混凝土裂缝成因及处理措施
作者:施达 李艳
来源:《职业·中旬》2011年第03期
一、水化裂缝产生的原因 1.关于水化裂缝
水泥水化是一个放热化学反应,其间能产生一定的水化热。每克水泥放出502J热量。以水泥用量300~550kg/m3来计算,每1m3混凝土将放出15500~27500KJ的热量。混凝土是热的不良导体,特别是大体积混凝土,其产生的大量水化热不容易散发,导致内部温度不断上升,而混凝土表面散热快,造成混凝土内外截面产生温度梯度。昼夜温差大时,内外温度差别更大,内部混凝土热胀变形产生压力,外部混凝土冷缩变形产生拉力。由于此时混凝土拉抗强度较低,当混凝土内部拉应力超过其抗拉强度时,混凝土便产生裂缝。这种裂缝的特点是裂缝出现在混凝土浇筑后的3~5天,初期出现的裂缝很细,随着时间的发展而继续扩大,甚至达到贯穿的程度。
体积大的混凝土结构的截面尺寸较大,在施工过程中,因水泥水化过程中释放出大量水化热,且体积大热量不易散发,造成较大温升,从而导致体积增大。当这种变形不受约束时,混凝土结构内部不会产生应力。但实际上这种变形肯定会受到约束,约束有两种:一是混凝土与外部环境温度差异引起的约束;另一种是由于内部的条件不同产生的约束,以上两种约束产生的应力为温度应力。其次,湿度变化引起混凝土内部各单元体之间的相互约束,产生的应力为干缩应力。因为湿度传导率远小于热度传导率(约为1/1600),所以它主要在混凝土表面附近;混凝土自身体积变形不能自由伸缩所产生的应力,称为自身体积变形应力;还有地基非均匀沉降、模板走样也会产生变形应力。
在以上非结构荷载作用下所产生的应力中,主要是温度应力和变形应力。大体积混凝土结构施工时,若混凝土浇筑体边界无约束(如底、顶板顶面),在早期水化热温度迅速升高阶段,混凝土内、外散热条件的差异形成温度梯度、表面受拉、内部受压。当拉应力超过混凝土抗拉强度时,混凝土表面就产生裂缝。在混凝土的降温阶段,其温差引起的变形加上混凝土的体积收缩变形,受到地基和结构边界条件的约束时,在浇筑体中央断面产生内部拉应力;当该拉应力超过混凝土抗拉强度时,混凝土整个截面就产生贯穿裂缝。 2.施工方面的原因
(1)在施工过程中,出现违章施工、不当施工造成混凝土裂缝。如夏季施工时由于运输车交通不畅耽搁时间,混凝土的和易性和流动性较差,现场人为加水,造成混凝土强度的降低,加水部分的混凝土水灰比和强度与原配合比的混凝土不同,造成不同配比混凝土的凝缩裂缝和干缩裂缝。
龙源期刊网 http://www.qikan.com.cn
(2)振捣方式不当引起裂缝。不正确的振捣方式会造成混凝土分层离析、表面浮浆而使混凝土面层开裂;或造成混凝土砂浆大量向低处流淌,致使混凝土产生不均匀沉降收缩而在结构厚薄交界处出现裂缝。
(3)现场养护不当造成混凝土收缩开裂。在施工现场浇筑混凝土时不能做到及时覆盖保温养护,一般总要等到最后一遍抹光结束后才覆盖,有的甚至不覆盖,结果导致混凝土表面开裂。
3.干裂缝产生的原因
混凝土浇注后仍处于塑料性状态时,因其表面水分蒸发过快而产生的裂缝。这类裂缝多在表面出现,形状不规则,长短不一,呈龟裂状深度一般不超过50mm,但薄板结构如果混凝土中掺加有含泥量大的粉砂则可能穿透。这主要是由于混凝土浇注后3~4小时左右时,表面没有被覆盖。特别是平板结构在炎热或大风干燥天气条件下,表面水分蒸发过快,或者是被基础、模板吸水过快,以及混凝土本身的高水化热等原因造成混凝土产生急剧收缩,而此时混凝土强度几乎为零,不能抵抗这种变形力而导致开裂,从混凝土中蒸发和被吸收水分的速度越快,干缩裂缝越易产生。 二、混凝土的控制措施 1.水化裂缝的控制措施
混凝土内部的温度与厚度及水泥品种、水泥用量有关,混凝土越厚,水泥用量越大,水化热越高的水泥,其内部温度越高,形成温度应力越大,产生裂缝的可能性越大。对于大体积混凝土,其形成的温度应力与结构尺寸相关。在一定尺寸范围内,混凝土结构尺寸越大,温度应力也越大,因而引起裂缝的危险性也越大,这就是大体积混凝土易产生温度裂缝的主要原因。因此,防止大体积混凝土出现裂缝最根本的措施就是控制内部和表面的温度差。减少温差的措施是选用中热硅酸盐水泥或低热矿渣硅酸盐水泥,在掺加泵送剂或粉煤灰时,也可选用矿渣硅酸盐水泥。此外,要充分利用混凝土后期强度,以减少水泥用量。为更好地控制水化热所造成的温度升高,减少温度应力,可以根据工程结构实际承受荷载的情况,对工程结构的强度和刚度进行复核与验算,取得设计单位的同意后,可用56天或90天抗压强度代替28天抗压强度作为设计强度。过去土木建筑物层数不多、跨度不大,且多为现场搅拌,施工工期短,混凝土标准试验龄期定为28天。对于具有大体积钢筋混凝土基础的高层建筑,大多数的施工期限很长,少则1~2年,多则4~5年,28天不可能向混凝土结构特别是向大体积钢筋混凝土基础施加设计荷载。因此,将试验混凝土标准强度的龄期推迟到56天或90天是合理的。 正是基于此,国内外许多专家均提出:如果充分利用混凝土的后期强度,则可使每1m3混凝土的水泥用量减少40~70kg左右,则混凝土温度相应降低4~7℃。另一方面,应当严格控制混凝土的出机温度和浇筑温度。对于出机温度和浇筑温度的控制,《混凝土质量控制标准》明确规定:高温季节施工时,混凝土最高浇筑温度,不宜超过35℃。为了降低混凝土的
龙源期刊网 http://www.qikan.com.cn
出机温度和浇筑温度,可以采取下面的办法:降低原料温度,在搅拌混凝土时加冰块冷却,生产砼时避开当天高温时段,对搅拌运输车罐体、泵送管道采取保温、冷却措施。 2.施工阶段的裂缝控制措施
(1)控制浇灌温度。要降低混凝土的最高温度和温差,比较直接的措施是降低浇筑温度。为了降低混凝土从搅拌机出料到卸料、运输和浇灌振捣后的温度,减少结构的内外温差,一般应根据季节采取措施。如夏季施工时,采用一个坡度、薄层浇灌、循序推进、一次到顶等措施来缩小混凝土暴露面积及加快浇灌速度,缩短浇灌时间。在冬季施工时,对结构厚度在1.0 m以上的混凝土可继续施工,但应保证保温浇灌、保温养护,一般可利用混凝土本身散发的水化热养护自己,并要求在混凝土没有达到允许临界强度以前防止冻害。
(2)合理安排施工进度。对混凝土浇筑,应遵循“同时浇捣,分层堆累,一次到顶,循序渐进”的工艺。每次浇筑又分几层,其层间的间隔时间应尽量缩短,必须在上层混凝土初凝之前,开始浇筑下层混凝土。层间最长的时间间隔不大于混凝土的初凝时间。当层间间隔时间超过混凝上的初凝时间,层面应按施工缝处理。在上层混凝土浇筑前,应用压力水冲洗混凝土表面的污物,充分湿润但不得有水,浇筑前在接合面铺垫高比例砼素浆。
(3)改进搅拌工艺和振捣工艺。在搅拌混凝土时,改变以往的投料程序,采取先把水、水泥和砂拌合后,再投放石子进行搅拌的新方法。这种搅拌工艺的主要优点是无泌水现象,混凝土上下层强度差减少,可有效防止水分向石子与水泥砂浆面的集中,从而使硬化后的界面过渡层的结构致密、粘结加强。 3.干缩裂缝的控制措施
一般分为两个控制阶段,设计阶段和施工阶段。设计阶段由设计人员对混凝土强度等级、钢筋的品种、规格、建筑物的结构形式等进行统筹设计,有效控制裂缝。施工阶段采取加入外加剂改善混凝土性能、降低水泥水化热、降低混凝土内外温差、设置施工缝或变形缝、加强混凝土中的配筋率等措施来减少混凝土的收缩,防止混凝土产生有害裂缝。主要包括以下几点: (1)砂率的选择。砂率的选择对控制混凝土的裂缝有积极作用,混凝土的干燥收缩随砂率的增大而增大。由于砂率减小使粗骨料含量增大,在相同条件下混凝土的弹性模量较高,收缩量较小;而且粗骨料对收缩的约束作用,可减少开裂的可能。使用粗骨料,尽量选用粒径较大、级配良好的粗骨料,在厚大无筋或少筋的大体积混凝土中,掺总量不超过20%的大石块,减少混凝土的用量,以达到节省水泥和降低水化热的目的。
(2)使用低热水泥如矿渣水泥等,能明显降低混凝土的最高温度。伴随减小混凝土内表温差,起到减小温度应力的作用,从而减少裂缝的产生。水泥水化热测定按现行国家标准《水泥水化热实验方法(直接法)》测定,要求配制混凝土所用水泥7天的水化热不大于25 kJ/kg。为降低水化绝热温升、减小体积变形,混凝土一般不宜使用水化热高水泥。应使用水化热较低
龙源期刊网 http://www.qikan.com.cn
的中热硅酸盐水泥和低热矿渣水泥,更不宜使用早强型水泥。因此,在满足混凝土设计要求的前提下,应该尽量采用低水化热水泥。其次是优化混凝土的配合比,以便在保证混凝土强度及流动度条件下,尽量节省水泥、降低混凝土绝热温升,按照基于绝热温升控制的高性能混凝土配合比优化设计功能准则对配合比进行优化。
(3)采用混凝土双掺技术。即在混凝土中加入优质粉煤灰,掺入量一般为水泥用量的20%左右,掺入缓凝型减水剂,用量为水泥用量的 1.0%左右。通过采用双掺技术,减少水泥用量,降低水化热并使混凝土在常温下延长初凝时间。
(4)加入UEA或AEA膨胀剂。用量为水泥用量的14%左右,使混凝土在凝固过程中不产生收缩,这种方法还可以提高混凝土的自防水能力。 4.混凝土的养护
为保证混凝土有适宜的硬化条件,混凝土终凝后,对不易被塑料薄膜完全覆盖的部位,可采用浇水保湿。混凝土升温阶段如果因表面未能完全覆盖而出现局部干燥时,可浇热水(40℃~50 ℃)湿润表面,防止出现干燥裂缝。降温阶段可浇自来水养护,保温保湿养护时间为14 天。施工前再准备好一层养护用塑料薄膜和一层再生棉毡,根据环境气温变化情况对保温保湿质量加以调整。
(作者单位:浙江省宁波市鄞州区城市建设投资发展有限公司)
因篇幅问题不能全部显示,请点此查看更多更全内容