerareanintegralpartofthepneumaticservovalve.Thesignalsfromthetwo-displacementtransducersinthebiaxialdistortiondeviceareconditionedasshowninFig.8.
Thecommandsignalsforthethreeclosedloadingloopsaregeneratedbyadataacquisi-tion/controlsystemoperatedbyaPC(200MHzPentiumPro).Twodataacquisitioncards,eachwith2D/Aoutputchannels,areusedtogeneratethecommandsignals(12bitresolution)fortheV-,H-,andP-modes.The$10Vsignalsaregeneratedatamaximumupdaterateof1MS/s.ThecontrolprogramusestheLabVIEWenvironmentandgeneratesthecommandsignalswhichallowachoiceofthetension-pressure-verticaldisplacementpaththatwillbefollowedinatest.
Concurrently,thedataacquisitioncardsrecordthesignalsfromthe11transducerspresentinthetestfacility.Eachofthecardsisequippedwith8di!erentialinputD/Achannelswhichoperatewith
Fig.8.Testfacilityinstrumentation.
J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}13171293
12-bitresolutionatamaximumsamplingrateof1.25MS/s.Whenall11transducersaremonitored,thesamplingrateforanindividualchannelisapproximately100kS/s.ThesignalsareprocessedthroughLabVIEWsoastohavereal-timedisplayofallofthevariables.Initsstandardoperationmode,thesystemcontinuouslymonitorsandrecordsthetransducersignals.Whenanaxialscanofthecross-sectionalde#ectionsisperformed,recordingofmeasurementsistriggeredbythevoltagepulsesgeneratedbythephotodiode.Forredundancyandsafety,severalofthekeyvariablesarealsomonitoredviadigitalvolt-metersandanalogplotters.2.2.Experimentalprocedure
FivetestspecimenswerecutfromeachofthetubesprovidedbyAlcoa.Thefollowinggeometricmeasurementsweremadeoneachusingamicrometer.Threemeasurementsofthetubeheight(h)andwidth(b)weremadeatthetwoendsandatthemiddleofthespecimen.Thethickness(t)wasmeasuredat12locations(threemeasurementsofeachofthefourwalls,identi\"edbysubscriptsi\"1,4)oneachendofthespecimen.ThemeanvaluesandthevariationsofeachofthevariablesarelistedinTable2.Thewallthicknesswasusuallynearlyconstantforthreeofthefourtubewalls.Thefourthwall(oneofthetwoshortsides)wasusuallyabout5%smaller.
Theexcessmaterialwasusedtoobtainthemechanicalpropertiesofeachlengthoftubeusedinthestudy.Uniaxialtensiontestswereperformedonstripscutfromthetubes.ThemeanvalueandthevariationofYoung'smodulus(E)andtheyieldstress()ofthetubesusedinthisseriesoftests
aregiveninTable3.Testsperformedusingstripsfromdi!erentsidewallsofthetubedidnotshowvariationinthematerialproperties.Tensiletestswerealsoperformedonspecimenscuttransversetothetubeaxis.Thedi!erencebetweentheaxialandtransverseyieldstresswasinsigni\"cantlysmall.Thetubescamefromthesamebatchthusdi!erencesinmechanicalpropertiesfromtubetotubewererelativelysmall.
Thesurfacesoftheend-plugsandthetubewerepreparedforbondingbysandingwithamedium-gritsandpaperandcleaningwith1}1}1trichloroethane.Theadhesivewascuredat1803F(823C)for1h.
Tominimizethee!ectoffriction,thesurfaceofthediewascoveredwithan8milTe#ontapewhilesimultaneouslythecontactingsurfaceofeachtestspecimenwascoatedinlightgrease.Thee!ectoffrictionwillbediscussedlaterinlightoftheresults.
Table2
Dimensionsofcrosssectionsoftubestested
tin(mm)
MeanS.D.Min.Max.
0.0717(1.82)
0.37;10\\(9.40;10\\)0.0711(1.81)0.0728(1.85)
tin(mm)
0.0687(1.74)
0.25;10\\(6.35;10\\)0.0681(1.73)0.0693(1.76)
tin(mm)
0.0717(1.82)
0.40;10\\(10.2;10\\)0.0707(1.80)0.0727(1.85)
tin(mm)
0.0713(1.81)
0.30;10\\(7.62;10\\)0.0702(1.78)0.0718(1.82)
tin(mm)0.0709(1.80)
0.25;10\\(6.35;10\\)0.0701(1.78)0.0713(1.81)
bin(mm)1.968(50.0)
0.73;10\\(18.5;10\\)1.967(50.0)1.970(50.0)
hin(mm)1.180(30.0)
0.71;10\\(18.0;10\\)1.178(29.9)1.181(30.0)
1294J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317
Table3
Mechanicalpropertiesoftubestested
Emsi(GPa)
MeanMin.Max.
9.6(66.2)9.4(64.8)10.0(68.9)
ksi(MPa)15.2(105)14.9(103)15.5(107)
Atypicalformingtestwascomprisedofthestepslistedbelow.Testsinwhichwedeviatedfromthisprocedurewillbedescribedanddiscussedinthesectiononexperimentalresults.
(i)Testsbeganwiththediefullyretracted(Fig.4a).TheH-modeactuatorswereadjustedtothecorrectpositiontoallowthetestspecimento\"tbetweenthepinconnections.Theywereheldinahorizontalpositionbyelasticbandswhilethespecimenwasattachedbyinsertingthepins.(ii)Theorderandmagnitudeoftheloadswerepresetintothecontrolprogram.Thespecimen
was\"rststretchedaxiallytoachosenvalueoftension.Atthispoint,theelasticbandssupportingtheH-modeactuatorswereremovedandthecross-sectionaldeformationtrans-ducerwasinstalled.
(iii)Theinternalpressurewasthenrampedtothedesiredlevelwhilethetensionwasheld
constant.
(iv)Motionofthediewasthencommencedengagingandformingthespecimen.Duringthe
formingprocess,thetensionandpressureloadswerekept\"xed.Asthediemoves,theH-modeactuatorsextendandrotatesothattheyremainapproximatelytangentialtotheendsofthedeformingspecimen.Thediewasstoppedwhenitwasincontactwithmostofthespecimen(usually82%,seephotographinFig.3).
(v)Thebiaxialcross-sectionalmonitoringtransducerwasparkedatthespecimenmid-span
throughoutthetest.Inseveralofthetests,thediemotionwasperiodicallystoppedandanaxialscanofthecross-sectionaldistortionwasperformedonthepartofthetubeincontactwiththedie.
(vi)Atthecompletionofforming,theinternalpressurewasallowedtoreturntotheambient
value,thetensionwasreleasedandthespecimenremovedfromthemachine.
(vii)Theformedpartwasevaluatedbymeasuringitscurvature,#angesaggingandmaximum
widthat1inintervalsalongthelength.3.Experimentalresults
Twoseriesofformingexperimentswereperformedusingthecustombend-stretch-pressuretestingfacilityandproceduredescribedintheprevioussection.Thegoaloftheseexperimentswastodeterminehowthe\"nalcurvature,cross-sectionalshapeandoverallextensionwerea!ectedbytheformingprocess,andinparticular,themagnitudeoftheappliedloads.Tubeswereformedeitheraboutthetallortheshortsideofthecrosssection.Fortheexperimentsdiscussedhere,the
dieradiuswas20in(508mm).Thepressure,tensionandtheloadinghistorywerevariedsu$cientlytoestablishtrends.Allspecimenswereapproximately36.5in(927mm)long(2¸)whichincludesthe1.5in(38mm)endsectionsbondedtothesolidinserts.Inallexperimentsreportedhere,thediewas
\"1.3in/min(33mm/min).Thisrelativelyslowformingratewasmovedataconstantvelocityofd
adheredtoinordertoenablecompleteacquisitionofthesignalsfromallvariablesdiscussedearlier.Theexperimentwasusuallyterminatedwhenapproximately82%oftheinitiallengthofthetubewasincontactwiththedie.Inotherwords,justbeforethepluggedendscameintocontactwiththedietopreventfailureofthebonds.
TheformingprocessisillustratedinFig.9throughasequenceofphotographsofthetubeasitprogressivelyconformstotheshapeofthedie.Thistubewasbentwiththelongsidesofitscrosssectionvertical.Atension¹\"4000lbf(18kN*i.e.62%oftheyieldtension,¹)wasapplied
\"rstandwassubsequentlyheldconstantduringforming.Nointernalpressure(orvacuum)wasappliedinthiscase.Fig.10ashowsaplotoftheverticalforceseenbythedie(F)normalizedby
J
2¹versusthediedisplacement(d).Therelationshipisnearlylinear.(NotethatF/2¹representsJ
thesineofthecurrentangletheaxisofthetensionactuatorsmakewiththehorizontaldirection.)Markedontheforce}displacementresponsearethelocationscorrespondingtothenumberedphotographsinFig.9.Theinitialstraightcon\"gurationisnotvisiblefromtheobservationangleused.Bendingisinitiallylocalizedatthemid-spanwherethetube\"rstcomesintocontactwiththemandrel.Afterthispointhasconformedtothemandrel'scurvature,theactivezonemovesawayfromthemid-span.Asthediemovesvertically,thedeformingtubeemergesfrombehindthehorizontalsupportbeamofthedevice.Incon\"guration
terminatedatcon\"guration
FanddseeninFig.10a.ThetestwasJ
1296J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317
Fig.9.Sequenceoftubedeformedcon\"gurationsduringtheformingprocess.
pre-stretchedtoatension¹\"0.95¹andthenpressurizedinternallyto2.3bar(P).The
tensionandpressurewerethenheldconstantduringforming.Fig.11ashowsaplotoftheverticalforceseenbythedie(F/2¹)versusthediedisplacement.Therelationshipisagainnearly
J
linear.
J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}13171297
Fig.10.(a)Verticalforceandcontactlengthduringforming;(b)calculatedtubedeformedcon\"gurations.
Thecrosssectionofthedeformingtubedistortsasitcomesintocontactwiththedie.Thedistortionispartlyduetothebending[15,12]butalsoduetothecompressivereactionoftheaxialtensileforcebythedie[16].Indeed,aswewillsee,tensioncanbeasigni\"cantcontributortodistortion.Forthesectionorientationusedinthistest,distortiontakestheformshowninFig.12bandcanbemitigatedbyarelativelysmallvalueofinternalpressure.Theextentofdistortionisde\"nedbythevariables(orH)andde\"nedinthesame\"gure.Thedistortionvariableswillbeexpressedasratiosofthetubemid-surfaceheight(h)andwidth(b),respectively(seeFig.12a).
Becausethetubecrosssectionhasanaspectratioofapproximately1.62thevaluesoftheratioswillbedistinctlydi!erentinthetwotubeorientationsused.
1298J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317
Fig.11.Responseofatubebentinthehorizontalmode:(a)verticalforce;(b)distortionatmid-span.
Theevolutionofdistortionatthemid-spanofthetubewasmonitoredbythebiaxialdistortiontransducerdiscussedinSection2.1.ThemeasuredvaluesofandareplottedagainstthedisplacementofthedieinFig.11b.Initially,thetopsurfaceofthetubebulgesslightlyoutwardduetotheinternalpressure.Asthetubeisbentfurther,thetopsurfacebeginstosaginwardandreachesits\"nalvalue(/h+!5.7%)whenthediedisplacementisapproximately8in(203mm).The
smalldiscontinuitiesonthetwotrajectoriescorrespondtothelocationswhenthetestwasinterruptedandanaxialscanofthecrosssectionofthepartofthetubeinconductwiththediewasperformed.Thesidewallsdistortinasimilarmannerbutmuchless(/bK1%).Indeed,this
distortioniscoupledtothedistortionofthetopsurfaceinordertomaintaincompatibilityofrotationsatthecornersofthecrosssection.Duringtheinitialphasewhenthetopsurfaceisbulging,thetubewallsarebentinwardcausingthedevicetomeasurethepositionofthetubecorners.Afterthediehasdisplaced2in(51mm),thesidewallsbegintodeformoutwardandengagethedevice.Localdistortionceasesoncethislocationhasconformedtotheshapeofthedie.Inthistest,theformingwasstoppedperiodicallyandanaxialscanoftheportionofthetubeincontactwiththediewasperformedusingthebiaxialdistortiontransducer.Resultsfromfourscans
J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}13171299
Fig.12.(a)Tubegeometricparameters;(b)de\"nitionofdistortionparameters;(c)stress-strainresponseoftubealuminumalloy.
takenattheverticaldiedisplacementsindicatedareshowninFig.13(sisameasureofdistance
\"
alongthecircularsurfaceofthedie).Thedistortionissymmetricaboutthemid-spanandincreasesslightlyawayfromthecenter.Onceagain,distortionceasesataparticularcrosssectiononceithaslocallyconformedtotheshapeofthedie(i.e.bendingceases).Therelativemagnitudeofthetwomeasuresofdistortionremainssimilartothatseenatmid-span.
MeasurementsofthedistortionmadeafterthespecimenwasremovedfromthetestfacilityarepresentedinFig.14a(sisameasureofdistancealongtheinnersurfaceofthedeformedtube).Here*representsthesumofthedistortionofthetopandbottomsurfacesofthetube,measuredindividually,relativetothecorners(seeFig.12b).(Notethatthecontributionto*fromthebottomsurfaceofthetubeisrathersmall.)Thisremovesthecontributionfromthechangeinhdue
tothePoissone!ectwhichisincludedinthevariablemeasuredbythebiaxialtransducerduringtheexperiment.Asaresult,thismoreaccuraterepresentationofdistortionislessthanthatseeninFigs.11band13a.Asimilarsymmetricdistributionisobservedwiththeminimumdistortionoccurringatthemid-spanandincreasingasthedistancefromthecenterincreases.
1300J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317
Fig.13.Axialscansofdistortionatdi!erentdiedisplacements.
Aswewillsee,thispatternofthedistortionatmid-spanbeingsmallerthanintherestofthetubeispersistentinallresultsandforbothtubeorientations.Oneofthereasonsforthisisthefactthatthecentralpartinitiallybendswithashearpointforcewhichstartsatzeroandgrowstocertainvaluewhenthesectionhasconformedtotheradiusofthedie(seeFig.27b).Asecondreasonisthatthedeformingsectorofthetubeissupportedonbothsidesbyundeformedsectionswhichaddtoitssti!ness.Bycontrast,forsectionsawayfromthemid-span,thelocalshearisatthefullydevelopedvaluewhichtendstogrowslightlyasthecontactlengthincreases.Inaddition,nowthedeformingsectorseesadeformedsectorononesideandanundeformedsectorontheotherwhichmakesitabitmorecompliant.
The\"nalradiusofcurvature()ofthetubewasmeasuredalongitslengthandiscomparedto
D
theradiusofthedie()inFig.14b.Thetubesprangbackapproximately4.9%.Thespringbackisrelativelyuniformalongthelengthwithaslightincreaseclosetotheends.Thisispartlyduetothein#uenceofthesolidinsertplugattheendsofthetestspecimen.
Wenowconsideratestinwhichthecrosssectionisorientedsothatthelongsidesarevertical.Thetestspecimenwasalsoprestretchedtoatension¹\"0.95¹butnointernalpressurewas
J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}13171301
Fig.14.Finalshapeofatubeformedinthehorizontalmode:(a)distortion;(b)springback.
appliedbecause,withthetubeinthisorientation,internalpressureonlyexacerbatesthebendinginduceddistortions.TheverticalforceseenbythedieisplottedagainstitsdisplacementinFig.15a.Therelationshipisagainnearlylinear.Thedistortionvariablesandmeasuredatthemid-spanareplottedinFig.15bagainstthediedisplacement.Thedistortionsincreasemonotonicallytovaluesof/h+!4.76%and/b+6.62%achievedatadiedisplacementofapproximately8in
(203mm).Subsequently,thedistortionsdonotchange.Inpractice,bothvaluesaretoohighsothatthispartwouldberenderedareject.
Againaxialscansofthedistortion,intheportionofthetubeincontactwiththedie,weretakenduringperiodicpausesofthemotionofthedie.FoursuchscansofthetwodistortionvariablesareshowninFig.16.Asinthepreviouscase,thedistortionpro\"leshavedepressionsaroundthemid-spanandgrowslightlytowardstheends.Weobserveoncemorethat,atanygivenaxialposition,thedistortionreachescertainvaluesataparticulardiepositionandsubsequentlyremainsunchanged.Clearly,forthisorientationofthecrosssection,thedistortionofthelongersidewallsismorepronounced.
1302J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317
Fig.15.Responseofatubebentintheverticalmode:(a)verticalforce;(b)distortionatmid-span.
Fig.17showshowthedistortionvariablevariedalongthelengthoftheformedtubeafteritwasremovedfromthemachine.ThedistributionalongthelengthissimilartothatinFig.16b(includingthesmallasymmetryaboutthemid-span).Themaximumvalueisapproximately9.8%.The\"nallocalradiusofcurvatureofthetubeiscomparedtotheradiusofthedieinthesame\"gure.Thetubesprangbackapproximately4.34%.Onceagain,thespringbackisrelativelyuniformalongthelengthwithaslightincreaseclosetotheends.3.2.Ewectoffriction
Frictioncanplayaroleintheformingprocess,especiallyifthetensionischangedoncethetubeisincontactwiththedie.Frictionale!ectswereminimizedbycoveringthesurfaceofthediewithathinTe#ontapeandsimultaneouslylubricatingthesurfaceofthespecimenwhichcontactsthedie.Theadequacyofthisschemewasevaluatedinspecialtestsinwhichtheaxialstrainsatdi!erentpositionsalongthelengthofthetubewerecompared.ResultsfromsuchatestareshowninFig.18.
Fig.16.Axialscansofdistortionatdi!erentdiedisplacements.
Thetubeisformedwiththelongsidesvertical.Pairsofstraingageswerebondedoneachsidewallofthetube(seeinsetinFig.18a)atthemid-spanand7in(178mm,S/¸\"0.39)awayfromitataheightof0.5in(12.7mm)abovethesurfaceofthedie.Thetubewasprestretchedto¹\"0.77¹
andevacuatedtoapressureof!0.48bar.Fig.18ashowsaplotoftheappliedaxialforceversustheaveragestrain()ateachofthetwolocations.Attheendofforming,thestrainsatthetwo
Q
locationsdi!erby3%.Oncethetubecameintocontactwiththediethetensionwasincreasedto¹\"0.98¹whilethevacuumwasheldatthesamelevel.(Numericvariablesubscriptsrefertothe
genericloadinghistoryshownschematicallyinFig.19.Inthiscase,nopostpressurewasappliedthuspoints
1304J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317
Fig.17.Finalshapeofatubeformedinverticalmode.
Subsequently,remainsunchangeduntilthetensionisincreasedattheendofforming.Thebeam
1
modeloftheformingprocessyieldsthatthemid-spanconformstotheshapeofthedieatd\"3.68inwhichcompareswellwiththetimethemaximumdistortionisrecorded.Bycontrast,inFig.11wesawthatinthatexperimentthedistortionvariablesreachedtheirfullvaluesatadiedisplacementofapproximately8in(203mm).Althoughmostofthedistortionisinducedduringthetimethesectioninquestionisbent,asmalladditionalincreasetakesplacesubsequentlyastheneighboringsectionsbendintheprocessreducingtheirsupportofthecrosssectionatmid-span.TheevolutionofatS/¸\"0.39issigni\"cantlydi!erent.Thissectionbendsgraduallydueto
1
beamactionuptoadiedisplacementofapproximately12in(305mm).Atthistime,thestrainexperiencesasharpincreaseasthetubelocallyconformstothecurvatureofthedie.Thesteady-statevalueisreachedwhend\"15in(380mm).Asmentionedabove,thesteady-statevaluesatthetwolocationsdi!erbyapproximately3%.
The\"naldistortion()distributionalongthelengthofthetubeissimilartothatinFig.17butwithasomewhatreducedamplitudeduetotheinternalpressure.Thetubewasfoundtohavesprangbackapproximately5.05%.Onceagain,thespringbackwasrelativelyuniformalongthelength.
3.3.Ewectoftension
Tensionplaystwoimportantrolesinbend-stretchformingoftubes.First,itisusedtoeliminate(orreduce)compressionontheconcavesideofthepartandthuspreventwrinklingorlocalbuckling[22]fromoccurring.Inthepresentsetting,theaxialtensionisreactedbycontactwiththedie,anadditionalconstraintwhichcanfurtherdelaybuckling.Asecondroleplayedbyaxialtensionisreductionofspringback[23].Presentpracticeistoprestretchtubularpartsintotheplasticrange[24,19,20,25].Thisguaranteesthatonunloadingthespringbackisminimal.Thee!ect
J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}13171305
Fig.18.Evolutionofaxialstrainduringformingprocessincludingpost-tension.
Fig.19.De\"nitionofloadinghistory.
1306J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317
Fig.20.E!ectoftensionontubebentinhorizontalmode:(a)distortion;(b)springback.
oftensiononspringbackisillustratedinFig.20bfortubesbentwiththeirlongsideshorizontalandinFig.21fortubesbentwiththelongsidesvertical.The\"rstsetshowsthe\"nalradiusofcurvaturealongthelengthoffourtubesformedattensionsof¹/¹\"0.54,0.65,0.95and1.08.Asthe
tensionincreases,thespringbackisreducedfromapproximately7.3%toapproximately4.5%.Thee!ectoftensiononspringbackfortheothertubeorientation(Fig.21)issimilar.Inbothsetsofexperiments,theshapeisquiteuniformalongthelengthalthoughatendencytobecomemoreuniformathighertensionsisseeninFig.20b.
Anunwantedbyproductoftensionisthatitaggravatescross-sectionaldistortionasthenormalcompressivereactionforcefromthemandreltendsto#attenthesection[16,11,24].ThisisillustratedinFig.20aforthreetubesformedwiththelongsideshorizontal.Aninternalpressureof2.28barwasappliedwhilethetensionhadvaluesof¹/¹\"0.65,0.95and1.08.Theplot
comparesthedistortionpro\"les(*)alongthelength(measuredafterunloading)forthethreecases.Aswasthecaseforthetubesdiscussedearlier,thedistortionpro\"lesexhibitdepressionsaroundthemid-spanwhichgrowwithtension.Awayfromthemid-span,thedistortionclearlygrowswithtension(bynearlyafactoroftwobetweenthelowestandhighestvaluesof¹).
J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}13171307
Fig.21.E!ectoftensiononspringbackoftubebentinverticalmode.
Itisinterestingtopointoutthat,fortheverticalorientationofthecrosssection,thebottom#angebecomesneutrallystressedatatensionofapproximately1.28¹whilefortheother
orientationatapproximately0.94¹.Buckling,ofcourse,requiressigni\"cantcompressiontotake
place;thus,inviewofthedetrimentale!ectoftensionondistortion,forthistube,thecurrentpracticeofprestressingtotheyieldtensionisexcessiveforbothorientationsofthecrosssection.AlternativeswillbediscussedinPartIIwiththehelpofnumericalresultssupportedbyadditionalexperimentalresults.3.4.Ewectofpressure
Thee!ectofthebend-stretchprocessonthecrosssectionbecomesmorepronouncedifwecomparethe\"naldistortionpro\"lesoftwotubesformedatthesametensionwithandwithoutinternalpressure.Fig.22ashowssuchacomparisonof*/hpro\"lesfortwotubesformedat
¹/¹\"0.95;onehadnointernalpressure,whileforthesecond,aconstantpressureof
P\"2.28barwasapplied.Inthepresenceofpressure,theaveragedistortionwasreducedfrom
!15.2to!3.1%.(ThedramaticimprovementbecomesevenmoreevidentinthecomparisonofphotographsofthetwocrosssectioninFig.3ofPartII.)Thespringbackwasmildlyincreasedbythepressurefrom3.9to4.9%asevidencedinFig.22b.
Becauseofthisdetrimentale!ectoftensiononcross-sectionaldistortion,untilrecently,stretchformingwasnotfavoredforcoldformingtubularmembers.Atthesametime,themethodisattractivebecauseofthehighspeedwithwhichpartscanbemanufactured.Itwasfoundthatmodestvaluesofinternalpressure(usuallycompressedairatlessthan3bar)canhelpreducedistortionofthecrosssection[18].Becausethepartisalreadyplasticizedbypre-stretching,theselectionoftheoptimummagnitudeofpressureiscriticalasexcessivepressurecanresultinbulgingofthetube.ThiswillbefurtherdiscussedinPartIIinthelightofanalyticalparametricstudies.
1308J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317
Fig.22.E!ectofpressureontubebentinhorizontalmode:(a)distortion;(b)springback.
Inthecourseofthisstudy,itwasobservedthatinternalpressureisnotsuitableforformingtubesofallcrosssections.Infact,whenformingtubeswithtallsections,internalpressurecanaggravatethedistortion.Insuchcases,vacuumwasfoundtobebene\"cial.ThisisillustratedinFig.23fortubesbentwiththetallsidesverticalatatensionof¹/¹\"0.62.The\"rstonewasbentat
atmosphericpressurewhilethesecondhadavacuumof0.97barappliedtoit.Thee!ectofthevacuumonthe\"naldistortionvariableisquitedramaticasitisreducedfrom11.4to1.05%(Fig.23a;seealsopicturesofcrosssectionsinFig.7ofPartII).Inaddition,vacuumdecreasedthespringbackfrom6.4to5.7%(Fig.23b).AdditionalresultsforloadinghistorieswhichincludevacuumwillbediscussedinPartII.4.Summary
InthisPartIofthistwo-partseriesofpapers,amodelbend-stretch-pressuretestingfacilityhasbeendescribed.Thefacilityisoperatedbyonepneumaticandtwoservohydraulicsystems.Itdi!ers
J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}13171309
Fig.23.E!ectofvacuumontubebentinverticalmode:(a)distortion;(b)springback.
fromcomparablecommercialmachinesinthateachofthethreemodesofloadingisoperatedunderfeedbackcontrol.Thisallowscomputercontroloftheprocess,anda!ords#exibilityintheloadinghistorythroughwhichthepartistaken.Anadditionalfeatureofthetestingfacilityisabiaxialtransducerwhichmonitorscross-sectionalchangesofthepartduringforming.Theplanarformingprocesswasmodeledbyapproximatingthetubeasanonlinearelastic}plasticbeamwhichcanundergolargerotations.Themodelwasshowncapableofreproducingaccuratelytheloadinghistoryexperiencedbydi!erentsectionsalongthelengthofthepartduringtheformingprocess.Representativeresultsfromformingexperimentsinvolvingrectangularaluminumtubesrepre-sentativeofthoseusedinautomotiveapplicationswerepresented.Theresultswereusedtodiscussthee!ectoffriction,tensionandpressureonthecross-sectionaldistortion,springbackandnetelongationofthepart.Therepeatabilityoftheexperimentalresultswasingeneralfoundtobegood.ThemajorconclusionsfromtheexperimentsarelistedintheintroductionofPartIIofthisstudythatfollows.There,arelativelysimple,two-dimensionalmodelispresentedwhichiscapableofpredictingthecross-sectionaldistortionresultingfrombend-stretch-pressureforming.Resultsfromthemodel,supportedwithadditionalexperimentalresults,willbeusedtoillustratestrengths
1310J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317
andweaknessesofcustomaryandalternateforminghistories.TheconclusionsdrawnfromthestudyasawholeappearattheendofPartII.
Acknowledgements
Theauthorsacknowledgewiththanksthe\"nancialsupportoftheNationalScienceFoundationthroughgrantsDMI-9522774andDMI-9734947inconjunctionwithAlcoathroughtheGOALIprogram.SpecialthanksgotoF.PourboghratwhocoordinatedthecooperationwithAlcoaduringtheperiodof1996}1998.Any\"ndings,conclusionsandrecommendationsexpressedhereinarethoseoftheauthorsanddonotnecessarilyre#ectthoseofthesponsors.
AppendixA.NumericalsimulationofformingprocessA.1.Problemformulation
Numericalsimulationsofthestretchformingprocessasperformedinourmodelfacilitywereconductedthroughanonlinearbeamanalysis(seealsoRef.[16]).Thedieisassumedtoberigidandtohavearadius.Thebeam,withaninitiallengthof2¸,isassumedtodeformsymmetricallyaboutthemid-spanwithoutcross-sectionaldistortion(seeFig.24a).AnendloadFisappliedatBinsuchawaythatitslineofactionalwayspassesthroughpointCrepresentingthepivotofthehorizontalactuator.Duringtheformingprocess,aportionofthetube,sectionOA,comesintosmoothcontactwiththedie.TheremainingsuspendedsectionABisanalyzedthroughthefollowingsmallstrain,largede#ectionbeamequations[26]:
dy
\"(1#e)cos,dS
dy
\"(1#e)sin,dSd
\",dSdH
\"0,dSd<
\"0,dS
dM
\"(1#e)(Hsin! J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}13171311 Fig.24.Problemgeometry. Here(x,y)arethecoordinatesofpointsonthemid-surfaceofthebeam,istheanglebetweenthemid-surfaceofthebeamandthex-axis,isthecurvatureandethestrainofthemid-surfacewhileSandsaretheundeformedanddeformedlengthsofthemid-surface.HandVareforcesde\"nedin 1312J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317 Fig.24bandMisthemomentactingonthebeamcrosssection.TheaxialforceTandshearforceQcanberelatedtoHandVasfollows: ¹\"Hcos# \"e#,!)). 22 (A.3)(A.2) Thematerialstress}strainrelationshipisbasedonamultilinearrepresentationoftheresponse measuredinuniaxialtensiletestsonstripscutfromthetubestested.TandMaregivenby ¹\" Thefollowingincrementalrelationshipsrelate(¹,M)and(e,): dAandM\" dA.(A.4) ¹M\" Thefollowingboundaryconditionscompletetheformulation: x\"sin,y\"(1!cos),\"s/,M\"M(,e),(A.6)M\"0,F\"(H#<. Theproblemissolvedincrementallyinthreephases.Initially,thetensionisincrementeduntilthedesiredvalueisreached.Subsequently,thetensionisheldconstant.Inthesecondphase,thecurvatureatthemid-spanisincrementeduntilitreachesthecurvatureofthedie.Inthethirdphase,thelengthofthetubeincontactwiththedie(s)isprescribedincrementally.Ineachphase,the resultanttwo-pointboundaryvalueproblemisdiscretizedthrougha\"nitedi!erenceschemeandsolvedthroughNewton'smethodusingtheIMSLpackageBVPFDroutine(seeRefs.[27,28]).Aftereachincrement,thepositionofthedieiscalculatedthrough <(b!x) .d\"y# H A.2.Typicalresults Theperformanceofthemodelwillbeillustratedthroughanexampleofatubeformedwiththelongsideshorizontalatatensionof¹/¹\"1.08andaninternalpressureof2.28bar(thebeam modeldoesnotaccountforthee!ectofpressure).Inthiscase,anadditionalfeaturewasaddedtotheexperimentalsetupwhichenabledustomonitorthelengthoftubeincontactwiththedie. (A.7) ddAdd dAd d dAd d dAd e.(A.5) J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}13171313 Aspecialresistancepaper,whichhasregularlyspaced,continuous,conductivelinesofsilverdepositedononeside,isbondedtothedie.Thetubeismountedtotheformingmachineintheusualmanner,buttheresistancepaperandthetubeareconnectedformingtwoconstantcurrentcircuitsasshowninFig.25a.Thecircuitsarecalibratedpriortotheexperiment.Asthetubedeformsandcomesintocontactwiththedie,thecontactlengthssandsaredeterminedfrom thechangesinvoltageineachofthetwocircuits(technique\"rstusedinRef.[16]). ThecontactlengthsrecordedareplottedasafunctionofthediedisplacementinFig.25b.Contactlengthisseentobesymmetricaboutthemid-span,indicatingthatthebeamdoesnotslideonceinplace.Thecontactlengthsexhibitaninitialnonlinearityduringwhichtheneighborhoodofthemid-spanconformstothecircularshapeofthedie.Subsequently,contactlengthincreasesnearlylinearlywiththediedisplacement. IncludedinFig.25barepredictionsofthecontactlength(s)fromthenonlinearbeammodel.Thecalculatedcontactlengthremainszerountilthemid-spanconformstothecurvatureofthedieatadisplacementof2.75in(70mm).Subsequently,thecontactlengthgrowsessentiallyinthesamemannerasrecordedintheexperiment.Thesti!erinitialresponseexhibitedbythemodelispartlyduetothemathematicallysharppointcontactandpointreactioninherenttobeamtheory,butalsoduetothefactthatthepresenceoftheinternalpressurewasneglectedinthebeammodel.(Thelongwallsexhibitedaninitialmildbulgingduethepressurewhichmadetheinitialcontactproblemthreedimensional.) Fig.25.(a)Contactlengthmeasurementsystem;(b)contactlengthevolutionduringforming. 1314J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317 Fig.26.Calculateddeformedbeamcon\"gurations. Anotherviewoftheevolutionofcontactbetweenthetubeandthedieisshowninasetof10calculatedbeam/diedeformedcon\"gurationsinFig.26.Themainfeaturesofthecon\"gurationsaresimilartothoseoftheexperimentdiscussedinSection3. Figure27ashowsacomparisonbetweenthemeasuredandcalculateddieforce-displacementresponse.Thepredictionsareinverygoodagreementwiththemeasuredresults.Avariablethoughttoplayaroleincross-sectionaldistortionisthelocalshearforceintheneighborhoodofthelifto!pointofthebeamfromthedie.Inthebeammodel,thisisidealizedasapointreactionforce(QinFig.24).Figure27bshowshowitsvalueevolveswiththediedisplacement.Initially, asthemid-spangraduallybendsandcomesintocontactwiththedie,Qgrowslinearly.At adiedisplacementof2.75in(70mm),themid-spanhasconformedtothediecurvatureandthepointoflifto!startstomoveoutwards.Qisseentoremainessentiallyunchangeduntilfull contactisachieved.(Notethatforlowervaluesoftension,Qgrowstosomedegreewithcontact length.) Abyproductofthisformingprocessisanetelongationofthepart.ThisisillustratedinFig.28awhichshowsaplotoftheevolutionofaxialstrain(e,strainofmid-surfaceofbeam)withthedie J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}13171315 Fig.27.(a)Verticalforceduringforming;(b)evolutionofcontactshearforceduringforming. displacementatalocationofS/¸\"0.38.Thebeamdevelopsaninitialstrainof0.9%duetothepretension.Thepointmonitoredremainsinthesuspendedpartofthebeamuntild\"12.2in(310mm).Thesuspendedsectionbendsgraduallyinducingtheslowgrowthintheaxialstrainseeninthe\"gure.Asitcomesclosertobeincontactwiththedie,thelocalcurvaturegrowsfasterandtheaxialstrainexperiencesasuddensurge.Oncecontactisachieved,theelongationceasestogrow.Again,becauseoftheassumptionsinherenttobeamtheory,contactisamathemat-icallysharpeventresultinginthesharpdiscontinuityinslopeinthevalueofthestrainseeninthe\"gure. AnalternativeviewofthiscouplingbetweentheaxialstrainandthebendingdeformationisshowninFig.28bwherethestrainvariableeatthemid-span(S/¸\"0)andatS/¸\"0.38isplottedagainstthecurvatureatthecorrespondinglocations.Interestingly,therelationshipbetweeneandatthetwopointsisessentiallyidentical.Theaxialstraingrowsessentiallylinearlywithandstopsgrowingoncebendingdeformationceases. 1316J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}1317 Fig.28.CalculatedaxialstrainatS/¸\"0and0.38duringforming. References [1][2][3][4][5][6][7][8][9] PaulR.Enteringtheageofaluminum.MotorTrend,Oct1994;92.BedardP.AudiA8.CarandDriver,Nov1996;125}33. YatesB.AudiA84.2Quattro.CarandDriver,Jan1997;113}5 IrvingB.Interestinweldedaluminumautomobilesgathersmomentumworldwide.WeldingJournal1998;77(6):31}5. JostK.PlymouthProwlermaterial.AutomotiveEngineering,Oct1996;92}5.CoganR.Theelectricexperience.PopularScience,Nov1996;81}4. RoadandTrack.LamborghiniP140:thebabydiablo.March1995.p.39. McCoshD.Thealuminumrevolution:newmetallurgicaltechniquesandtinker-toy-likejointscouldbringall-aluminumcarstomasses.PopularScience1994;244(4):76}8. WinterD.ClosingtheGigajoulegap:willaluminum-bodycarssaveenergyoverlifecycle?WARD'SAutoWorldMagazine,Nov1993;49}50. J.E.Milleretal./InternationalJournalofMechanicalSciences43(2001)1283}13171317 [10]AutomotiveEngineering.Lifecycleanalysis:gettingthetotalpictureonvehicleengineeringalternatives,March 1996.p.49}52. [11]WeloT.Bendingofaluminumextrusionsforautomotiveapplications:acommentaryonpracticalandtheoretical aspects.ProceedingsoftheSixthAluminumExtrusionTechnologySeminar,1996.p.271}82. [12]BrazierLG.Onthee!ectof#exureofthincylindricalshellsandotherthinsections.ProceedingsoftheRoyal SocietyofLondon1927;A110:104}14. [13]KyriakidesS,JuGT.Bifurcationandlocalizationinstabilitiesincylindricalshellsunderbending:PartIExperi-ments.InternationalJournalofSolidsandStructures1992;29:1117}42. [14]JuGT,KyriakidesS.Bifurcationandlocalizationinstabilitiesincylindricalshellsunderbending:PartII Predictions.InternationalJournalofSolidsandStructures1992;29:1143}71. [15]TimoshenkoSP.Bendingstressesincurvedtubesofrectangularcrosssection.TransactionsoftheASME 1923;45:135}40. [16]DyauJY,KyriakidesS.Ontheresponseofelastic}plastictubesundercombinedbendingandtension.ASME JournalofO!shoreMechanicsandArcticEngineering1992;114:51}62. [17]PanK,StelsonKA.Ontheplasticdeformationofatubeduringbending.ASMEJournalofEngineeringfor Industry1995;117:494}500. [18]EvertRP,MillerJA.Stretch-formingprocess.USPatentNo.4,704,886,1985. [19]ClausenAH,HopperstadOS,LangsethM.Stretchbendingofaluminumextrusion:e!ectofgeometryandalloy. ASCEJournalofEngineeringMechanics1999;125(4):392}400. [20]ClausenAH,HopperstadOS,LangsethM.Stretchbendingofaluminumextrusion:e!ectoftensilesequence.ASCE JournalofEngineeringMechanics1999;125(5):521}9. [21]WangY,GuptaS,HutlingFL,FussellPS.Manufacturedpartmodelingforcharacterizationofgeometric variationsofautomotivespaceframeextrusions.JournalofManufacturingScienceandTechnology1998;120:523}31. [22]CoronaE,VazeSE.Bucklingofelastic}plasticsquaretubesunderbending.InternationalJournalofMechanical Sciences1996;38(8):753}75. [23]HosfordWF,CaddellRM.Metalforming:mechanicsandmetallurgy,2nded.EnglewoodsCli!s,NJ:Prentice-Hall,1993. [24]PaulsenF,WeloT.Applicationsofnumericalsimulationinthebendingofaluminum-alloypro\"les.Journalof MaterialsProcessingTechnology1996;58:274}85. [25]GeigerM,SprengerA.Controlledbendingofaluminiumextrusions.AnnalsoftheCIRP1998;47(1):197}202.[26]ReissnerE.Onone-dimensional\"nite-strainbeamtheory:theplaneproblem.JournalofAppliedMathematicsand Physics1972;23:795}804. [27]LentiniM,PereyraV.Anadaptive\"nitedi!erencesolverfornonlineartwo-pointboundaryvalueproblemswith mildboundaryconditions.SIAMJournalofNumericalAnalysis1977;14:91}111. [28]PereyraV.PASVAC3:anadaptive\"nitedi!erenceFORTRANprogramfor\"rstordernonlinearordinary boundaryproblems.In:ChildsB,ScottM,DanielJW,DenmanE,NelsonP,editors.CodesforboundaryvalueproblemsinODEs,ProceedingsofaWorkingConference,Houston,TX,May1978.Berlin:SpringerVerlag,1979.p.67}88. 因篇幅问题不能全部显示,请点此查看更多更全内容