(12)发明专利申请
(10)申请公布号(10)申请公布号 CN 104781951 A (43)申请公布日(43)申请公布日 2015.07.15
(21)申请号 201380059402.2(22)申请日 2013.11.18(30)优先权数据
10-2012-0130478 2012.11.16 KR
10-2013-0140175 2013.11.18 KR(85)PCT国际申请进入国家阶段日 2015.05.13
(86)PCT国际申请的申请数据
PCT/KR2013/010475 2013.11.18(87)PCT国际申请的公布数据
WO2014/077649 KO 2014.05.22(71)申请人LG化学株式会社
地址韩国首尔
(72)发明人朴敏洙 郑昞圭 黄闰泰 梁世雨
张锡基 金成钟 黃智英 具滋训(74)专利代理机构北京鸿元知识产权代理有限
公司 11327
代理人李静 黄丽娟
权利要求书1页 说明书11页 附图2页
(51)Int.Cl.
H01M 2/14(2006.01)
(54)发明名称
填充间隙用溶胀胶带(57)摘要
本申请涉及溶胀胶带以及填充间隙的方法。所述溶胀胶带可以应用于例如存在流体的间隙内,从而形成立体形状以填充间隙,并在需要时对形成间隙的对象进行固定。
C N 1 0 4 7 8 1 9 5 1 A CN 104781951 A
权 利 要 求 书
1/1页
1.一种填充间隙用溶胀胶带,包括:
基底膜,该基底膜根据ASTM D2240的肖式A硬度为70A以上,且根据JIS K-7311的肖氏D硬度为40D以上;以及
压敏粘合层,该压敏粘合层以平行于所述基底膜的长度方向的方向,在该基底膜的一个表面上形成。
2.根据权利要求1所述的填充间隙用溶胀胶带,其中,所述基底膜包含热塑性聚氨酯。3.根据权利要求2所述的填充间隙用溶胀胶带,其中,所述热塑性聚氨酯为具有至少两个异氰酸酯基的异氰酸酯化合物、多元醇化合物和增链剂的混合物的反应产物。
4.根据权利要求3所述的填充间隙用溶胀胶带,其中,相对于100重量份的所述多元醇化合物,所述异氰酸酯化合物和所述增链剂在混合物中的总含量为20至300重量份。
5.根据权利要求3所述的填充间隙用溶胀胶带,其中,所述异氰酸酯化合物为芳香族异氰酸酯化合物、脂环族异氰酸酯化合物或脂肪族异氰酸酯化合物。
6.根据权利要求3所述的填充间隙用溶胀胶带,其中,所述多元醇化合物为聚酯多元醇、聚酯多元醇、聚碳酸酯多元醇、聚己内酰胺多元醇、聚丁二烯多元醇或聚硫化物多元醇。
7.根据权利要求3所述的填充间隙用溶胀胶带,其中,所述增链剂为双官能羟基化合物、三官能羟基化合物、四官能羟基化合物或双官能胺化合物。
8.根据权利要求1所述的填充间隙用溶胀胶带,其中,在与流体接触时,所述基底膜变形为在垂直于长度方向的方向上具有0.001mm至2.00mm高度的三维形状。
9.根据权利要求1所述的填充间隙用溶胀胶带,其中,所述压敏粘合层包含丙烯酸类压敏粘合剂、聚氨酯压敏粘合剂、环氧压敏粘合剂、硅压敏粘合剂或橡胶压敏粘合剂。
10.根据权利要求1所述的填充间隙用溶胀胶带,其中,所述压敏粘合层包含与多官能交联剂交联的丙烯酸类聚合物。
11.一种填充在第一基板和与所述第一基板分隔开的第二基板之间形成的间隙的方法,包括:
将权利要求1所述的溶胀胶带的压敏粘合层粘贴至所述第一基板或所述第二基板上;以及
使所述溶胀胶带的基底膜与流体接触。
12.根据权利要求11所述的填充间隙的方法,其中,在所述第一基板和所述第二基板之间形成的间隙具有0.001mm至2.00mm的宽度。
13.根据权利要求11所述的填充间隙的方法,其中,所述第一基板和所述第二基板中的任意一个为电极组件,另一个为封装该组件的壳体。
14.一种电极组件,该电极组件具有权利要求1所述的胶带粘贴的外围表面。15.一种电池,包括:
权利要求14所述的电极组件;封装所述组件的壳体;和
在所述壳体中与所述组件接触的电解液。16.根据权利要求15所述的电池,其中,所述电极组件的压敏粘合胶带通过与所述电解液接触时变形为三维形状而将该组件固定至所述壳体内部。
17.根据权利要求15所述的电池,其中,所述电解液为碳酸酯类电解液。
2
CN 104781951 A
说 明 书填充间隙用溶胀胶带
1/11页
技术领域
[0001]
本申请涉及一种填充间隙用溶胀胶带及其用途。
背景技术
在很多情况下,需要对两个间隔对象之间的间隙进行填充,并且,具有间隙的两个对象应当通过填充该间隙而被固定在适当的位置。[0003] 例如,在通过将电极组件封装于圆柱形壳体中来制备电池时,电极组件通常具有小于圆柱形壳体的尺寸,因此在电极组件与壳体内壁之间存在间隙。在这种情况下,封装于壳体中的电极组件由于外部振动或冲击而在壳体内自由移动,这会使电池的内电阻增大或损坏电极片,大幅度降低电池的性能。因此,应当对间隙进行填充,并将电极组件牢固地固定在适当的位置。
[0002]
发明内容
技术问题
[0005] 本申请提供一种填充间隙用溶胀胶带及其用途。[0006] 技术方案
[0007] 本申请涉及一种填充间隙用溶胀胶带及其用途。所述胶带的实例可以包括基底膜以及在所述基底膜的一个表面上形成的压敏粘合层。本文中使用的术语“填充间隙用溶胀胶带”可以是指用于填充被间隔开的两个对象之间的间隙,并在需要时对这两个对象进行固定的胶带。
[0008] 作为所述基底膜,例如,可以使用聚氨酯膜。所述聚氨酯可以包括包含具有至少两个异氰酸酯基的异氰酸酯化合物(下文中,称作“聚异氰酸酯化合物”)、多元醇化合物和增链剂的混合物的反应产物。
[0009] 所述聚氨酯包括通过氨基甲酸酯键相连接的所有种类的聚合物化合物。该聚氨酯具有较大的分子量,并且通过如下方法制备:使位于多元醇末端的醇(-OH)基与聚异氰酸酯化合物的异氰酸酯(-NCO)基键合而形成氨基甲酸酯(-NHCOO-)基,并使异氰酸酯基与增链剂反应以保持再次形成氨基甲酸酯基。
[0010] 所述聚异氰酸酯化合物和增链剂可以参与形成氨基甲酸酯基的反应,从而形成聚氨酯的硬区。在这种情况下,对于聚异氰酸酯化合物与增链剂的重量比没有特别限制,但可以将15至60重量份的聚异氰酸酯化合物与5至20重量份的增链剂混合。[0011] 另外,所述多元醇如前所述用于为氨基甲酸酯键提供OH基,并形成聚氨酯的软区。
[0012] 可以通过将所述硬区与软区的重量比控制在合适范围内来调节聚氨酯膜的物理性质。例如,在所述聚氨酯膜中,相对于100重量份的多元醇化合物,构成聚氨酯膜的聚异氰酸酯化合物和增链剂的重量之和可以为20至300重量份、25至290重量份或30至280重量份。本文中使用的单位“重量份”可以是指组分间的重量比。当对聚氨酯膜的硬区与
[0004]
3
CN 104781951 A
说 明 书
2/11页
软区之间的重量比进行控制时,所制备聚氨酯膜的物理性质,例如,基底膜的硬度可以保持在所希望范围内,在实现三维形状以填充间隙时能够提供优异的支撑强度和电阻,并且可以防止在解绕胶带时膜的拉伸和变形。[0013] 作为所述聚异氰酸酯化合物,例如,可以使用芳香族异氰酸酯化合物、脂环族异氰酸酯化合物或脂肪族异氰酸酯化合物。
[0014] 作为所述芳香族异氰酸酯化合物,例如,可以使用甲苯二异氰酸酯、4,4'-亚甲基双(异氰酸苯酯)、双(异氰酸酯基丁基)苯、双(异氰酸酯基甲基)萘、双(异氰酸酯基甲基)二苯醚、苯撑二异氰酸酯、乙基苯撑二异氰酸酯、异丙基苯撑二异氰酸酯、二甲基苯撑二异氰酸酯、二乙基苯撑二异氰酸酯、二异丙基苯撑二异氰酸酯、三甲基苯三异氰酸酯、苯三异氰酸酯、联苯二异氰酸酯、甲苯胺二异氰酸酯、4,4-二苯基甲烷二异氰酸酯、3,3-二甲基二苯基甲烷-4,4-二异氰酸酯、联苄-4,4-二异氰酸酯、双(异氰酸酯基苯基)乙烯、3,3-二甲氧基联苯-4,4-二异氰酸酯、六氢化苯二异氰酸酯或六氢化二苯基甲烷-4,4-二异氰酸酯,并且可以合适地使用甲苯二异氰酸酯或4,4'-亚甲基双(异氰酸苯酯)。[0015] 作为所述脂环族异氰酸酯化合物,例如,可以使用1,2-双(异氰酸酯基甲基)环己烷、1,3-双(异氰酸酯基甲基)环己烷、1,4-双(异氰酸酯基甲基)环己烷、环己烷二异氰酸酯、甲基环己烷二异氰酸酯、二环己基二甲基甲烷异氰酸酯或2,2-二甲基二环己基甲烷异氰酸酯,但本发明并不局限于此。
[0016] 作为所述脂肪族异氰酸酯化合物,例如,可以使用2,2-二甲基戊烷二异氰酸酯、2,2,4-三甲基己烷二异氰酸酯、丁烷二异氰酸酯、1,3-丁二烯-1,4-二异氰酸酯、2,4,4-三甲基六甲撑二异氰酸酯、1,6,11-十一碳三异氰酸酯、1,3,6-六甲撑三异氰酸酯、1,8-二异氰酸酯-4-异氰酸酯基甲基辛烷、双(异氰酸酯基乙基)碳酸酯、双(异氰酸酯基乙基)醚,但本发明并不局限于此。[0017] 另外,作为所述多元醇化合物,例如,可以使用聚酯多元醇、聚酯多元醇、聚碳酸酯多元醇、聚己内酰胺多元醇、聚丁二烯多元醇、聚硫化物多元醇或衍生自它们的化合物,但可以合适地使用聚酯多元醇或聚酯多元醇。
[0018] 所述增链剂可以为具有较低分子量的、含有羟基或胺基的化合物。除非另外特别限定,术语“分子量”是指重均分子量。增链剂对于决定最终聚合物的形状或柔韧性、耐热性以及耐化学性可以起到关键作用。[0019] 作为所述增链剂,例如,可以使用双官能羟基化合物、三官能羟基化合物、四官能羟基化合物或双官能胺化合物。
[0020] 所述双官能羟基化合物可以为,例如乙二醇、二甘醇、三甘醇、丙二醇、二丙二醇、三丙二醇、1,3-丙二醇、1,3-丁二醇、新戊二醇、1,6-己二醇、1,4-环己烷二甲醇、氢醌双(2-羟基乙基)醚、乙醇胺、二乙醇胺、甲基二乙醇胺或苯基二乙醇胺。所述三官能羟基化合物可以为,例如丙三醇、三甲基丙烷、1,2,6-己三醇或三乙醇胺。所述四官能羟基化合物可以为,例如季戊四醇或N,N,N',N'-四(2-羟基丙基)乙二胺。所述双官能胺化合物可以为,例如二乙基甲苯二胺或二甲硫基甲苯二胺。然而,本发明并不局限于此。
[0021]
所述基底膜可以以聚氨酯膜的单层结构,或包括至少一层聚氨酯膜的多层结构来作为所述聚氨酯膜,可以使用单轴或双轴拉伸膜,或者非拉伸膜。
4
形成。
[0022]
CN 104781951 A[0023]
说 明 书
3/11页
作为所述聚氨酯膜,例如,可以使用热塑性聚氨酯(TPU)膜。[0024] 作为所述TPU膜,已知聚酯TPU膜、聚醚TPU膜或聚己内酯TPU膜,在这些膜中,可以选择合适的一种,但优选使用聚酯TPU膜。[0025] 需要时,所述TPU膜可以合适地包含添加剂,例如交联剂、表面活性剂、阻燃剂、发泡剂、染料或填料以获得所希望的效果。
[0026] 所述基底膜可以具有TPU膜的单层结构,或至少包括TPU膜的多层结构,例如双层结构。
[0027] 当基底膜包括除TPU膜以外的另外的膜时,该另外的膜可以是被制成在制备过程中的拉伸或收缩条件下,在与流体接触时发生变形(例如膨胀)的聚合物膜或片。[0028] 在一个实例中,另外的膜可以为包含酯或醚键的膜或包含纤维素酯化合物的膜。例如,该另外的膜可以为丙烯酸酯类膜、环氧类膜或纤维素类膜,但本发明并不局限于此。[0029] 包括在所述填充间隙用溶胀胶带中的基底膜可以为,例如,当与流体接触时能够在长度方向上变形的基底膜。该基底膜在与流体接触时可以在长度方向上膨胀。本文中使用的术语“长度方向”可以是指当基底膜保持平放时,垂直于该基底膜厚度方向(例如图2的箭头方向)的方向。另外,本文中使用的术语“垂直”和“水平”可以是指在不损害所希望效果的情况下基本上垂直和基本上水平,并且允许例如±10度、±5度或±3度以内的误差。
[0030] 所述基底膜可以是能够在其平面上的任何方向,例如水平、垂直或对角线方向上变形(例如膨胀)的任意一种,只要该基底膜在长度方向上变形(例如膨胀)即可。[0031] 所述基底膜的形状可以为但不特别限于,例如,膜或片的形状。另外,该膜或片状的基底膜可以具有矩形、圆形、三角形或无规则的形状。[0032] 另外,当所述基底膜与流体接触时,除长度方向以外,该膜可以在垂直方向上变形(例如膨胀)。由此,所述基底膜可以提供填充间隙用溶胀胶带,当膜与流体接触时,该胶带在垂直于长度方向的方向上变形成高度为例如0.001mm至2.0mm、0.001mm至1.00mm或0.01mm至0.5mm的三维形状。
[0033] 所述基底膜根据ASTM D2240测量的肖氏A硬度可以为70A以上。该基底膜根据JIS K-7311测量的肖氏D硬度可以为40D以上。当基底膜的硬度保持如上所述时,在实现三维形状时可以提供优异的支撑强度和电阻来填充间隙,并且可以防止在膜解绕过程中膜的拉伸和变形。对于所述基底膜的硬度上限没有特别限制,但是例如其肖氏A硬度的上限可以为100A或95A,而肖氏D硬度的上限可以为例如100D或85D。
[0034] 在所述基底膜的一个表面上可以形成压敏粘合层。如上所述,所述压敏粘合层可以以平行于所述基底膜的长度方向的方向,在该基底膜的一个表面上形成。图2为胶带2的横截面示意图,其包括以平行于基底膜(201)的长度方向的方向,在基底膜(201)的一个表面上形成的压敏粘合层(202)。
[0035] 当所述胶带被以平行于基底膜长度方向的方向形成的压敏粘合层固定时,在与流体接触时,该胶带可以通过膨胀而实现在垂直于基底膜长度方向的方向凸出的三维形状。作为所述压敏粘合层,例如,可以使用丙烯酰基压敏粘合剂、聚氨酯压敏粘合剂、环氧压敏粘合剂、硅压敏粘合剂或橡胶类压敏粘合剂,但本发明并不局限于此。[0037] 在一个实例中,压敏粘合层可以为包含例如通过多官能交联剂交联的丙烯酸类聚
[0036]
5
CN 104781951 A
说 明 书
4/11页
合物的丙烯酸类压敏粘合层。
[0038] 作为所述丙烯酸类聚合物,例如,可以使用重均分子量(Mw)为400,000以上的丙烯酸类聚合物。重均分子量为通过凝胶渗透色谱法(GPC)测量的相对于标准聚苯乙烯的转换值。所述丙烯酸类聚合物的分子量的上限可以但并不特别限于控制在2,500,000以下的范围内。
[0039] 所包含的丙烯酸类聚合物可以为使(甲基)丙烯酸酯单体与具有可交联官能团的可共聚单体聚合的形式。此处,对于所述单体的重量比没有特别限制。
[0040] 在所述聚合物中包含的(甲基)丙烯酸酯单体可以为但不限于例如(甲基)丙烯酸烷基酯,并且鉴于压敏粘合剂的粘结强度、玻璃化转变温度或压敏粘合性,可以使用包含具有1至14个碳原子的烷基的(甲基)丙烯酸烷基酯。作为这样的单体,可以使用(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸异丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸仲丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸2-乙基丁酯、(甲基)丙烯酸正辛酯、(甲基)丙烯酸异辛酯、(甲基)丙烯酸异壬酯、(甲基)丙烯酸十二烷基酯和(甲基)丙烯酸十四烷基酯中的一种或至少两种,但本发明并不局限于此。
[0041] 具有可交联官能团的可共聚单体为可以与(甲基)丙烯酸酯单体或聚合物中包含的另一单体共聚,并且可以在共聚后向聚合物主链提供能够与多官能交联剂反应的交联点的单体。此处,所述可交联官能团可以为羟基、羧基、异氰酸酯基、缩水甘油基或酰胺基,并且在一些情况下,可以为可光致交联官能团如丙烯酰基或甲基丙烯酰基。所述可光致交联官能团可以通过使含有可光致交联官能团的化合物与由可共聚单体提供的可交联官能团反应来引入。在制备压敏粘合剂的领域中,根据所希望的官能团,已知多种能够被使用的可共聚单体。作为这样的单体的实例,可以使用含有羟基的单体如(甲基)丙烯酸2-羟乙酯、(甲基)丙烯酸2-羟丙酯、(甲基)丙烯酸4-羟丁酯、(甲基)丙烯酸6-羟己酯、(甲基)丙烯酸8-羟辛酯、(甲基)丙烯酸2-羟基乙二醇酯或(甲基)丙烯酸2-羟基丙二醇酯;含有羧基的单体如(甲基)丙烯酸、2-(甲基)丙烯酰氧基乙酸、3-(甲基)丙烯酰氧基丙酸、4-(甲基)丙烯酰氧基丁酸、丙烯酸二聚体、衣康酸、马来酸和马来酸酐;(甲基)丙烯酸缩水甘油酯、(甲基)丙烯酰胺、N-乙烯基吡咯烷酮或N-乙烯基己内酰胺,但本发明并不局限于此。在所述聚合物中可以包含这些单体中的一种或至少两种。[0042] 需要时,所述丙烯酸类聚合物还可以包含另一种聚合形式的共聚单体,并且可以为例如由通式1表示的单体。[0043] [通式1]
[0044]
[0045]
在通式1中,R1至R3各自独立地为氢或烷基,R4为氰基、经烷基取代或未取代的
苯基、乙酰氧基或COR5,此处,R5为经烷基或烷氧基烷基取代或未取代的氨基或缩水甘油氧
6
CN 104781951 A
说 明 书
5/11页
基。
在通式1的R1至R5的定义中,烷基或烷氧基可以为含有1至8个碳原子的烷基或烷氧基,优选为甲基、乙基、甲氧基、乙氧基、丙氧基或丁氧基。[0047] 作为通式1单体的具体实例,可以使用羧酸的乙烯基酯,例如(甲基)丙烯腈、N-甲基(甲基)丙烯酰胺、N-丁氧基甲基(甲基)丙烯酰胺、苯乙烯、甲基苯乙烯或乙烯乙酸酯,但本发明并不局限于此。
[0048] 所述丙烯酸类聚合物可以通过例如溶液聚合法、光聚合法、本体聚合法、悬浮聚合法或乳液聚合法来制备。
[0049] 对于在所述压敏粘合层中交联丙烯酸类聚合物的多官能交联剂的种类没有特别限制,例如,可以根据聚合物中存在的可交联官能团的种类,从已知的交联剂如异氰酸酯交联剂、环氧交联剂、氮丙啶交联剂、金属螯合交联剂和光致交联剂中选择合适的交联剂。此处,作为所述异氰酸酯交联剂的实例,可以使用二异氰酸酯如甲苯二异氰酸酯、二甲苯二异氰酸酯、二苯甲烷二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、四甲基二甲苯二异氰酸酯或萘二异氰酸酯,或二异氰酸酯与多元醇的反应产物,此处,所述多元醇可以为三羟甲基丙烷。所述环氧交联剂可以为乙二醇二缩水甘油醚、三缩水甘油基醚、三羟甲基丙烷三缩水甘油基醚、N,N,N',N'-四缩水甘油基乙二胺或甘油二缩水甘油基醚;所述氮丙啶交联剂可以为N,N'-甲苯-2,4-双(1-氮丙啶甲酰胺)、N,N'-二苯甲烷-4,4'-双(1-氮丙啶甲酰胺)、三亚乙基三聚氰胺、二间苯二酰-1-(2-甲基氮丙啶)或三(1-氮丙啶基)氧化膦;所述金属螯合交联剂可以是使多价金属与诸如乙酰丙酮或乙酰乙酸乙酯的化合物配位的化合物。此处,所述多价金属可以为铝、铁、锌、锡、钛、锑、镁或钒,并且所述光致交联剂可以为多官能丙烯酸酯。此处,鉴于聚合物中包含的可交联官能团的种类,可以使用上述交联剂中的一种或至少两种。[0050] 在所述压敏粘合层中,可以鉴于所希望的硬度来调节多官能交联剂的重量比。[0051] 上述压敏粘合层可以通过如下方法形成:涂布通过将所述丙烯酸类聚合物和多官能交联剂共混而制备的涂布溶液,并在适当条件下诱发所述聚合物与多官能交联剂之间的交联反应。
[0052] 在不降低所希望效果的情况下,所述压敏粘合层还可以包含选自偶联剂、增粘剂、环氧树脂、紫外线稳定剂、抗氧化剂、调色剂、增强剂、填充剂、消泡剂、表面活性剂和增塑剂的至少一种添加剂。
[0053] 所述压敏粘合层的厚度可以根据其应用的用途(例如所希望的剥离强度或形成三维形状的能力)或待填充间隙的尺寸来合适地选择,但没有特别限制。
[0054] 所述胶带还可以包括粘贴在压敏粘合层上的剥离片(release sheet),以便在使用该胶带之前保护压敏粘合层。[0055] 在一个实例中,溶胀胶带可以是如下胶带:在将所述胶带通过压敏粘合层粘贴至形成间隙的两个对象中的任何一个的情况下,例如当将该胶带与流体接触时,由于使基底膜膨胀而产生的强度以及与压敏粘合层固定强度的平衡,因而能够变形为三维形状以填充间隙。
[0046] [0056]
图1为示出了通过使溶胀胶带在间隙之间变形为三维形状而填充间隙的过程的
示意图。
7
CN 104781951 A[0057]
说 明 书
6/11页
在一个实例中,被间隙分隔开的两个对象可以分别为电池的电极组件和封装该组件的壳体,但本发明并不局限于此。在这种情况下,所述胶带为用于电极组件的线胶带,其可以用于防止电极组件的解绕,并将电极组件固定在壳体内部。[0058] 如图2中所示,通过压敏粘合层将溶胀胶带(101)粘贴在形成间隙的两个对象(103和104)中的一个(104)上。当将所述胶带粘贴在对象上,并且将流体引入间隙间并与溶胀胶带(101)的基底膜接触时,该基底膜在长度方向上膨胀。此处,由于基底膜是在使用压敏粘合层将胶带(101)固定在对象(104)上的情况下膨胀,因此溶胀胶带(102)呈现三维形状,使其能够填充间隙,并在需要时将具有间隙的两个对象(103和104)彼此固定。[0059] 通过所述溶胀胶带实现的三维形状的尺寸,即,间隙的宽度可以为0.001mm至2.0mm、0.001mm至1.0mm或0.01mm至0.5mm。然而,所述三维形状的尺寸可以根据应用溶胀胶带的间隙的特定种类而改变,但本发明并不特别局限于此。取决于应用溶胀胶带的间隙的尺寸的三维形状尺寸,可以通过间隙的宽度来合适地进行控制。[0060] 本发明的另一方面提供一种填充间隙的方法。示例性的方法可以为填充由第一基板和与该第一基板分隔开的第二基板所形成的间隙的方法。所述方法可以包括,例如,将所述溶胀胶带的压敏粘合层粘贴至第一基板或第二基板上;以及使该溶胀胶带的基底膜与流体接触。
[0061] 在此方法中,对于形成间隙的第一基板和第二基板的具体种类和形状没有特别限制。即,在第一和第二基板之间形成待填充的间隙,并且可以使用能够将流体引入间隙的任何种类的基板。[0062] 另外,对于基板的形状也没有特别限制,例如,所述基板可以形成为如图1中所示的扁平形状、弯曲形状或不规则形状。在一个实例中,在第一基板和第二基板之间形成的间隙的宽度可以为但不限于0.001mm至2.0mm、0.001mm至1.00mm或0.01至0.5mm。[0063] 如图1中所示,所述方法可以通过如下步骤进行:在将胶带(101)通过压敏粘合层粘贴至形成间隙的第一基板和第二基板(103和104)中任意一个上的情况下,通过使基底膜与流体接触而膨胀,形成具有三维形状的胶带(102)。[0064] 在一个实例中,在所述方法中使用的第一基板和第二基板中的任意一个为用于电池的电极组件,另一个为封装该组件的壳体。与胶带接触的流体可以是电池中包含的电解液。
[0065] 在这种情况下,例如,所述方法可以通过如下步骤进行:在将胶带粘贴于电极组件上之后,将该胶带封装在壳体中,并将电解液注入壳体中。[0066] 对于所述电极组件的具体种类没有特别限制,并且可以包括本领域中使用的所有种类的普通组件。在一个实例中,电极组件可以为用于二次电池的电极组件,例如用于锂二次电池的电极组件。
[0067] 可以将所述溶胀胶带粘贴至包括电极组件外围表面的最末部分(其中设置有隔板的最外端),并且包围外围表面。另外,可以将所述溶胀胶带粘贴至覆盖电极组件外围表面全部表面的至少30%以上,并且可以对电极组件外围表面的上端和下端进行粘贴以将该组件暴露出来。
对于封装电极组件的壳体的种类没有特别限制,例如,作为本领域中的已知种类,
可以使用圆柱形壳体。
[0068]
8
CN 104781951 A[0069]
说 明 书
7/11页
另外,此处,对于所述电解液(其为用于使胶带变形(例如膨胀)的流体)的种类没有特别限制,并且根据电池的种类,使用本领域中已知的电解液。例如,当电池为锂二次电池时,电解液可以包含例如非水有机溶剂和锂盐。此处,可以将所述锂盐溶解在所述有机溶剂中以用作电池中的锂离子来源,并促进锂离子在正极和负极之间的传输。作为支持的电解质,所述锂盐可以包括LiPF6、LiBF4、LiSbF6、LiAsF6、LiCF3SO3、LiN(CF3SO2)3、Li(CF3SO2)2N、LiC4F9SO3、LiClO4、LiAlO4、LiAlCl4、LiN(CxF2x+1SO2)(CyF2y+1SO2)(在此,x和y为自然数)、LiCl、LiI、二草酸硼酸锂中的一种或至少两种。在所述电解液中,锂盐的浓度可以根据其用途而改变,且通常在0.1M至2.0M的范围内变化。另外,所述有机溶剂用作能够对参与电池电化学反应的离子进行传输的介质,并且可以包括例如以下中的一种或至少两种:苯、甲苯、氟苯、1,2-二氟苯、1,3-二氟苯、1,4-二氟苯、1,2,3-三氟苯、1,2,4-三氟苯、氯苯、1,2-二氯苯、1,3-二氯苯、1,4-二氯苯、1,2,3-三氯苯、1,2,4-三氯苯、碘苯、1,2-二碘苯、1,3-二碘苯、1,4-二碘苯、1,2,3-三碘苯、1,2,4-三碘苯、氟甲苯、1,2-二氟甲苯、1,3-二氟甲苯、1,4-二氟甲苯、1,2,3-三氟甲苯、1,2,4-三氟甲苯、氯甲苯、1,2-二氯甲苯、1,3-二氯甲苯、1,4-二氯甲苯、1,2,3-三氯甲苯、1,2,4-三氯甲苯、碘甲苯、1,2-二碘甲苯、1,3-二碘甲苯、1,4-二碘甲苯、1,2,3-三碘甲苯、1,2,4-三碘甲苯、R-CN(其中,R为含有2至50个碳原子的直链、支链或环状烃基,该烃基可以为双键、芳环或醚键)、二甲基甲酰胺、乙酸二甲酯、二甲苯、环己烷、四氢呋喃、2-甲基四氢呋喃、环己酮、乙醇、异丙醇、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸甲丙酯、碳酸丙烯酯、丙酸甲酯、丙酸乙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、二甲氧基乙烷、1,3-二氧戊环、二甘醇二甲醚、四甘醇二甲醚、碳酸乙烯酯、碳酸丙烯酯、γ-丁内酯、环丁砜、戊内酯、癸内酯或甲瓦龙酸内酯,但本发明并不局限于此。
[0070] 在所述溶胀胶带中,如上所述,在具有变形特性(例如膨胀特性)的基底膜的一个表面上形成压敏粘合层。因此,在应用上述方法后,可以将该胶带粘贴在电极组件上并由此实现三维形状。结果是,所述胶带可以有效填充电极组件与壳体内壁之间的间隙,并将电极组件固定在适当位置,从而防止电极组件的移动和震动。[0071] 换句话说,所述溶胀胶带的“三维形状”是通过与电解液接触的溶胀胶带的基底膜变形强度和压敏粘合层剥离强度之间的相互作用而形成的,并且可以包括能够将电极组件牢固地固定于壳体中的所有结构。
[0072] 图3为通过上述方法制备的实例电池,其中溶胀胶带(51a和51b)通过电解液而形成三维形状,并将电极组件(53)固定在壳体(52)上。[0073] 例如,如图3的左示意图中所示,在将溶胀胶带(51a)粘贴至组件(53)并将组件插入壳体(52)中的操作中,该胶带可以保持扁平形状。然而,自将组件与注入壳体(52)中的电解液接触预定的时间后,如图3的右示意图中所示,溶胀胶带(53b)可以变形为三维形状以填充电极组件(53)与壳体(52)之间的间隙,并将它们固定在适当位置。[0074] 有益效果
[0075] 根据本发明的溶胀胶带应用于存在流体的间隙之间,由此实现三维形状,从而可以用于填充间隙,以及在需要时对形成间隙的对象进行固定。附图说明
9
CN 104781951 A[0076]
说 明 书
8/11页
图1为显示了使溶胀胶带形成三维形状的过程的示意图;[0077] 图2为溶胀胶带的横截面视图;
[0078] 图3为显示了在电池的制备中使溶胀胶带形成三维形状的过程的示意图。具体实施方式
[0079] 下文中,将参照实施例和比较例来详细地描述溶胀胶带,但所述溶胀胶带的范围并不局限于下面的实施例。[0080] 以下,在实施例和比较例中,通过下面的方法来评价物理性能。[0081] 1.溶胀胶带形成三维形状的能力评价
[0082] 将实施例和比较例中制备的电池在室温下储存1天,拆解以从电池中取出电极组件,并对粘贴在电极组件上的溶胀胶带的状态进行评价,从而按照下面的标准评价形成三维形状的能力。
[0083] <形成三维形状的能力的评价标准>[0084] ○:观察到溶胀胶带的三维形状[0085] △:未观察到溶胀胶带的三维形状[0086] ×:未观察到溶胀胶带的三维形状,且胶带自电极组件上剥落[0087] 2.溶胀胶带填充间隙的能力(防止电极组件移动的能力)评价
[0088] 通过评价防止电极组件移动的特性的方法来评价溶胀胶带填充间隙的能力。在此方法中,例如,包括低振动评估法和低冲击评估法。在低振动评估法中,用于振动试验的方法按照UN38.3规范,并且当电池在评估后被切断时,判定为终端通过移动而断开。在低冲击评估法中,当将电池置于八角形柱体中,旋转,并在预定时间后被切断时,判定为终端通过移动而断开。按照下面的标准,对通过上述方法评估的溶胀胶带填充间隙的能力进行评价。
[0089] <填充间隙的能力的评价标准>[0090] ○:在低振动和低冲击评估后测量到电池电源[0091] △:在低振动和低冲击评估后测量到电池电源,但电阻增大10%以上[0092] ×:在低振动和低冲击评估后未测量到电池电源[0093] 3.硬度的评价
[0094] 按照ASTM D2240测量基底膜的肖氏A硬度,并按照JIS K-7311测量肖氏D硬度。[0095] 实施例1.
[0096] 溶胀胶带的制备[0097] 如下的非拉伸膜:其为使用以38:50:12的重量比分别共混芳香族异氰酸酯化合物(作为异氰酸酯化合物)、聚酯多元醇(作为多元醇化合物)和丁二醇(作为增链剂)而制备的混合物制备的热塑性聚氨酯(TPU)膜,其具有95A的肖氏A硬度、18%的长度方向变形率(膨胀率)和约40μm的厚度,并将其用作基底膜。作为包含使用异氰酸酯交联剂与所述基底膜的一个表面交联的丙烯酸类压敏粘合剂树脂的丙烯酸类压敏粘合层,形成对于玻璃板的剥离强度为1,200gf/25mm且厚度为15μm的压敏粘合层,由此制备溶胀胶带。电极组件和电池的制备
[0099] 粘贴上述制备的溶胀胶带以覆盖成型为卷状的电极组件(横截面直径为17.2mm)
[0098]
10
CN 104781951 A
说 明 书
9/11页
外围约50%的面积,所述电极组件包括负极、正极和隔板,然后将该组件插入圆柱形壳体(横截面直径为17.5mm)中。接下来,将碳酸酯类电解液注入所述壳体内并密封该壳体,由此完成电池的制备。[0100] 实施例2.
[0101] 溶胀胶带的制备[0102] 如下的非拉伸膜:其为使用以20:75:5的重量比分别共混芳香族异氰酸酯化合物(作为异氰酸酯化合物)、聚酯多元醇(作为多元醇化合物)和丁二醇(作为增链剂)而制备的混合物制备的热塑性聚氨酯(TPU)膜,其具有75A的肖氏A硬度、19%的长度方向变形率(膨胀率)和约40μm的厚度,并将其用作基底膜。作为包含使用异氰酸酯交联剂与所述基底膜的一个表面交联的丙烯酸类压敏粘合剂树脂的丙烯酸类压敏粘合层,形成对于玻璃板的剥离强度为1,230gf/25mm且厚度为15μm的压敏粘合层,由此制备溶胀胶带。[0103] 电极组件和电池的制备
[0104] 粘贴上述制备的溶胀胶带以覆盖成型为卷状的电极组件(横截面直径为17.2mm)外围约50%的面积,所述电极组件包括负极、正极和隔板,然后将该组件插入圆柱形壳体(横截面直径为17.5mm)中。接下来,将碳酸酯类电解液注入所述壳体内并密封该壳体,由此完成电池的制备。[0105] 实施例3.
[0106] 溶胀胶带的制备[0107] 如下的非拉伸膜:其为使用以58:27:15的重量比分别共混芳香族异氰酸酯化合物(作为异氰酸酯化合物)、聚酯多元醇(作为多元醇化合物)和丁二醇(作为增链剂)而制备的混合物制备的热塑性聚氨酯(TPU)膜,其具有85D的肖氏D硬度、10%的长度方向变形率(膨胀率)和约40μm的厚度,并将其用作基底膜。作为包含使用异氰酸酯交联剂与所述基底膜的一个表面交联的丙烯酸类压敏粘合剂树脂的丙烯酸类压敏粘合层,形成对于玻璃板的剥离强度为1,130gf/25mm且厚度为15μm的压敏粘合层,由此制备溶胀胶带。[0108] 电极组件和电池的制备
[0109] 粘贴上述制备的溶胀胶带以覆盖成型为卷状的电极组件(横截面直径为17.2mm)外围约50%的面积,所述电极组件包括负极、正极和隔板,然后将该组件插入圆柱形壳体(横截面直径为17.5mm)中。接下来,将碳酸酯类电解液注入所述壳体内并密封该壳体,由此完成电池的制备。[0110] 实施例4.
[0111] 溶胀胶带的制备[0112] 如下的非拉伸膜:其为使用以55:30:15的重量比分别共混芳香族异氰酸酯化合物(作为异氰酸酯化合物)、聚酯多元醇(作为多元醇化合物)和丁二醇(作为增链剂)而制备的混合物制备的热塑性聚氨酯(TPU)膜,其具有80D的肖氏D硬度、11%的长度方向变形率(膨胀率)和约40μm的厚度,并将其用作基底膜。作为包含使用异氰酸酯交联剂与所述基底膜的一个表面交联的丙烯酸类压敏粘合剂树脂的丙烯酸类压敏粘合层,形成对于玻璃板的剥离强度为1,150gf/25mm且厚度为15μm的压敏粘合层,由此制备溶胀胶带。电极组件和电池的制备
[0114] 粘贴上述制备的溶胀胶带以覆盖成型为卷状的电极组件(横截面直径为17.2mm)
[0113]
11
CN 104781951 A
说 明 书
10/11页
外围约50%的面积,所述电极组件包括负极、正极和隔板,然后将该组件插入圆柱形壳体(横截面直径为17.5mm)中。接下来,将碳酸酯类电解液注入所述壳体内并密封该壳体,由此完成电池的制备。[0115] 实施例5.
[0116] 溶胀胶带的制备[0117] 如下的非拉伸膜:其为使用以40:48:12的重量比分别共混芳香族异氰酸酯化合物(作为异氰酸酯化合物)、聚酯多元醇(作为多元醇化合物)和丁二醇(作为增链剂)而制备的混合物制备的热塑性聚氨酯(TPU)膜,其具有45D的肖氏D硬度、14%的长度方向变形率(膨胀率)和约40μm的厚度,并将其用作基底膜。作为包含使用异氰酸酯交联剂与所述基底膜的一个表面交联的丙烯酸类压敏粘合剂树脂的丙烯酸类压敏粘合层,形成对于玻璃板的剥离强度为1,200gf/25mm且厚度为15μm的压敏粘合层,由此制备溶胀胶带。[0118] 电极组件和电池的制备
[0119] 粘贴上述制备的溶胀胶带以覆盖成型为卷状的电极组件(横截面直径为17.2mm)外围约50%的面积,所述电极组件包括负极、正极和隔板,然后将该组件插入圆柱形壳体(横截面直径为17.5mm)中。接下来,将碳酸酯类电解液注入所述壳体内并密封该壳体,由此完成电池的制备。[0120] 比较例1.
[0121] 溶胀胶带的制备[0122] 如下的非拉伸膜:其为使用以15:80:5的重量比分别共混芳香族异氰酸酯化合物(作为异氰酸酯化合物)、聚酯多元醇(作为多元醇化合物)和丁二醇(作为增链剂)而制备的混合物制备的热塑性聚氨酯(TPU)膜,其具有65A的肖氏A硬度、30%的长度方向变形率(膨胀率)和约40μm的厚度,并将其用作基底膜。作为包含使用异氰酸酯交联剂与所述基底膜的一个表面交联的丙烯酸类压敏粘合剂树脂的丙烯酸类压敏粘合层,形成对于玻璃板的剥离强度为1,300gf/25mm且厚度为15μm的压敏粘合层,由此制备溶胀胶带。[0123] 电极组件和电池的制备
[0124] 粘贴上述制备的溶胀胶带以覆盖成型为卷状的电极组件(横截面直径为17.2mm)外围约50%的面积,所述电极组件包括负极、正极和隔板,然后将该组件插入圆柱形壳体(横截面直径为17.5mm)中。接下来,将碳酸酯类电解液注入所述壳体内并密封该壳体,由此完成电池的制备。[0125] 比较例2.
[0126] 溶胀胶带的制备[0127] 如下的非拉伸膜:其为使用以32:58:10的重量比分别共混芳香族异氰酸酯化合物(作为异氰酸酯化合物)、聚酯多元醇(作为多元醇化合物)和丁二醇(作为增链剂)而制备的混合物制备的热塑性聚氨酯(TPU)膜,其具有35D的肖氏D硬度、20%的长度方向变形率(膨胀率)和约40μm的厚度,并将其用作基底膜。作为包含使用异氰酸酯交联剂与所述基底膜的一个表面交联的丙烯酸类压敏粘合剂树脂的丙烯酸类压敏粘合层,形成对于玻璃板的剥离强度为1,280gf/25mm且厚度为15μm的压敏粘合层,由此制备溶胀胶带。电极组件和电池的制备
[0129] 粘贴上述制备的溶胀胶带以覆盖成型为卷状的电极组件(横截面直径为17.2mm)
[0128]
12
CN 104781951 A
说 明 书
11/11页
外围约50%的面积,所述电极组件包括负极、正极和隔板,然后将该组件插入圆柱形壳体(横截面直径为17.5mm)中。接下来,将碳酸酯类电解液注入所述壳体内并密封该壳体,由此完成电池的制备。
[0130] 在实施例和比较例中测量的物理性能汇总并列于表1中。[0131] [表1]
[0132]
[0133] [0134] [0135] [0136] [0137] [0138] [0139] [0140] [0141] [0142] [符号说明]103,104:形成间隙的对象101:实现三维形状之前的溶胀胶带102:实现三维形状之后的溶胀胶带2:溶胀胶带201:基底膜202:压敏粘合层51a,51b:溶胀胶带52:壳体53:电极组件
13
CN 104781951 A
说 明 书 附 图
1/2页
图1
图2
14
CN 104781951 A
说 明 书 附 图
图3
15
2/2页
因篇幅问题不能全部显示,请点此查看更多更全内容