5
Vol.46
No.5
2010
513—527ACTAMETALLURGICASINICAMay.2010pp.513–527
∗
(
,
110016)
.
,
,
;
,
;
,
;,
;
,
,
4—150
,
CO2,H2S
,
.
.
,
,
,
,
,
TG111
A
0412−1961(2010)05−0513−15
THECURRENTSITUATIONOFAPPLICATIONANDDEVELOPMENTFIELDSOFENERGYOFSUPERALLOYSINDUSTRY
INTHEGUOJianting
InstituteofMetalResearch,ChineseAcademyofSciences,Shenyang110016
Correspondent:GUOJianting,professor,Tel:(024)23971917,E-mail:jtguo@imr.ac.cn
Manuscriptreceived2009–12–25
ABSTRACTSuperalloysareextensivelyappliedinthefieldsofenergyindustry.Inthehighparameterultra–supercriticalboilerusedforcoal–firedgeneration,superheater/reheatertubesmustbemadeofsuperalloyswhichmeettherequirementofgoodcreepresistant,goodfire–sidecorrosionresistantandsteam–sideoxidationresistantproperties.Ingasturbineengineusedforgaspower,turbinebladesandguidevanesshouldbemadeofhot–corrosionresistantsuperalloyswhichmustmeettherequirementswithrespecttoexcellenthightemperaturecorrosionresistanceandlong–termmicrostructuralstability.Inthefieldofnuclearpower,heatexchangetubesusedforsteamgeneratorrequiresuperalloyswithexcellentsolutioncorrosionresistance.Inthefieldofcoalgasificationandenergyconservationandpollutionreduction,thesuperalloyswithexcellenthotcorrosionresistantandhightemperaturewearresistantpropertiesarewidelyapplied.Inpetroleumexploitation,especiallyindeepmining,drillingtoolsmustbemadeofcorrosionresistantandwearresistantsuperalloysbecause
ofthesourenvironment,thetemperatureof4—150
andtheexistencesofCOon.Thispapermakesabriefintroductiononthecurrentsituationofapplication2,Hand2S,sandandsodevelopmentofthesuperalloysathomeandabroadinthesefields.
KEYWORDSsuperalloy,energyindustry,coalpower,gaspower,nuclearpower,
petroleumexploitation
,
1
,
,
,
.
.
.
2002
,
,
.
*
:2009–12–25.2000
:
,
,1938
,
67%,
40%
.
1[1]
,2000
DOI:10.3724/SP.J.1037.2009.00860
69.3%.
,
514
46
[1]2000—2020
Table1Energystructurein2000—2020periods[1]
1
YearInstalledHydropower
Coalcapacity,MW
%power,%200031932024.869.3201059000025.863.3202096000027.158.6,
24.8%.,
0.7%0.3%.
10—20
,
,
;
;
1000MW
[1]
.
,
.
2020
,
.
69.3%
58.6%,
24.8%
27.1%,0.7%
7.5%,
0.3%4.2%.
,
,
.
1.1
,
,
100MW,
,
300MW
50%.2007
357g/(kW·h),
10g/(kW·h),
2.7%,
,
45—55g/(kW·h).
,
:70%
,20%
,52%SO2[2].
.
,
,
,
.
2[3].
,
(
)
,
,
.2005,
33.5MPa,610/630/630
,
2015
40MPa,
700
/720
/720
.,
.
,
,
,
,
[4]
,
[5]
.
,
22.115MPa
374.15
.
,
23.5MPa/
538
.
29.5MPa/560
NuclearNaturalgasNewenergyOtherpower,%power,%resource,%
fuel,%0.70.30.14.82.35.40.72.57.54.20.12.5
2
[3]Table2Netefficiencyandcoalconsumptionofvariouscoal
powergenerators[3]
Coalpower
NetCoalconsumption
generator
efficiency,%
g/(kW·h)Subcritical,17MPa/538
37—38330—340Supercritical,24MPa/538
40—41310—320Ultra–supercritical,
44—45
290—300
30MPa/566
/566
[6]
.
2
1
,
17MPa,
538
,
538
;
2
2
,
,
;
2
3,
,2,
566.
2
,,
.
1
,
0.029%;
1
,
0.021%,
,
SOx,NOxCO2
,
.
,
.
,
9%—12%Cr
,
650—750
,
.
3[7].
,
20%
Cr,
.
3
,Inconel6259%Mo3.7%Nb
,4
Co,MoNb
,
Ti
Al
,
,
4[7]
1[7].
GH2984[7]
.20
60
,
GH2984.
20
70
,
10
.
,GH2984
GH2984
,
[7]
.,
(Special
5
:
515
[7]3
Table3Chemicalcompositionsofsomesuperalloysusedinsuperheatertube[7]
(massfraction,%)
AlloyGH2984Inconel740Inconel617Nimonic263Inconel625
C0.04—0.080.060.090.04—0.08≤0.10
Cr18—2024.9721.6519—2120—23
Co–19.8012.019—21≤1.0
Mo1.8—2.20.588.725.6—6.18.0—10.0
Nb0.9—1.22.01––3.15—4.15
Ti0.9—1.21.690.311.9—2.4≤0.40
Al0.2—0.50.871.16≤0.60≤0.40
Fe32—340.71≤2.50≤0.70≤5.0
Si≤0.50.470.58≤0.4≤0.5
Mn≤0.50.300.54≤0.6≤0.5
NiBal.Bal.Bal.Bal.Bal.
[7]4
Table4Mechanicalpropertiesofsomesuperalloysusedforboilertube[7]
AlloyTensilepropertyatroomtemperatureσbMPa
σ0.2MPa686705514580
δ%26.630.048.043.0
ϕ%46.639.0–46.0
Tensilepropertyat700σbMPa745905651740
σ0.2MPa539650398490
Rupturestrength,MPa700
δ%34.437.040.026.0
ϕ%52.344.5–34.0
,700
,
3×104h149149162120
10×104h130130–100
GH2984Inconel740Inconel625Nimonic263
11071150960960
Note:thestandardheattreatmentofGH2984alloyis1100
650/16h,A.C.
/1h,A.C.+760/8h,50/hcooled,
263,
4.
Inconel625Nimonic263,
NimonicInconel
625.700Inconel740
,3×104
10×104h,650
,
750
,
1[7].
(3)
.
Cr
18%—20%,
,
Cr2O3.,
,
.
1GH2984,Inconel740
[7]
Nimonic263
(4)
.
700
/(0.1—1.8)
×104h
,
Fig.1Stress–rupturepropertiesofGH2984,Inconel740
andNimonic263alloysatdifferenttemperatures[7]
,
.
MetalsCorp.)2003
[8]
Inconel740
(5)
.
,
,
,
.
1.2
.GH2984
Fe(1)
[7]
:
Co
.
,
.
GH2984
Nimonic263
Co,Inconel740,Inconel617
12%—21%Co.
8×1010
2010m3,2020
1.7×108t,(1.8—2)×108t,
1.2×1011m3
[9]
.
(LNG)
GH2984
Fe
Fe
32%—34%,Ni
,3.GH2984
,
.
,
,
,,
.
.
(2)
.
,
650—750
.
700
.
51646
20
60
700.70
990
23MW
,1978
,80
GE
1100
MS6001B
,
32%,
40MW,
60%—70%.
,2002
GE
,
.2003
GE,
100
200MW
,
.
,
.
2006
,
280
,
4
1.626×10MW.F28,
1.09×104MW,
40.91×10MW,
,
,
[10,11]
.2006
–
45.99%,
[2]
.
,
7%
.
.
5—10a,
3.4×104MW
.
.
,
,
:(1)
,
,
;(2),
.
,
,
.
,
,
.
1.2.1
,
,
,
,
.
2[12]
GE
.
,
.
2
,
1
,
;
2
,
,
.
U500,U700,
U720,Ren´e77,IN738,IN738LC,GTD–111,IN939,MGA1400Mar–M421;Ren´e
[12]
2
Fig.2IGTbucketalloyevolutionshowingincreaseintem-peraturecapability[12]
80H,GTD–111DS,MGA1400DS,CM247LCDSGTD–444DS;
Ren´e5SC,CMSX–11SC
PWA1483
.
5[12−15].1.2.2
1960
GE
E
F
FSX–414
,
.
X–45
ECY768
.
,
,
.FSX–414
.,
GE
GTD–222
MGA2400
.
,
,
GE
GTD–222DS
Ren´e5
.
,16]6[12.
1.2.3
1973
,
,
7[17−23].
GH4413
,
.
7
16
K4537
,
.
1.2.4
,
:
(1)
:Cr
.
,
,
Cr
(
)
15%,
Cr
25%,
30%.
5%—10%Cr
,
5—
7
5
:
517
[12−15]5
Table5ChemicalcompositionsofhotcorrosionresistantNi–basedsuperalloysusedforbladesin
industrialgasturbine[12−15]
(massfraction,%)
AlloyUdimet500Udimet520Udimet700(Ren´e77)
Udimet710Udimet720IN738IN738LCIN939Mar–M421Mar–M247GTD–111MGA1400Ren´e80HDSCM247LCDSMGA1400DSGTD–111DSGTD–444DSRen´e5SCCMSX–4SCCMSX–11SCPWA1483SC
Cr18.019.015.018.018.015.816.022.515.58.416.014.014.08.313.314.09.87.06.515.012.8
Co18.512.018.515.015.08.38.319.010.010.08.010.09.510.010.09.57.58.09.03.09.0
Mo4.06.05.23.03.01.81.7–1.750.80.61.54.00.81.71.51.52.00.60.41.9
Ti2.93.03.55.05.03.63.53.71.751.03.42.74.81.02.44.93.5–1.04.24.0
Al2.92.04.32.52.53.53.51.94.255.54.04.03.05.54.03.04.26.25.63.43.6
C0.080.050.080.070.040.130.090.150.150.130.100.080.17–0.070.100.08––––
W–1.0–1.51.32.72.52.03.510.02.64.54.010.04.63.86.05.06.04.53.8
Ta–––––2.31.61.4–3.02.74.7–2.84.82.84.87.06.55.04.0
B0.0060.0050.030.020.040.010.010.010.0150.02–0.050.0150.0150.0170.010.009––––
OtherZr0.05––Zr0.05Zr0.04Zr0.09Nb0.7,Zr0.05Nb1.0,Zr0.1Nb1.75,Zr0.05Hf1.4,Zr0.06
–Zr0.03Hf0.75,Zr0.03
Hf1.5––
Hf0.15,Nb0.5Hf0.2,Re3.0Hf0.1,Re3.0Hf0.04,Nb0.1
–
NiBal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.
[12,16]6
Table6Chemicalcompositionsofhotcorrosionresistantsuperalloysusedforvanesinindustrialgas
turbine[12,16]
(massfraction,%)
AlloyX–40/HS–31FSX–414GTD484X–45Mar–M509ECY768IN792GTD222MGA2400GTD222DS
Ni10.510.010.010.510.010.0Bal.Bal.Bal.Bal.
Cr25.529.029.025.523.523.512.422.519.022.5
CoBal.Bal.Bal.Bal.Bal.Bal.9.019.019.019.0
Mo––––––1.9––2.3
Ti––0.2–0.20.254.52.33.71.2
Al–––––0.183.11.21.90.8
C0.500.250.350.250.600.600.120.100.170.10
W7.57.57.57.57.07.03.82.08.02.0
Ta––0.5–3.53.53.91.01.41.0
Nb–––––––0.81.0–
Zr––0.5–0.5–0.100.020.02–
B0.010.010.010.01––0.020.010.0050.008
Note:GTD484contains1.0%Hf
.
Cr
,
;
,
Ta:,
Re,
15%
α–Cr2O3.CrCr2O3,
.(2)
γ
50%,60%,
γ
;
,
Al+Ti
,
γ
65%—70%
σμTCP
,
50%,
.(3)
:
,
518
46
[17−23]7
Table7ChemicalcompositionsofhotcorrosionresistantsuperalloysdevelopedbyChina[17−23]
(massfraction,%)
AlloyGH4413K435K444K445K446K447K452K438K438GK4537K640SDZ438GDZ411DZ444DZ445DD408
C0.070.090.060.090.090.180.110.150.170.100.500.110.100.070.07<0.02
Cr14.515.915.913.916.019.021.016.015.815.525.516.014.015.013.216.0
Co–11.310.810.0–18.811.28.58.59.5Bal.8.59.59.510.08.5
W6.05.55.34.35.05.83.52.62.65.07.52.63.85.34.66.0
Mo3.32.02.01.53.5–0.61.81.71.5–1.81.52.01.7–
Al2.72.83.14.01.81.92.53.54.03.0–3.93.03.14.03.9
Ti2.04.64.62.72.43.53.53.33.63.5–3.94.94.62.43.8
Nb–0.20.2–1.10.90.30.90.72.0–0.7––––
Ta–––4.7–1.4–1.81.7––1.82.80.94.81.0
B0.020.020.080.030.010.0070.020.010.010.020.0050.010.020.0080.02–
NiBal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.10.5Bal.Bal.Bal.Bal.Bal.
Hf0.5,Y0.015
OtherV0.6,Ce0.020Mg0.01,Ce0.015,Zr0.05Ce0.015,Hf0.3,Zr0.05
Zr0.03
Fe15,Ce0.01,Zr0.01
Zr0.03Zr0.04Zr0.1P≤0.0005Zr0.05Mn0.8,Si0.8P≤0.0005
.
2013
[24]
.
,
,
1×103MW
,Cr
;
,
,
3
,
2010
(Al+Ti)
,γ,
50%;
Ta
,
(1.27—1.4)×104MW,2020
4.8%104MW,
(3—4)×
6.7%[10].
;
,
,
.
,
γ
TCP
,
,
,
.
,
.
,
(U–
.
235,Pt–233
Pu–239)
[25]
1.3
.,
.
.
,
.
,
.1954
,
,
.
1,
,
,
.
.
.
.
,
,
,
.
.
,
,
,
.
,
,
300
,.
MW20083
600MW
.
[26]
.,
,
,
11
,9078MW
,
6.84×1010kW·h,
1.15%.
1.99%.
.
1.3.1
11
,
112MW,
5
:
519
,
450
,
2
,
.
.
490
,
(
)
.
,
9Cr–1Mo.
,316,304
,
,
Incoloy800
[28]
.
.
,
,
.
,.
.(
Incoloy800
.
U,
)
.
(450—340
),
2.25Cr–1Mo
[26]
U
,
.
,
.
,
.
Pu–239
,
.
,
,
,
,,
.
.
[25]
.
:
.
;
;
(
)
;,
,
,
,
[26]
.
.
,
.
18–8
,
3a[27].
conel600
,
.Inconel600
In-,
.
3
Inconel718,
,
.
Incoloy625
1.3.2(1)
InconelX–750[26].
,
,
,Inconel600
.
Inconel600
,
,
8[28],
9[29−34].
9
.
800
.
3
Inconel690
,
Incoloy
,
,
Inconel600,Inconel690
Incoloy800
Fe–Ni
,
Incoloy800
Inconel690.
,
.
16%—30%Cr,
,
.
Inconel690
Incoloy800,
,
[26]
.
,Cr
Fe,Mo,Co
.
Al
,
In-Na.
,
coloy800
32.5%Ni,Ni
,
.
,
2.25Cr–1Mo.
Nb,
2.25Cr–1Mo–Nb,
9
.
InconelX–750
Inconel718
,
.
.2
Al+Ti+Nb
[28]8
Table8Thesuperalloysusedinvariousreactors[28]
TypeofreactorBoilingwaterreactorPressurizedwaterreactorNacooledfastbreederreactor
HTGB
Multipurposetemperaturegas–cooledreactor(assumption)
Material
Inconel600,InconelX–750,Haynes25
Inconel600,Inconel675,Incoloy800,Inconel690,Inconel718
Incoloy800,InconelX–750
Incoloy800,Inconel600,Inconel675,Inconel718,InconelX–750,HastelloyB
Inconel625,HastelloyX,Inconel617,Incoloy807,NewNo.13
520
46
4.2%
6.4%,
γ
γ+γ15%,
.
.
,2
19%
Cr,
(3)
11[30,31]
,
Inconel
.
7%19%Fe.Inconel718
,
718
HastelloyX–750
3%
Inconel600,Inconel
Mo
.
,
690
,
.
Incoloy800,
,
Inconel718,
.
.
(2)7
(4)
Inconel600,Inconel690
Incoloy800
33,35−38]10[10,.
,
,
5
[26]
:
316
TiN,Cr7C3,M23C6
C
,
M6,(SCC)
.
,σ,μLaves
,
Inconel600>Inconel690>Incoloy800,
γδ
,
.(
9),
Ni,
2
GH4145
GH4169,
SCC
.
,
16%
14.5%
γ(γ+γ)
,
,
SCC
,
9
[29−34]Table9Chemicalcompositionsofsuperalloysusedinreactor[29−34]
(massfraction,%)
Alloy
CNiCrTiAlFeCoOtherInconel600(GH3600)≤0.15≥72.015.5≤0.50≤0.358.0––Inconel690(GH3690)≤0.04≥58.029.5≤0.50≤0.509.0≤0.10–Incoloy800(GH1800)
≤0.0532.521.0≤0.60≤0.60Bal.0.05–NewNo.130.0335.525.00.3750.30Bal.0.05–
Inconel718(GH4169)
≤0.04Bal.19.00.900.4018.5≤0.10Nb5.1,Mo3.1HastelloyB≤0.05Bal.≤1.0––5.5≤2.50V0.40,Mo28.0HastelloyX(GH3536)0.10Bal.22.0≤0.15≤0.5019.01.50W0.60,Mo9.0
InconelX–750(GH4145)
≤0.0473.015.02.500.806.8–Nb0.90Inconel6170.0755.022.0–1.00–12.5Mo9.0Inconel625(GH3625)
≤0.05≥61.021.50.200.202.5–Mo9.0,Nb3.7
Haynes25
0.10
10.0
20.0
–
–
3.0
Bal.
W15.0
107
[10,33,35−38]Table10Phaseconstitutesofsevensuperalloysusedinreactor[10,33,35−38]
Alloy
Afterstandardheattreatment
Afterlongtermaging
Inconel600(GH3600)γ,minorTiN,Cr7C3Agingat850
for1500h,notransition
Incoloy800(GH1800)γ,minorγandM23C6
Agingathightemperature,minorδphase
Inconel690(GH3690)γ,minorM23C6
Noharmfulphase
Inconel625(GH3625)γ,minorTiN,NbCandM6C
Agingat650—900
,γ,δ,M23C6
HastelloyX(GH3536)
γ,minorTiN,M6CAgingat700—900,
M12CandM3B2,minorμandLavesorσ
InconelX–750(GH4145)
γ,14.5%γ,minorTi(C,N),
Agingat850
for1500h,
Nb(C,N),M23C6
needle–likeη–Ni3TiphaseInconel718(GH4169)
γ,16%(γ+γ),δ,NbC
Agingat790
for100h,γ→δ
Ni
5
:
521
[30,31]11
Table11Mechanicalpropertiesofsomesuperalloysusedinreactor[30,31]
AlloyRoomtemperatureσbMPa
σ0.2MPa2853722501185360815295490380
δ%454444214327705048
σbMPa56057451012756501050580910470
540
760
δ%414238184526685040
σbMPa260300235950435–440550350
Rupturestrengthof1000h,MPa
δ%7058832537–844534
––66195––165160105
30–30––50605043
15–13–––302019
760
σ0.2MPa2202701801065290725200415255
σ0.2MPa180160150740260–180415225
870
980
Inconel600Inconel690Incoloy800Inconel718HastelloyXInconelX–750Inconel617Inconel625Incoloy807
66073859514357851200740965655
.
,Inconel600
SCC
.
SCC,
2
NaOH
,
Ni≥65%.Cl−
2.2
O2
O2
NaOH
,
Inconel690
,
SCC
12[1,30,31,39].
Inconel718
Incoloy945
.Cr
Cr
,
93Inconel
,
.Inconel718γ+γ
16%,γγ2.5—4.0,
690>Incoloy800>Inconel600.,Inconel690
,SCCInconel
γ
Inconel718
.Incoloy945Incoloy725
600.
,γ+γInconel718
,δIncoloy925
.
,
O,Cl
−
Pb,H,
pH,
,.
.
875MPa,
Incoloy
925,718
Inconel718.,,Incoloy945
Inconel
Inconel718,
,
,
Inconel718
22.1
.42%
Ni,
;
20%
,
,
Cr,
;
,,
:(1)
pH
,
,
;(2)
Cr,Mo.
W,
300g,
2.3
NaCl;(3)H2S
CO2MPa;(4)
,
,
10.5
14MPa;
Incoloy825,IncoloyG–3IncoloyC–276
,Inconel718,Incoloy925Incoloy
(5)
S
;(6)
0—218
725
,2
.
,
4—149
.,
,
,
,
Inconel718,
Incoloy825,Incoloy925
;
.H2S,CO2
C–276Monel
Incoloy8253[37].,
Incoloy
,
IncoloyC–276,Incoloy725,IncoloyG–3,
.
,
,
4
5[37].
522
46
3Incoloy825
IncoloyC–276
CO2/H2S
[37]
Fig.3ThecorrosionresistancesofIncoloy825alloy(a)andIncoloyC–276alloy(b)inCO2/H2Senvironment[37]
(corrosionrates≤0.05mm/a)
[1,30,31,39]12
Table12Chemicalcompositionofsuperalloysusedinpetroleumexploitation[1,30,31,39]
(massfraction,%)
AlloyInconel718Incoloy625Incoloy725Incoloy825Incoloy925Incoloy945IncoloyG–3IncoloyC–276Inconel600
C≤0.08≤0.10≤0.05≤0.05≤0.05≤0.05≤0.015≤0.02≤0.15
Cr19.021.521.021.521.520.522.015.515.5
Ni52.5Bal.Bal.42.0Bal.47.0Bal.Bal.Bal.
≤1.0Co–≤1.0––––≤5.0
W––––––≤1.53.3–
Mo3.19.08.53.03.03.07.016.0–
Al0.5≤0.40–––0.2–––
Ti1.0≤0.40–0.90–1.5–––
FeBal.≤5.08.0Bal.26.0Bal.20.05.58.0
Nb
Ta
OtherB0.004
––Cu2.3Cu2.0Cu2.0Cu2.0V≤0.35
–
–
(Nb+Ta)5.3(Nb+Ta)3.72.7–1.03.0
––––
(Nb+Ta)0.5––
4
[37]
5
[37]
Fig.4Selectionofcoldworkingstrengthenednickel
basesuperalloysaccordingtooilandgaswellenvironment[37]Fig.5Selectionofheat–treatmentstrengthenednickel
basesuperalloysaccordingtooilandgaswellenvironment[37]
5
:
523
2.4
,
,
,
Inconel718
.
2
,
.
1×104h
.
Incoloy925
Inconel718CXLDXLI
.
,
5.08×10−4m.
982
1×104h
,0.5%H2S900
,
XLO–B
.Incoloy825
1%H2S
.
(<500μm/a)
,
.Incoloy625
.Inconel600
:
Haynes
.
3
188,Stellite6BX–40;
738,IN739Nimonic80A;
IN617,IN657,IN
N155,RA330,
,
,.
–
(IGCC)
,
.
1972
1
IGCC,
9
[37]
.
:
(1)
.
.
,
;
,
;
,
(
).
(2)
(
),IGCC
52%.
(3)
,SO2
90%
,NOx50mg/m3,CO2
,
[2]
.
(4)
.
,
CO,H2,CH4
,
IGCC
.
,
;
;
,
;
[40]
,
,
.
,
,
.
(AMPS)
(TRI)
[41]
.()
24%H2,18%CO,12%CO2,39%H2O,5%CH4,0.5%—
1%H2S,
6.87MPa,
900—982
,
700—1×104h.
,
RA333
IN800.
[41]
,.
(982
)
(1%H2S)
,
Cr
Fe
Fe
.870—982
,
,Cr
20%,
25%.
44.1
,
,
.
,.
,
,
.
,
,
.
,
750
10×104h
,
,
,
.
.,
4%—7%
,
,
,
,
98—196kPa
650—750.
,
,
,
.
,
20
60
.1963,
.1999,CONMEC
FEX142
CorpusChristi,
37.3MW,
31.750t,
[42]
.
20
,
,
524
46
70
.1974,YL
,
[42]
3MW,1978
.——33MW
,
2003
7
[43]
.
,
,
K213
,
X40
Waspaloy,Nimonic90.
GH2132GH4738
,
A286
Waspaloy
.
13[44].
:
(1)
[45]
GH2132
:
ΔNv
=wNi−3wTi−3.5wAl−
1.7wSi−0.9wCr−4.7
(1)
,wM
,ΔNv
M
.
ΔNv
>0,
σ
,ΔNv
<0,
σ
,
ΔNv>0.
(2)GH4738
Mg
,
,
,
.
,
GH4738
,
,.
(3)
K213
,
X–40
Waspaloy,Nimonic90
.
[46]
.
4.2
20
60
13
[44]Table13Thesuperalloysusedinfluegasexpander[44]
PartAlloy
DomesticproductDomestic
Abroad
(diameter,mm)VaneK213Investmentcasting
K640X40
InvestmentcastingBlade
K213Investmentcasting
GH4738
Waspaloy40,70
Nimonic90DiscGH2132A286720,760,850,930,1050,1200
GH4738
Waspaloy
850,950
GH2901Incoloy901
.
,
,
,
,
,
,
,
,
,
.
30%—100%,
4—13g/(kW·h),
,
.
,
.
,
,
550—850,
(3—11)×104r/min,103—
104h[46].
,
.
,
,
,
.
20
60
,
Inconel713
X–40,60
BC
B1914.
–787
36–
3.
,
CRM–6D
[46]
.
TM321[47].20
60
,
69
415
,
650
.1964
70
,
650
K213
,
,
.1965
,
K213
12V190B
,
.
(750—850
),
K418
(Inconel713C),
.
20
90
K491
,
B1914
[48]
,
,
1000
.
1990
,50
,
K491
[49]
,
.
VTR254,
454,564
714
.
290
130K491
,
.
[31,33]
1415[46,48].
K491
.
,
(0.01%)
,
0.1%
,
.K491
,
(
15);
,
,
5
:
525
[31,33]14
Table14Chemicalcompositionsofsomesuperalloysusedinchargingturbine[31,33]
(massfraction,%)
Alloy(servicetemp.)K213(750(850(1000(750
CNiCrCoFeAlTiWMoNbBZrOther
≤0.1)
0.08—))
0.55<0.08<0.081.00.2≤0.02
34—38Bal.Bal.
14—1612—149.5—10.5
––
Bal.–
1.5—3.0—4.0—2.06.5
4.01.0
–7.0—8.0
5.5–
7.0–
5.5—0.5—
––0.05—0.10
––––––Ce≤0.01Mn5
K418
3.8—1.8—0.005—0.05—5.22.8—3.3–––1.0
–––1.02.8–
0.150.080—0.12–≤0.05≤0.050.3
––––0.15≤0.04
K491
9.5—≤0.505.3—5.0—10.5Bal.–––
–Bal.Bal.Bal.
5.8–
X–40
0.45—9.5—24.5—)
11.533—3732—355
26.512—1612—1622
1.42.1–
3.23.2–
–787
0.7—2.4—2.0—
4.05.01.0
1.7—2.6—4.5—
(750
)3))
36–
(700(650
CRM–6D
[46,48]15
Table15Mechanicalpropertiesofsomesuperalloysusedin
chargingturbine[46,48]
,
,
,
.
(MPa)
Alloy
Tensilestrength
K213K418K491X–40
,
1000hrupture
strength
))))
431(700519(700294(850314(650294(700435(650333(650
.
.
731(700937(7001020(600515(650
))))
,
.
–
–78736–
490(750706(700537(650
)))
)))
3
.
CRM–6D
,
.
γ
,
γ+γ
;
,
.
TCP
;K491
,
,
,
,
,
,
.
,.
,
.K491
.
5
2020
.
,
.
,
.
.
2020
.
[1]ChenYS.PowerEng,2003;23:2615
(..2003;23:2615)[2]ChenJP.PowerEng,2009;29:1
..2009;29:1)(
[3]BianXJ,WangNN,CaoYJ.ZhejiangElectrPower,
2003;(2):21(,,.,2003;(2):21)
[4]MercklingG.JPressureVesselsPiping,2008;85:2
[5]WrightIG,TortorellipF.ProgramonTechnologyInno-vation:OxideGrowthandExfoliationonAlloysExposed
526
46
toSteamPaloAlto,CA:EPRI,2007
[6]HuangYL.ThermalPowerGeneration,2002;(2):2
(
.,2002;(2):2)[7]GuoJT,DuXK.ActaMetallSin,2005;41:1221
(
,.,2005;41:1221)[8]SmithGD,SizekHW.Corrosion2002.Houston:NACEInternational,200000256,1
[9]
ComprehensiveTopicalGroupintheEnergyScienceandTechnology,ChinaAssociationforScienceandTechnol-ogy.TheStudyontheDevelopmentofChineseEnergyScienceandTechnology,2004,4
(
.2020,2004,4)
[10]
GuoJT,HuZQ.The11thIntSymposiumonAdvancedSuperalloyProductionandApplication.Beijing:Metal-lurgicalIndustryPress,2007:3
(
,.——.:,2007:3)
[11]PolyzakisAI,koroneosC,XydisG.EnergyConversionManagement,2008;49:551
[12]
BalsoneSJ.Buckets,Nozzles.TheGasTurbineHand-book.USDepartment,OfficeofFossilEnergy,NationalEnergyTechnologyLaboratory,2006:411
[13]
ViswanathanR,ScheirerST.MaterialsTechnologyforAdvancedLandBasedGasTurbine.EPRLPaloAltoCA94304,USA:PowerTechAssociate,Media,PA19063.USA
[14]ViswanathanR.GasTurbineBladeSuperalloyMaterialsPropertyHandbook,TopicalReport,2001
[15]
WallJB,HanisK.SuperalloysinIndustrialGasTurbines–anOveriew,presentedatthe9thworldconfer-enceoninvestmentcasting,oct.13–16,1996,CAUSA[16]
DataofMitsubishiCompany.TheChemicalCompositionsTable4,2,1ofSuperalloysUsedforTurbineRotorBlade.
(
.4,2,1)[17]
ZhangY,TuGY.In:ShiCX,LuD,RongK,eds.,FortyYearsofSuperalloyR&DinChina,Beijing:ChinaScienceandTechnologyPress,1996:88
(,.,,,.:,1996:88)
[18]
GuoJT.AStudyontheMaterialsandTechnologyofHigh–TemperatureTurbineandGuideVaneUsedforNavalGasTurbineEngine,2002,1,29.
(
.,2002,1,29)
[19]
GuoJT.StudyonUtilizationofRevertAlloyK640S(Stellite31).1996,9
(
.K640S(Stellite31).19969)[20]
ZhouLZ,GuoJT.TheDevelopmentofSuperalloyK445UsedforGasTurbineCompressorBlade,2005,11
(
,.K445,200511)
[21]
YuanC,GuoJT.TheDevelopmentofSuperalloyK447UsedforGasTurbineGuideVane,2005,11
(
,.K447,200511)
[22]
GuoJT,ZhouLZ,YuanC.TheDevelopmentofSpecialMaterialsUsedforNavalGasTurbineEngine,2004,11
(,
,
.
,2004
11)
[23]
WuYN,KePL,WangQM,SunC,WangFH,LouLH,WenLS.JIronSteelRes,2003;15(7):219
(
,,,,,,.,2003;15(7):219)
[24]
XiaoJX,GaoSK,HanWK.EnergyChina,2009;31(3):5
(
,,.,2009;31(3):5)[25]HofmeisterJ,WaataC,StarflingerJ,SchulenbergT,Lau-rienE.NuclearEngDes,2007;237:1513
[26]
YangWD.NuclearReactorMaterials.Beijing:AtomicEnergyPress,2006:3
(
..:,2006:3)[27]
HuZQ,GuoJT.In:Lecomte–BeckersJ,Car-tonM,SchubrtF,EnnisPJ,eds.,MaterialsforAdvancedPowerEngineering2006,ForschungszentrumJ¨ulichGmbH.2006:Part1,189
[28]
HasegawaM,TranslatedbySunSR.NuclearReactorMa-terialsHandbook.Beijing:ChinaElectricPowerPress,1987:2
(
,..:,1987:2)
[29]
ZhuRZ,LuYX.HeatResistantSteelsandSuperalloys.Beijing:ChemicalIndustryPress,1996:8
(
,..:,1996:8)
[30]
GangYM.ChinaStainlessSteelCorrosionHandbook,Beijing:MetallurgicalIndustryPress,1992:11
(
..:,1992:11)
[31]
LuSY.NickelBaseandIron–NickelBaseHeatResistantAlloys.Beijing:ChemicalIndustryPress,1989:10
(
..:,1989:10)
[32]
KutzM,TranslatedbyChenXB,ZhangSL.HandbookofMaterialsSelection,Beijing:ChemicalIndustryPress,2005:3
(KutzM,
,..:,2005:3)
[33]
YeJ.AmericanNickelBaseSuperalloys.Beijing:SciencePress,1978:5
(
..:,1978:5)[34]
TheEditorialBoardofChinaAeronauticalMaterialsHandbook.ChinaAeronauticalMaterialsHandbook.2ndEd,Vol.2,Beijing:StandardsPressofChina,2002:186
(
.()2.:,2002:186)
[35]LiQ,ZhouBX.ActaMetallSin,2001;37:8
(
,..,2001;37:8)[36]
InstituteofMetalResearch,ChineseAcademyofSciences.AMicrodissectionAnalysisofEngineTurbineDisc,1986:9
(
..1986:9)
[37]
PatelS.Corrosion–ResistantNickel–BaseAlloysforOil&GasService.InternationalSymposiumonAd-vancedSuperalloys–ProductionandApplication,May21–
5
:
527
25,2007.Shanghai,China
[38]
GuoJT.MaterialsScienceandEngineeringforSuperal-loysVol.01,ApplicationBasicTheory.Beijing:SciencePress,2008:18
(
.(),.:,2008:18)
[39]
KangCG.In:GanY,TianZL,DongH,FengD,WangXL,eds.,NickelandIronBaseCorrosionResistantSuer-palloys.ChinaMaterialsEngineeringCanon,Vol.02,Ma-terialsEngineeringforIronandSteel(Vol.01).Beijing:ChemicalIndustryPress,2006:525
(
.:,,,,..,2,
(),:,2006:525)
[40]
DaiPK,ChenJP.DevelopmentofNewTechniquesinThermalPowerGeneration,2004;(1):1
(
,.,2004;(1):1)[41]
ZhuRZ,LuYX.HeatResistantSteelsandSuperalloys.Beijing:ChemicalIndustryPress,1995:234(,.,:,1995:234)
[42]LiKX,LiuLS.PetKnowl,2007;(1):29
(
,.,2007;(1):29)[43]LiZX,ZhangY.PetRefineryEng,2004;34(11):44
(
,.,2004;34(11):44)[44]
ZhouRF,HanYF,LiSS.HighTemperatureStruc-turalMaterials.Beijing:NationalDefenceIndustryPress,
2006:49
(
,,..:,2006:49)
[45]
DepartmentofSuperalloysatBeijingIronandSteelInsti-tute.GH132.Beijing:NationalDefenceIndustryPress,1980:22
(
.GH132,:,1980:22)
[46]
HuangXY,WangD.In:ShiCX,LuD,RongK,eds.,FortyYearsofSuperalloyR&DinChina,Beijing:ChinaScienceandTechnologyPress,1996:92
(,.,,,,:,1996:92)
[47]
ShiC.X,LiHD,ZhouL.MaterialsScienceandEngi-neeringHandbook(Vol.01).Beijing:ChemicalIndustryPress,2004:241
(
,,.().:,2004:241)
[48]
TheEditorialBoardofChinaAeronauticalMaterialsHandbook.ChinaAeronauticalMaterialsHandbook(theSecondEdition)Vol.02.WroughtSuperalloysandCastSuperalloys.Beijing:StandardsPressofChina,2002:547
(
.(2)——.:,2002:547)
[49]
LouLH.PersonalCommunication,2009,5
(
.,20095)
因篇幅问题不能全部显示,请点此查看更多更全内容