您的当前位置:首页正文

供应商评价和选择的模糊综合决策模型

2021-03-27 来源:步旅网
International Journal of Production Research

ISSN: 0020-7543 (Print) 1366-588X (Online) Journal homepage: http://www.tandfonline.com/loi/tprs20Fuzzy hybrid decision model for supplierevaluation and selection

Pandian Pitchipoo , Ponnusamy Venkumar & SivaprakasamRajakarunakaran

To cite this article: Pandian Pitchipoo , Ponnusamy Venkumar & SivaprakasamRajakarunakaran (2013) Fuzzy hybrid decision model for supplier evaluation andselection, International Journal of Production Research, 51:13, 3903-3919, DOI:10.1080/00207543.2012.756592To link to this article: http://dx.doi.org/10.1080/00207543.2012.756592Published online: 18 Mar 2013.

Submit your article to this journal

Article views: 558

View related articles

Citing articles: 16 View citing articles

Full Terms & Conditions of access and use can be found at

http://www.tandfonline.com/action/journalInformation?journalCode=tprs20

Download by: [Tongji University]

Date: 08 November 2015, At: 05:58

InternationalJournalofProductionResearch,2013

Vol.51,No.13,3903–3919,http://dx.doi.org/10.1080/00207543.2012.756592

Fuzzyhybriddecisionmodelforsupplierevaluationandselection

PandianPitchipoo*,PonnusamyVenkumarandSivaprakasamRajakarunakaran

DepartmentofMechanicalEngineering,KalasalingamUniversity,Krishnankoil,TamilNadu,India

(Received7February2012;finalversionreceived4December2012)

Thispaperproposesastructured,integrateddecisionmodelforevaluatingsuppliersbycombiningthefuzzyanalyticalhierarchyprocess(FAHP)andgreyrelationalanalysis(GRA).Thequalitativeandpartially-knowninformationisincor-poratedinthisdecisionmodelusingthefuzzysettheory.Inthisproposedmethodology,theweightsoftheevaluationcriteriaarecalculatedbyusingFAHP,thentherankingofthesuppliersisdeterminedbyusingGRA.Finallytoshowtherobustnessofthemodel,asensitivityanalysisisalsoperformed.Inthisstudy,thesupplierselectionproblemofanelectroplatingindustryinthesouthernpartofIndiawasinvestigated,demonstratingtheeffectivenessofthisdevelopedintegratedmodel.Thismodelcanhelpinsolvingthecomplexdecisioninsupplierselectionpractice.Theresultsgener-atedfromthemodelareproperlyvalidatedandfinallyasystematicsolutionwithdecisionsupportisprovidedfordeci-sionmakers.Thismodelcanbeintegratedwithotherdecisionsupportsystemsofsimilarkindsofindustries.

Keywords:supplierselection;multi-criteriadecisionmaking;greyrelationalanalysis;fuzzyanalytichierarchyprocess;hybridmodel

Downloaded by [Tongji University] at 05:58 08 November 2015 1.Introduction

Supplierselectionisincreasinglyrecognisedasanimportantdecisioninbothmanufacturingandprocessindustries.Inmostoftheindustries,thecostinvolvedinthepurchasingofmaterialsismorethan50%ofthetotalcostofproduction,anditwasfoundthatmorethan30%oferrorsmadeduringthemanufacturingprocesswereblamedonthesupplyofdefectivegoodsfromasupplier(AnthonyInman1992).Totriumphoverthisproblem,selectingtherightsupplierisessential.Theidentificationofsupplierswiththehighestpotentialisessentialformeetingafirm’sneedsconsistentlyandatanacceptablecost.Goodsuppliersallowenterprisestoachievegoodmanufacturingperformanceandgetthemaximumbenefitsforthebusinessindustryorforthefirm.Inindustries,theprocurementdepartmentoftenplaysanimportantroleinselectingappropriatesuppliersandreducingpurchasingcosts.Sosupplierselectionisthemajorinflu-encingfactorinthepurchasingprocess.Theresponsibilityofthepurchasingdepartmentistoidentifythesetofprospec-tivesuppliers,evaluatetheirperformances,andthenselecttherightsupplier.

Thesupplierselectionproblemnaturallypossessesvariouscomplicatingelementsthatmakeittoughtosolve.Regardingsupplierselection,theliteratureshowsavarietyofresearchusingconceptual,empiricalstudyanddecisionsupportmethods.Generallyinsupplierselectiontherearetwoimportantissuestobeconsidered,oneiswhichcriteriashouldbeconsidered,andtheotheronerelatestowhatmethodsshouldbeused.Tosolvethesupplierselectionproblemscientifically,anattemptismadeinthispapertodevelopahybriddecisionmodelusingFAHPandGRAforselectingthebestsupplier.Thismodelwillbeillustratedwithacasestudyintheelectroplatingindustry.

Theorganisationoftheremainderofthispaperisasfollows:inSection2,areviewoftherelatedliteratureinsup-plierevaluationandselectionisgiven;Section3describestheproblemandproposedframework;inSection4themodeldevelopmentandanalysisareexplained;andSection5presentstheconclusionsofthepaper.2.Literaturereview

Theliteratureinthefollowingtwocategorieswasselectedandreviewed:literatureonsupplierselectioncriteriaandtechniques,andliteratureonfuzzy-logic-basedintegratedmodelswithanalytichierarchyprocess(AHP)andGRAapplications.

*Correspondingauthor.Email:pitchipoo@klu.ac.in

Ó2013Taylor&Francis

3904P.Pitchipooetal.

2.1Reviewoftheliteratureonsupplierselectioncriteriaandtechniques

Theidentificationofinfluencingcriteriafortheevaluationandselectionofsuppliershasbeenthefocusofmanyresearchers.Dickson(1966)carriedoutastudywiththehelpofasurveyconductedin300businessorganisations.Thepurchasingmanagersofthoseorganisationswererequestedtoidentifythefactorsthatinfluencedsupplierselection.Asanoutcomeofthesurvey,atotalof23factorswereidentifiedasimportantfactorsforthesupplierselectiondecisionproblem.Amongthese,quality,price,anddeliveryarethemostcriticalfactorsinthesupplierselectionprocess.

Ho,Xu,andDey(2010)reviewedtheliteraturerelatedtothemulti-criteriadecisionmakingapproachesforsupplierevaluationandselectionappearingininternationaljournalsfrom2000to2008.Forsupplierselection,varioustechniqueswerefoundintheliterature,suchasdataenvelopmentanalysis(DEA);mathematicalprogramming–linearprogramming,integerlinearprogramming,andgoalprogramming(GP);AHP;case-basedreasoning(CBR);analyticnetworkprocess(ANP);fuzzysettheory;geneticalgorithm(GA);integratedAHP,DEA,andartificialneuralnetwork;integratedAHPandGP;integratedAHPandGRA;andintegratedfuzzyandAHP.Mostoftheliteratureisfoundtoconsiderquality,delivery,andprice/costasthemostpopularcriteriaforsupplierevaluationandselection.Theoutcomeofthisresearchprovidesevi-dencethatmulti-criteriadecision-makingapproachesarebetterthanthetraditionalcost-basedapproach,andithashelpedresearchersanddecisionmakersinapplyingtheapproacheseffectively.Athawale,Prasenjit,andChakraborty(2010)pre-sentedasupplierselectionmodelbasedonanoutrankingapproachPROMETHEEII.Chatterjee,Poulami,andShankar(2011)comparedtwomulti-criteriadecision-makingapproachessuchasVIKORandELECTREforsupplierselection.

Downloaded by [Tongji University] at 05:58 08 November 2015 2.2Reviewoftheliteratureonthefuzzy-basedintegratedmodelinsupplierselection

Kahraman,Ufuk,andZiya(2003)proposedFAHPtoselectthebestsupplierforamanufacturingfirm.Thecriteriafocusedoninthispaperarequality,deliveryspeed,capacity,reliability,maintainability,damagetolerance,handling,finan-cialstrength,managementapproach,technicalability,qualitysystems,andserviceperformance.Zaim,Mehmet,andMeh-ves(2003)proposedFAHPforsolvingtheproblemofsupplierselectioninacasestudywithTVproductionsuppliers.TheTVsupplierswereevaluatedandthebestonewasselected.FinallytheresultswerecomparedwiththeconventionalAHPapproach.Tsai,Chang,andChen(2003)evaluatedthevendorsofamanufacturingindustryusingtheGRAmodel.Thequalityoftheproduct,price,anddeliverydatewereconsideredasevaluationcriteria.VaidyaandKumar(2006)pre-sentedacomprehensivereviewoftheliteratureregardingtheapplicationofAHPasamulti-criteriadecision-makingtool.

HaqandKannan(2006)comparedthetwosupplierselectionmodelsAHPandFAHPinacasestudy.Fortheirstudy,quality,delivery,productioncapability,service,engineering/technicalcapability,businessstructure,andpriceweretakenasdecisioncriteriaandtheyproposedthemodelforarubbertubesindustryinIndia.YangandChen(2006)deter-minedtheweightsofevaluationcriteriasuchasquality,finance,customerservice,cost,delivery,andtheturnoverofvarioussuppliersforanotebookcomputermanufacturerusingAHP.ThefinalrankingofthosesupplierswasdeterminedbyGRA.BenyoucefandCanbolat(2007)proposedasupplierselectionsystembasedonAHPintegratedwithfuzzyconceptsandempiricaldata.ThecasestudywasconductedinahospitaltovalidatethedesignofthesupplierselectionsystemanditsunderlyingFAHPmodel.AHPisinsufficientinrealworldsituationswithuncertainconditions,andsometimesdecisionmakersarenotabletogivealldecisionsinexactnumericalvalue.Inthesesituations,FAHPmaybepreferredtorectifythedisadvantagesofAHP(ChanandKumar2007).

Chanetal.(2008)discussedFAHPtoefficientlytacklebothquantitativeandqualitativedecisionfactorsinvolvedintheselectionofglobalsuppliersincurrentbusinessscenarios.Thetriangularfuzzynumbersareusedtotransformthelinguisticcomparisonofthedifferentdecisioncriteria,sub-criteria,andperformanceofthealternativesuppliers.Ketata,Mahmoud,andRomdhan(2008)proposedanewapproachbasedontheintegrationoffuzzylogicwithclassicalmulti-criteriamethodssuchastheFAHPprocessandGPmethods.Anumericalexamplewaspresentedtoillustratethenewapproachwhichincludescomparingtheadvantagesanddisadvantagesoftheselectionmethodsforresolvingasupplierselectionandevaluationproblem.

Hua(2008)presentedanevaluatingmethodforvendorselectionbasedontheAHPandfuzzylogicmethod.Fortheevaluation,thecriteriacost(productioncost,transportationcost,andtransactioncost),quality(qualifiedrate,developmentquality,andcustomercomplaintrate),services(deliveryaccuracy,responseability,andorderfillrate),andenterprisequal-ity(enterprisecredit,financialstatus,anddevelopmentprospects)wereconsidered.Yuanetal.(2008)proposedaninte-gratedmodeltoevaluatetheoverallperformanceofsuppliersofamanufacturingcompany.TheintegratedmethodwasdevelopedbymodifyingtheDEAmethodintoaweightingconstrainedDEAmethodusingatriangularweightingfuzzyset.FinallyitwasconcludedthatthenewintegratedmethodrectifiedtheweaknessesofthetraditionalDEAmethodinweightcalculation.Li,Yamaguchi,andNagai(2008)proposedaGRAmodeltoevaluateandselectsuppliersbasedonqualitativeattributessuchasproductqualityandservice,aswellasquantitativeattributessuchasdeliveryandprice.

InternationalJournalofProductionResearch3905

Wang,Cheng,andHuang(2009)proposedafuzzyhierarchicalTOPSISmethodtosimplifythecomplicatedmetricdistancemethod(ChenandCheng2005)andmodifytheTOPSISmethod(Chen2000)forapplicationinsupplierselec-tion.Thefinalverificationwasalsopresentedwithanumericalexamplebycomparingthesolutionobtainedwithothermethods.Lee,KangandChang(2009)developedafuzzymultiplegoalprogramming(FMGP)modeltoselectthinfilmtransistorliquidcrystaldisplay(TFT-LCD)suppliers.FirstFAHPwasappliedtoanalysetheimportanceofmultiplefac-torsbyincorporatingexperts’opinions.Thenmulti-choicegoalprogrammingwasusedtoconsiderthelimitsofvariousresourcesandtoformulatetheconstraints.Lee,KangandChang(2009)developedamodelforevaluatinggreensuppli-ers.ThefirstDelphimethodwasappliedtodifferentiatethecriteriaforevaluatingtraditionalsuppliersandgreensuppli-ers.Nextahierarchywasdevelopedtoevaluatetheimportanceoftheselectedcriteriaandtheperformanceofgreensuppliers.Finallythevaguenessofexperts’opinionswasrectifiedbythefuzzyextendedanalytichierarchyprocess.

Chamodrakas,Batis,andMartakos(2010)suggestedthefuzzypreferenceprogramming(FPP)approachfordecisionsupportenablingeffectivesupplierselectionprocessesinelectronicmarketplaces.Theevaluationwasdoneintwostages.Firstaninitialscreeningofsuppliersthroughtheenforcementofhardconstraintsonselectioncriteriawasper-formed.NextthefinalsupplierevaluationwascompletedthroughtheapplicationofamodifiedvariantoftheFPPmethod.Theproposedmethodwasdemonstratedwiththeexampleofahypotheticalmetalmanufacturingcompanythatselectedthesupplierintheenvironmentofanelectronicmarketplace.Kuo,Lee,andHu(2010)developedaperfor-manceevaluationmethod,whichintegratesboththeFAHPmethodandfuzzydataenvelopmentanalysis(FDEA)forthesupplierselectiondecision.TheFAHPmethodwasfirstappliedtofindindicators’weightsthroughanexpertques-tionnairesurvey.Then,theseweightswereintegratedwithFDEA.Theproposedmethodwasprovedwithacasestudyonanautolightingcompany.Sen,Sen,andBaslıgil(2010)focusedontheprequalificationofpotentialsuppliers,andtheweightsofthepre-selecteddecisioncriteriaweredeterminedbythefuzzyanalytichierarchyprocess.Theoutputsofthepreviousphases,namelyproblemdefinitionandformulationofcriteria,wereusedasinputsinthismethodology.Thisinformationsupportedthedecisionmakersinmakingthefinalselectionwitheffectivealternativechoices.TheapplicationofthismethodologywasdemonstratedinaudioelectronicsinTurkey’selectronicsindustry.MohammadyandAmid(2010)presentedadecision-makingframeworkforsupplierselectionusingthefuzzyVIKORmethodcom-binedwithFAHP.Themodelwasprovedbyacasestudyperformedinavirtualtrainingandautomationservicesorga-nisation.Azzeh,Neagu,andCowling(2010)developedahybridmodelusingfuzzysettheorywithGRAfortheaccurateandcredibleestimationofsoftwareeffortforasoftwareindustry.Toovercomethechallengeofvagueandimprecisehumanjudgment,fuzzy-basedGRAwasproposed.Finally,theresultswerecomparedwiththeresultsobtainedusingcase-basedreasoning,multiplelinearregression,andartificialneuralnetworksmethods.

OmidandKhakzar(2011)proposedasupplierselectionmodeltoselectthebestsupplierofmaizestarchinapharmacycompanyinIran.Toevaluatethesuppliers,criteriasuchasprice,quality,service,andtechnicalissueswereused.InthispaperFAHPisusedforselectingthebestsupplier.OzcanandSuzan(2011)developedanFAHPsupplierselectionmodelforawashingmachinecompanylocatedinTurkey.Fortheevaluationofthesuppliers,criteriasuchasprice,productquality,leadtime,technicalsupport,financialstatus,management,technicalability,qualitysystems,geographicallocation,produc-tionfacility,handling,andcapacitywereused.First,theattributesweredefinedtodesignthehierarchystructure.ThentheweightsofthemandalternativeswerecalculatedusingtheFAHPapproach.Finally,thesupplierwiththehighestpriorityweightwasselectedasthebestsupplier.Zeydan,Colpan,andCobanoglu(2011)consideredbothqualitativeandquantitativevariablesfortheevaluationandselectionofsuppliersbasedonefficiencyandeffectivenessinacarmanufacturingfactoryinTurkey.Inthefirststage,qualitativeperformanceevaluationwasperformedbyusingFAHPtofindthecriteriaweights,andthenfuzzywasusedtorankthesuppliers.Inthesecondstage,DEAwasusedtoevaluatethequantitativecriteria.

Punniyamoorthy,Mathiyalagan,andParthiban(2011)madeanattempttodevelopacompositemodelforsupplierselectionusingstructuralequationmodellingandFAHP.Thesupplierswereevaluatedbasedoncriteriasuchasmanage-mentandorganisation,quality,technicalcapability,productionfacilitiesandcapacities,financialposition,delivery,ser-vice,relationship,safety,andenvironmentconcernandcost.Khaledetal.(2011)providedfourdifferentmulti-criteriadecision-makingapproachessuchasthelinearweightedmethod,categoricalmethod,AHP,andFAHPtoselectthebestsupplier.Thismodelwasexplainedwithacasestudyconductedinamanufacturingfirmtoselectthebestsupplieramongthreesuppliersbyconsideringquality,price,service,productioncapacity,businessstructure,anddelivery.NilayYucenur,Vayvay,andDemirel(2011)proposedamodelforselectingaglobalsupplierusingFAHPandthefuzzyana-lyticalnetworkprocess(FANP)basedonlinguisticvariables.Thosemethodologiesusedtoevaluatedifferentdecisioncriteriasuchasservicequality,cost,riskfactors,andsuppliercharacteristicsinvolvedintheselectionofthebestsup-plierinaglobalsupplychain.FinallytheFAHPandFANPresultswerecompared.ZhangandLiu(2011)developedanewmethodforsolvingthepersonnelselectiondecision-makingprocessbycombiningthefuzzyentropymethodwithgreyrelationalanalysis.Fuzzyentropywasusedtoobtaintheentropyweightsofthecriteria.GRAwasappliedtotherankingandselectionofalternatives.

Downloaded by [Tongji University] at 05:58 08 November 2015 3906P.Pitchipooetal.

Chen,Kuo,andLuo(2011)focusedontheissueofsupplychainperformanceevaluationofthewafertestinghouseinTaiwan.ThisevaluationwasperformedbyusingFAHPandGRA.FAHPwasusedtoderivetheweightsofinfluen-tialindicators.GRAwasusedtoevaluatetheperformancebetweenthetwokindsofmarkets.Pitchipoo,Venkumar,andRajakarunakaran(2012)constructedadistincthybridmodelforthesupplierselectionprocessbyintegratingAHPandGRA.Firstthemutualinformation-basedfeatureselectionmethodwasusedtoselectthehighlyinfluencingcriteriaandthentheweightsoftheselectedcriteriawerecalculatedusingAHP.FinallythebestsupplierwasselectedusingGRA.3.Proposedsupplierevaluationandselectionframework

Inthiswork,variousissueswereconsideredrelatedtotheevaluationandselectionofasupplierforanelectroplatingindustryfunctioningformorethan15years.Themajoractivitiescarriedoutinthisindustryarenickelandchromecoat-ingforautocomponents.Theexistingmethodologyadoptedforsupplierselectionbasedonthesealedbidtechniqueisthatthesupplierwhoquotestheleastamountisgiventheorder.Themajordrawbackoftheexistingapproach,whichwasfollowedforthesupplierselectionprocess,isthatthereisamplescopeforreceivinginferior-qualityproductswithsustainabledelaygettingthegoodsattherighttime.Toovercometheproblem,supplierevaluationiscarriedoutbasedonperformanceassessmentcriteria,manufacturingcriteria,qualitysystemassessmentcriteria,andbusinessfactors.Table1showsthemeritsanddrawbacksofthevarioussupplierevaluationapproachesavailableintheliterature.Duetomoremerits,thehybridfuzzyAHP–GRAmodelwasproposedforsupplierevaluationandselection.Figure1showstheproposedframeworkforsupplierevaluationandselectionwhichwillbeusedinthisstudy.Thisframeworkcontainsthreemodules:

ModuleI:ComputationofweightsusingFAHPModuleII:RankingofalternativesusingGRAModuleIII:Sensitivityanalysis

ModuleI:ComputationofweightsusingFAHP

Thismodulebeginswiththedeterminationoftheobjectiveandchoosingpossiblealternativesandinfluencingcriteriaforthisstudy.Thedatarelatedtothisstudysuchasnumberofalternatives(suppliers),numberofdecisioncriteria,andopinionsofdecisionmakerswerecollectedfromtheindustryinwhichthecasestudywasperformed.Basedonthejudgmentobtainedfromthedecisionmaker,asetofpairwisecomparisonsbetweenthedecisioncrite-ria,whichisknownastheoriginalmatrix,wereconstructedbyusingSaaty’s(1990)nine-pointmeasurementscale.Theoriginalmatrixwasconvertedintoafuzzyoriginalmatrixusingtriangularfuzzynumbers.Thisfuzzyoriginalmatrixwasnormalisedandiscalledthefuzzyadjustedmatrix.Thentheconsistencyofthedevelopedmodelwaschecked.Fromthefuzzyadjustedmatrix,theweightsofthecriteriaweredetermined.Afterthat,thesupplierswerecomparedbasedoneachcriterionandthesuppliermatrixeswereformulated.Thesesuppliermatrixeswerenorma-lisedtodevelopthesupplieradjustedmatrix.Finallytheoverallscoreofthesuppliersbasedoneachcriterionwascomputed.

ModuleII:RankingofalternativesusingGRA

Thismodulestartswiththeformulationofareferentialseriesbasedonthedeterminationofoverallpriorityafterdefuzzification.Fromthereferentialseriesthegreyrelationalcoefficientiscomputed.Finallythedegreeofgreyequa-tioncoefficientforeachalternativeisdetermined.Fromthedegreeofgreyequationcoefficient,thehigherdegreeofcoefficientisrankedas1and,basedonthis,thebestsupplierisdetermined.TheapplicationofGRAnotonlyintegratesqualitativeandquantitativedatabutalsoconsidersitscharacteristiclargerisbetterorsmallerisbetter.TheimportantadvantageofusingGRAisthatitcangeneratesatisfyingoutcomesusingarelativelysmallamountofdatawithgreatervariabilityinfactors.

Downloaded by [Tongji University] at 05:58 08 November 2015 ModuleIII:Sensitivityanalysis

Inthismoduletherobustnessofthedevelopedmodelischeckedbyusingasensitivityanalysis.Sensitivityanalysisisatechniqueusedtodeterminehowdifferentvaluesofanindependentvariablewillcarryanimpactonaparticulardependentvariableunderagivensetofassumptions.Sensitivityanalysisisusedtoinvestigatetherobustnessofastudywhenthestudyincludessomeformofstatisticalmodelling.Sensitivityanalysissupportsthedecisionmakersinthefollowing:

posedmodel(hybriduzzyAHP–GRA)•••••Abletoevaluateundervagueanduncertaincondi-tions.Abilitytomixqualitativeandquantitativecrite-ria.Canbeprogram-mable.Adoptionoflin-guisticvariablesispossible.Canhandlemorecriteria.InternationalJournalofProductionResearch

•Timeconsuming.3907

ofrPReOh-tKrmeiaIser&Vuhgts.oosrE&etnitipRhyanTEcatiueib.eCEolrlrienbEHpbtiLTpArwnaacoCmEEaM••ORPdynsmbaeedehk.ralevtblioirodt.aniwetrnsteipalilhedaaimrcerleouearedbtifroPnmqxratlicnHhoaomncmeieAonitvsilidtaaottcycmaendatiheyttilchitlehiibtinhabamnAwmAuqaasC•••d.eeetlo-avittiitmbaldtciienelasafvuufeqeraee.eaAnherbttRawanaaudGslaaliotcaetavvIotdtIeit••)-l.aaltAWeveaSd.d(oeottetvhmsduitgtpdainoteihmesiwotoutpecenaedmobuve)tqittynihMedgPsaactdiaaeEtIuewW(lpd••mnaiSstnersetiiurltaaeSefM-ul-aevuegaovty.terlednbdniaanaturtseoescNtenanu-narmednfo.tunleeetvaemeullvahlvgoeivhnoity.tsetenlirniebauatrqmteeeocRgaNnu•si--ulnsaiellbveefvoairoittnaatov.eitllitclbapiuauotcsq.tadififoetAuigdNtaad•-.cislrtaiit.stecnuiltuquuaeegcuhtlnnfia.whtiiflivaetsaowfderodusiiootennethoiosvttee.lieitltlnulstpbbabtiohoaaiaitlasgdratiAaouoroievNqNetNw•••Downloaded by [Tongji University] at 05:58 08 November 2015 Table1.Meritsanddrawbacksofvarioussupplierevaluationapproaches.Drawbacks••••3908P.Pitchipooetal.

Determine objective and choose alternatives and criteria Collection of linguistic decisions Data collection Quantitative data Formulation of pairwise comparison (crisp) matrix –for criteria Conversion into fuzzy matrixIf no Determination of normalised matrixCheck for consistency Downloaded by [Tongji University] at 05:58 08 November 2015 Module I If yesFormulation of supplier (crisp) based on each criterionConversion into fuzzy matrixDetermination of criteriaweightsModule II Determination of weights of suppliersDefuzzificationDetermination of overall priorityGeneration of referential seriesModule III Sensitivity analysisDetermination of grey relational coefficientDetermination of grey relational gradeDetermination of best supplierFigure1.Frameworkofsupplierselection.••••••

Identificationofcriticalassumptions

ComparisonofalternativemodelstructuresGuidinginfuturedatacollectionDetectingimportantcriteria

OptimisationofuncertaintyinparametersModelsimplification

4.Modeldevelopmentandanalysis

Thestructureofthedecisionmodelconsistsoffivealternatives(suppliers).Theevaluationcriteriaconsideredinthisstudyareperformanceassessmentcriteria:cost(C),quality(Q),anddeliveryleadtime(D);manufacturingcriteria:productioncapacity(Ca);qualitysystemassessmentcriteria:warrantygivenonthematerial(W);andbusinessfactors:

InternationalJournalofProductionResearch3909

reputationorbrandimageofthesupplier(R)andfinancialpositionofthesupplier(FP).Eachalternativeisevaluatedbasedoneachdecisioncriterion.

4.1ModuleI:ComputationofweightsusingFAHP

AHPisoneoftheextensivelyusedmulti-criteriadecision-makingmethods.AHPreflectsthehuman’snaturalbehaviourandthoughts.AHPisaneffectivetoolwhichcanhandlebothqualitativeandquantitativedata.AHPinvolvestheprinci-plesofdecomposition,pairwisecomparisons,andprioritygeneration.ThemostimportantdisadvantageofusingAHPisthatitusesascaleofonetoninewhichcannothandleuncertaintydecisionsincomparisonoftheattributes.Allcompar-isonsduringAHPimplementationsmaynotincludecertainty,thereforethedecisionmakerneedsmorethananine-pointscaletodescribetheuncertainty.Inrealworldsituationsmuchinformationisavailableinvagueandincompleteform.Sometimesthedecisionmakermaynotexpresspreferencesaccurately.Therefore,inordertomakerealisticdecisions,conceptsoffuzzylogiccanbeappliedinsuchcases.Theconceptofalinguisticvariableisveryusefulwhenthesystemistoocomplexornotabletodefinereasonablequantitativeexpressions(Zadeh1965).Linguisticvariablesandtriangu-larfuzzynumbers(TFN)canbeusedtodecidethepriorityofonedecisionvariableoveranother.Fuzzylogiccanbeusedtomakeevaluationsbylinguisticstatement(Bevilacqua,Ciarapica,andGiacchetta2006).FAHPistheextensionofAHPtoefficientlyhandlefuzzinessinthedecisionprocesstoselectthebestsupplierbyusingbothqualitativeandquantitativedatainmulti-criteriadecision-makingproblems.Inthisapproach,TFNareusedinplaceofthenine-pointscaleintraditionalAHP.TheFAHPprocedurestartswiththeformationofanoriginalcrispmatrix.

4.1.1Formulationoforiginalmatrix

Thenumericalaswellasthelinguisticdecisionsonthecomparisonofcriteriawerecollectedfromtheindustry.Basedonthejudgmentobtainedfromthedecisionmaker,theevaluationcriteriawerecompared.Therankingofevaluationcri-teriawascollectedfromdecisionmakersinthepurchasingdepartmentofthatindustry.FirstthecriteriamatrixwasformedbasedonSaaty’snine-pointscalewhichisshowninTable2.ThecriteriamatrixisshowninTable3.ThiswasconvertedintoafuzzyoriginalmatrixusingTFNprescribedbyAlias,SitiZaiton,andSupiah(2009),whichisalsoshowninTable2.ThefuzzynumberinafuzzysetcanberepresentedbyEquation(1).

F¼fx;lFðxÞ;x2Rg

ð1Þ

Downloaded by [Tongji University] at 05:58 08 November 2015 whereFisafuzzyset;xisafuzzynumber;R:À1 x 1andμF(x)isacontinuousmappingfromRintheinter-val[0,1].

ATFNexpressestherelativestrengthofeachpairofelementsinthesamehierarchy,denotedasTFN(M)=(l,m,u)wherel m uinwhichlisthesmallestpossiblevalue,misthemostpromisingvalue,anduisthelargestpossi-blevalueinafuzzyevent(KaufmannandGupta1991).ThetriangularmembershipfunctionofMfuzzynumbercanbedescribedinEquation(2)

80x\\l>><

ðxÀlÞ=ðmÀlÞl x l

lAðxÞ¼fðxÞ¼

ðuÀxÞ=ðuÀmÞm x u>>:0x[u

Table2.Measurementscaleforpairwisecomparison.VerbaljudgmentorpreferenceExtremelypreferred

VerystronglytoextremelypreferredVerystronglypreferred

StronglytoverystronglypreferredStronglypreferred

ModeratelytostronglypreferredModeratelypreferred

EquallytomoderatelypreferredEquallypreferred

Saaty’sscaleofrelativeimportance

987654321

Triangularfuzzynumbers

9,9,97,8,96,7,85,6,74,5,63,4,52,3,41,2,31,1,1

ð2Þ

3910

Table3.Originalcrispmatrix.

C

CQDWCaRFPTotal

1.0003.0000.3300.2000.2500.1670.2005.147

Q0.3301.0000.2000.1670.1430.1670.1432.150

D

P.Pitchipooetal.

W5.0006.0003.0001.0000.5000.3330.25016.083

Ca4.0007.0004.0002.0001.0000.3330.33318.666

R6.0006.0005.0003.0003.0001.0000.50024.500

FP5.0007.0004.0004.0003.0002.0001.00026.000

3.0005.0001.0000.3330.2500.2000.25010.033

TheoriginalfuzzymatrixisshowninTable4.ThenthefuzzyoriginalmatrixisnormalisedusingEquation(3).

Nij¼

aijTj

ð3Þ

Downloaded by [Tongji University] at 05:58 08 November 2015 P

whereaijisthecellvalueoftheithrowandjthcolumninthefuzzyoriginalmatrix;1 i;j m;andTj¼mi¼1aij.

ThefuzzyadjustedmatrixisshowninTable5.Theweightswerecalculatedbyconvertingfuzzynumbersintocrispvaluesbyusingthedefuzzificationtechnique.Thedefuzzificationhasthecapabilitytoreduceafuzzytoacrispsingle-valuedquantity.Therearesevenmethodsusedforthedefuzzificationoffuzzyoutputfunctions,includingthemax-membershipprinciple,centroidmethod,weightedaveragemethod,mean–maxmembership,centreofsums,centreoflargestarea,andfirstofmaximaorlastofmaxima.Inthisstudy,thecentroidmethodwasusedfordefuzzification,whichisgiveninEquation(4).

Pk

WeightsðCrispvalueÞWi¼

iiiÀ1DpÃoPk

ii¼1Dp

ð4Þ

wherekisthenumberofrules,Oiistheclassgeneratedbyrulei(from0,1,….L-1);Listhenumberofclasses;andDipisdeterminedbytheproductovermlifromi=1ton.

Dip

¼

nYi¼1

mlið5Þ

wherenisthenumberofinputs;andmliisthemembershipgradeoffeaturelinthefuzzyregionsthatoccupytheithrule.

4.1.2Consistencychecking

Sincethepairwisecomparisonmatrixisformulatedbythevaluescollectedfromthedecisionmakeroftheindustry,itisnecessarytoensurethatthevaluescollectedareacceptedvaluesbytheliteratureandexpert.Tochecktheconsistency,theconsistencyratio(CR)iscalculatedusingEquation(6)

CR¼CI=RI

ð6Þ

whereCIistheconsistencyindexwhichisdeterminedusingEquation(7)andRIistherandomindexforcriteriasize‘m’.

CI¼

ðkmaxÀmÞðmÀ1Þð7Þ

wherekmaxisthemaximumeigenvalueandmisthenumberofcriteria.

InternationalJournalofProductionResearch

3911

000000000000000000000000........2685543130P00000000F000000000000000........657443212000000000000000000000000........046332112300000033000000330000003........977644102000000000R000000050000005........466533102000000000000000000000000........055422112000000000000005550000022........2585310026a00000336C000003360000033........847421001000000000000000000000055........536311001300003008000035070000322........8674100013W00000308000003500000532........656310001300000033000000380000053........345211001700000701000506080002212........1461000013D00030003000350500003222........035100001000030360000353100053234........24100008007353535064242520111119........0100000100073730Q3006464530211111........01000002000070740050606850221214........01000002000703770056046200212119........1400000500000707C0030560400322121........13000005000030030005305300523225........12000004laatCQDWCRPFToegare98558242948643Av2310000.......w0000000oR806654185552931211100.......00000002944578P9655173F1211100.......0000000000000000550552311100.......0000000995664133033312221100.......00000005542210R44022422221100.......0000000000000055000552221100.......0000000262341125234112321000.......00000004547488a1710511C2321000.......0000000000773300066332420000.......0000000933383117151113320000.......00000001372116W17863213310000.......0000000915226486477322310000.......0000000885174730821113500000.......00000009803505D99032222410000.......0000000859900037154342410000.......0000000826343421876761500000.......00000003538787Q56976761400000.......0000000131171700086862410000.......0000000952844867423221600000.......00000004349929C98634331500000.......0000000110534524157452410000.......0000000aCQDWCRPFDownloaded by [Tongji University] at 05:58 08 November 2015 Table4.Originalfuzzymatrix.Table5.Fuzzyadjustedmatrix.3912P.Pitchipooetal.

RIwasapproximatedbySaaty(1990)whichisshowninTable6.IftheCRis<0.10thedecisionmaker’spairwisecomparisonmatrixisacceptable.Forthemodelselectedforthisstudy,theconsistencyratiowascalculatedas0.0967whichislessthan0.1.Thusthismodelisacceptable.

4.1.3Determinationoffuzzysuppliermatrix

Aftercheckingtheconsistency,thesupplierswerecomparedwitheachotherbasedonallselectedcriteriawhichareshowninTables7,9,11,13,15,17,and19.ThenthesefuzzymatrixeswerenormalisedandshowninTables8,10,12,14,16,18,and20.

4.1.4Determinationofcriteriaweights

Theweightsofallcriteriawerecomputedbythefinalfuzzyscoreswhichwerecalculatedbymultiplyingtheweightofthesupplierwiththeweightofthecriteria.TheweightsofthecriteriaforallsuppliersareshowninTable21.

Downloaded by [Tongji University] at 05:58 08 November 2015 Table6.Randomindices.mRI

10

20

30.58

40.90

51.12

61.24

71.32

81.41

91.45

101.49

111.51

121.58

Table7.Fuzzysuppliermatrix:Basedoncost.

S1

S11.0001.0001.000S20.2500.2000.167S30.1670.1430.125S40.1110.1110.111S59.0009.0009.000Net10.52810.45410.403

S2

S3

S4

0.1110.2500.2500.1111.0001.722

S50.1110.2000.2000.1111.0001.622

0.1110.1670.1670.1111.0001.556

4.0005.0006.0006.0007.0008.0009.0009.0009.0001.0001.0001.0002.0003.0004.0006.0007.0008.0000.5000.3330.2501.0001.0001.0004.0005.0006.0000.1671.4300.1250.2500.2000.1671.0001.0001.0004.0005.0006.0004.0005.0006.0009.0009.0009.0009.66712.76313.37513.25016.20019.16729.00031.00033.000

Table8.Fuzzyadjustedsuppliermatrix:Basedoncost.

S1

SSSSS123450.0950.0240.0160.0110.855

0.0960.0190.0140.0110.861

0.0960.0160.0120.0110.865

0.4140.1030.0520.0170.414

S20.3920.0780.0260.1120.392

0.4490.0750.0190.0090.449

0.4530.1510.0750.0190.302

S30.4320.1850.0620.0120.309

0.4170.2090.0520.0090.313

0.3100.2070.1380.0340.310

S40.2900.2260.1610.0320.290

0.2730.2420.1820.0300.273

0.0640.1450.1450.0640.581

S50.0680.1230.1230.0680.617

Score

0.0710.3532950.1070.167980.1070.1180840.0710.047530.6430.590435

Table9.Fuzzysuppliermatrix:Basedonquality.

S1

S1S2S3S4S5Net

1.0000.1670.1110.2500.5002.028

1.0000.1430.1110.2000.3331.787

1.0000.1250.1110.1670.2501.653

6.0001.0000.2502.0004.00013.250

S27.0001.0000.2003.0005.00016.200

8.0001.0000.1704.0006.00019.170

9.0004.0001.0004.0006.00024.000

S39.0005.0001.0005.0007.00027.000

9.0006.0001.0006.0008.00030.000

4.0000.5000.2501.0002.0007.750

S45.0000.3330.2001.0003.0009.533

6.0000.2500.1671.0004.00011.417

2.0000.2500.1670.5001.0003.917

S53.0000.2000.1340.3331.0004.667

4.0000.1670.1250.2501.0005.542

InternationalJournalofProductionResearch

Table10.Fuzzyadjustedsuppliermatrix:Basedonquality.

S1

SSSSS123450.4930.0820.0550.1230.247

0.5600.0800.0620.1120.186

0.6050.0760.0670.1010.151

0.4530.0750.0190.1510.302

S20.4320.0620.0120.1850.309

0.4170.0520.0090.2090.313

0.3750.1670.0420.1670.250

S30.3330.1850.0370.1850.259

0.3000.2000.0330.2000.267

0.5160.0650.0320.1290.258

S40.5240.0350.0210.1050.315

0.5260.0220.0150.0880.350

0.5110.0640.0430.1280.255

S50.6430.0430.0290.0710.214

0.7220.0300.0230.0450.180

3913

Score0.5141780.1159670.0411330.1463340.265409

Table11.Fuzzysuppliermatrix:Basedondelivery.

S1

S1S2S3S4S5Net

1.0006.0004.0000.2502.00013.250

1.0007.0005.0000.2003.00016.200

1.0008.0006.0000.1704.00019.170

0.1671.0000.5000.1670.2202.054

S20.1431.0000.3330.1430.2001.819

0.1251.0000.2500.1250.1701.670

0.2502.0001.0000.1670.5003.917

S30.2003.0001.0000.1430.3334.676

0.1704.0001.0000.1250.2505.545

4.0006.0006.0001.0006.00023.000

S45.0007.0007.0001.0007.00027.000

6.0008.0008.0001.0008.00031.000

0.5004.5002.0000.1671.0008.167

S50.3335.0003.0000.1431.0009.476

0.2506.0004.0000.1251.00011.375

Downloaded by [Tongji University] at 05:58 08 November 2015 Table12.Fuzzyadjustedsuppliermatrix:Basedondelivery.

S1

SSSSS123450.0750.4530.3020.0190.151

0.0620.4320.3090.0120.185

0.0520.4170.3130.0090.209

0.0810.4870.2430.0810.107

S20.0790.5500.1830.0790.110

0.0750.5990.1500.0750.102

0.0640.5110.2550.0430.128

S30.0430.6420.2140.0310.071

0.0310.7210.1800.0230.045

0.1740.2610.2610.0430.261

S40.1850.2590.2590.0370.259

0.1940.2580.2580.0320.258

0.0610.5510.2450.0200.122

S50.0350.5280.3170.0150.106

Score

0.0220.11610.5270.5126240.3520.2643830.0110.0508110.0880.17613

Table13.Fuzzysuppliermatrix:Basedonwarranty.

S1

S1S2S3S4S5Net

1.0000.1430.1430.2000.1671.653

1.0000.1250.1250.1670.1431.560

1.0000.1110.1110.1430.1251.490

S2

7.0008.0009.0001.0001.0001.0001.0001.0001.0000.1670.1430.1250.1430.1250.1119.31010.26811.236

S3

S4

S5

7.0008.0009.0005.0006.0007.0006.0007.0008.0001.0001.0001.0006.0007.0008.0007.0008.0009.0001.0001.0001.0006.0007.0008.0007.0008.0009.0000.1670.1430.1251.0001.0001.0000.2000.1670.1430.1430.1250.1115.0006.0007.0001.0001.0001.0009.31010.26811.23623.00027.00031.00021.20024.16727.143

Table14.Fuzzyadjustedsuppliermatrix:Basedonwarranty.

S1

SSSSS123450.6050.0870.0870.1210.101

0.6410.0800.0800.1070.092

0.6710.0740.0740.0960.084

0.7520.1070.1070.0180.015

S20.7790.0970.0970.0140.012

0.8010.0890.0890.0110.010

0.7520.1070.1070.0180.015

S30.7790.0970.0970.0140.012

0.8010.0890.0890.0110.010

0.2170.2610.2610.0430.217

S40.2220.2590.2590.0370.222

0.2260.2580.2580.0320.226

0.2830.3300.3300.0090.047

S50.2900.3310.3310.0070.041

0.2950.3320.3320.0050.037

Score0.646910.2336160.2336160.0746220.156947

3914

Table15.Fuzzysuppliermatrix:Basedoncapacity.

S1

S1S2S3S4S5Net

1.0005.0006.0005.0009.00026.000

S2

P.Pitchipooetal.

S3

0.1670.2501.0000.2504.0005.667

0.1430.2001.0000.2005.0006.543

S4

0.1250.2000.1670.1430.1671.0001.0001.0001.0004.0005.0006.0000.1671.0001.0001.0006.0005.0006.0007.0007.45911.20013.16715.143

0.1110.2000.2500.2001.0001.761

S50.1110.1670.2000.1671.0001.645

0.1110.1430.1670.1431.0001.564

1.0001.0000.2000.1670.1436.0007.0001.0001.0001.0007.0008.0004.0005.0006.0006.0007.0001.0001.0001.0009.0009.0005.0006.0007.00029.00032.00011.20013.16715.143

Table16.Fuzzyadjustedsuppliermatrix:Basedoncapacity.

S1

SSSSS123450.0380.1920.2310.1920.346

0.0340.2070.2410.2070.310

0.0310.2190.2500.2190.281

0.0180.0890.3570.0890.446

S20.0130.0760.3800.0760.456

0.0090.0660.3960.0660.462

0.0290.0440.1760.0440.706

S30.0220.0310.1530.0310.764

0.0170.0220.1340.0220.804

0.0180.0890.3570.0890.446

S40.0130.0760.3800.0760.456

0.0090.0660.3960.0660.462

0.0630.1140.1420.1140.568

S50.0670.1020.1220.1020.608

0.0710.0910.1070.0910.639

Score0.0435530.1330150.3001180.1330150.561717

Downloaded by [Tongji University] at 05:58 08 November 2015 Table17.Fuzzysuppliermatrix:Basedonreputation.

S1

S1S2S3S4S5Net

1.0001.0000.2501.0000.2503.500

1.0001.0000.2001.0000.2003.400

1.0001.0000.1671.0000.1673.334

1.0001.0000.2501.0000.2503.500

S21.0001.0000.2001.0000.2003.400

1.0001.0000.1671.0000.1673.334

4.0004.0001.0004.0001.00014.000

S35.0005.0001.0005.0001.00017.000

6.0006.0001.0006.0001.00020.000

1.0001.0000.2501.0000.2503.500

S41.0001.0000.2001.0000.2003.400

1.0001.0000.1671.0000.1673.334

4.0004.0001.0004.0001.00014.000

S55.0005.0001.0005.0001.00017.000

6.0006.0001.0006.0001.00020.000

Table18.Fuzzyadjustedsuppliermatrix:Basedonreputation.

S1

SSSSS123450.2860.2860.0710.2860.071

0.2940.2940.0590.2940.059

0.3000.3000.0500.3000.050

0.2860.2860.0710.2860.071

S20.2940.2940.0590.2940.059

0.3000.3000.0500.3000.050

0.2860.2860.0710.2860.071

S30.2940.2940.0590.2940.059

0.3000.3000.0500.3000.050

0.2860.2860.0710.2860.071

S40.2940.2940.0590.2940.059

0.3000.3000.0500.3000.050

0.2860.2860.0710.2860.071

S50.2940.2940.0590.2940.059

0.3000.3000.0500.3000.050

Score0.2932650.2932650.0601020.2932650.060102

Table19.Fuzzysuppliermatrix:Basedonfinancialposition.

S1

S1S2S3S4S5Net

1.0004.0000.1670.2000.3335.700

1.0005.0000.1430.1670.2506.560

1.0006.0000.1250.1430.2007.468

0.2501.0000.1110.1670.2501.778

S20.2001.0000.1110.1430.2001.654

0.1671.0000.1110.1250.1671.570

6.0009.0001.0004.0005.00025.000

S37.0009.0001.0005.0006.00028.000

8.0009.0001.0006.0007.00031.000

5.0006.0000.2501.0002.00014.250

S46.0007.0000.2001.0003.00017.200

7.0008.0000.1671.0004.00020.167

3.0004.0000.2000.5001.0008.700

S54.0005.0000.1670.3331.00010.500

5.0006.0000.1430.2501.00012.393

InternationalJournalofProductionResearch

Table20.Fuzzyadjustedsuppliermatrix:Basedonfinancialposition.

S1

SSSSS123450.1750.7020.0290.0350.058

0.1520.7620.0220.0250.038

0.1340.8030.0170.0190.027

0.1410.5620.0620.0940.141

S20.1210.6050.0670.0860.121

0.1060.6370.0710.0800.106

0.2400.3600.0400.1600.200

S30.2500.3210.0360.1790.214

0.2580.2900.0320.1940.226

0.3510.4210.0180.0700.140

S40.3490.4070.0120.0580.174

0.3470.3970.0080.0500.198

0.3450.4600.0230.0570.115

S50.3810.4760.0160.0320.095

0.4030.4840.0120.0200.081

3915

Score0.2911880.5574210.0433270.1152390.041

Table21.Fuzzyscore(criteriaweights).

C

SSSSS12345

0.0810.0380.0270.0110.135

Q0.2040.0460.0160.0580.106

D0.0170.0740.0380.0070.026

W0.0550.0200.0200.0060.013

Ca0.0030.0090.0200.0090.038

R0.0120.0120.0030.0120.003

FP0.0100.0190.0010.0040.005

Downloaded by [Tongji University] at 05:58 08 November 2015 4.2ModuleII:RankingofalternativesusingGRA

TherankingofthesuppliersisdeterminedbyusingGRAwhichconsistsofthefollowingsteps:(i)Generationofthedatasetofreferentialseries(ii)Calculationofthegreyrelationalcoefficient

(iii)Calculationofthedegreeofthegreyequationcoefficient

4.2.1GenerationofdatasetofreferentialseriesX0Thereferentialseriesistheoptimalvaluesofeachcriterionintheinputmatrixwhichisthefuzzyscoreofthecriteria.ThedatasetobtainedbythefuzzyscoreisgiveninthefollowingmatrixXi.

0:08160:0386Xi¼660:027

40:0110:135

2

0:2040:0460:0160:0580:106

0:0170:0740:0380:0070:026

0:0550:0200:0200:0060:013

0:0030:0090:0200:0090:038

0:0120:0120:0030:0120:003

30:0100:019770:001770:00450:005

Xi=cellvalueofeachcriteriaforsupplieri;i=1,2,3,4,and5.

ThereferentialseriesofXoisformedbyhavingtheoptimumvaluesfromeachcolumn(criteria)oftheinputmatrixXi.

Xo=(0.011,0.204,0.007,0.055,0.038,0.012,0.019).4.2.2Calculationofgreyrelationalcoefficient

Thegreyrelationalcoefficient(c0iðjÞ)ofeachsupplieriscalculatedbyusingEquation(8)andisgiveninTable22.

c0iðjÞ¼

DminþnDmaxD0iðjÞþnDmaxð8Þ

where,Dmin¼minminD0iðjÞ;Dmax¼maxmaxD0iðjÞandn=distinguishedcoefficientne½0;1󰀅:Thedistinguished

i

j

i

j

coefficientwastakenas0.5,anaveragevaluebetween0and1.

3916

Table22.Greyrelationalcoefficient.Greyrelationalcoefficientc1c2c3c4c5

C0.4700.6930.7941.0000.333

Q1.0000.3730.3330.3910.487

P.Pitchipooetal.

D0.7800.3330.5191.0000.648

W1.0000.4090.4090.3330.369

Ca0.3330.3770.4980.3771.000

R1.0001.0000.3331.0000.333

FP0.4911.0000.3330.3680.391

Table23.Degreeofthegreyequationcoefficient.Greyequationcoefficient󰀂1C󰀂2C󰀂3C󰀂4C󰀂5C

Value0.784

0.4910.4830.6380.490

Downloaded by [Tongji University] at 05:58 08 November 2015 Degree of grey equation coefficient0.90.80.70.60.50.40.30.20.10123Suppliers45Figure2.Degreeofthegreyequationcoefficientofsuppliers.4.2.3Calculationofthedegreeofthegreyequationcoefficient

󰀂0)wasdeterminedusingEquation(9),andthevaluesweretabu-Finally,thedegreeofthegreyequationcoefficient(ClatedinTable23.

󰀂0i¼C

7Xj¼1

½WiðjÞÂc0iðjÞ󰀅

ð9Þ

Theweightageofcriteria(Wi(j))istakenfromTable5.Figure2showsthepictorialrepresentationofthedegreeof

thegreyequationcoefficientofallsuppliers.Thesuppliersarerankedbasedonthedegreeofthegreyequationcoeffi-cient.Fromthis,thesupplierwiththehighestgreyequationcoefficientdegreeisselectedasthebestsupplier.4.3ModuleIII:Sensitivityanalysis

Asensitivityanalysiswasexecutedforgettingaccurateresults.Thevalueofonlyonevariableischangedrepeatedly,andtheresultingchangesonothervariablesareobserved.Inthisstudy,twodifferentsensitivityanalyseswere

InternationalJournalofProductionResearch

0.9000.800

0.10.20.30.40.50.60.70.80.91

3917

Grey equation coefficient0.7000.6000.5000.4000.3000.2000.100

Figure3.Sensitivityanalysis–withchangeofdistinguishedcoefficient.

Downloaded by [Tongji University] at 05:58 08 November 2015 Grey equation coefficientweights from FAHPEqual Weights

Figure4.Sensitivityanalysis–withchangeofcriteriaweight.

performed.First,thesensitivityofthedegreeofthegreyequationcoefficientwasdeterminedwiththedifferentdistinguishedcoefficient(n)whichvariesfrom0.1to1.0,andisshowninFigure3.Nextthesensitivityofthegreyequationcoefficientdegreewasdeterminedwiththedifferentweightages(weightsfromFAHPandequalweightstoeachcriterion)andisshowninFigure4.Figures3and4explainthatsupplierrankingisnotchangedwithachangeinthedistinguishedcoefficient.Thustherobustnessoftheproposedmodelisproved.

5.Conclusion

Thisworkhasfocusedonthedecision-makingprocessfortheselectionofthebestsupplierforaprocessindustry.Inthisstudyareliablehybridmodelforselectingthesupplieraccordingtothedecisionmaker’sperceptionswaspresented.Themajoradvantageofthisworkisthatitcanbeusedforbothqualitativeandquantitativecriteria.Thealternativesarerankedbyusingatwo-phasemethodologybasedoncombinedFAHPandGRA.Theresultingscoresareusedtorankthealternativesand,inaddition,tounderstandthedegreeofsuperiorityamongthealternatives.Inthiswork,thefuzzysettheoryisusedfordealingwithuncertaintyandimprovingthelackofprecisioninevaluatingcriteriaanddifferentalternatives.Thisapproachprovidesabetterwaytoselectsuppliersandoptimiseprocurementprocessesfordecisionmakers.Asaresultofthestudy,itisfoundthattheproposedmodelispracticalforrankingalternativeswithrespecttomultipleconflictioncriteria.Ithelpspurchasingofficialsmaketherightsourcingdecisions.Thisproposedmodelisalsoflexiblewithapotentialscopeofapplicationinsimilarkindsofindustriesforchoosingsuppliers.Thiscanbeextendedtoothercorporateenvironmentsbyconsideringappropriatecriteriaandtheirweights.

3918P.Pitchipooetal.

References

Alias,MohamadAshari,SitiZaitonMohdHashim,andSupiahSamsudin.2009.“UsingFuzzyAnalyticHierarchyProcessforSouth-ernJohorRiverRanking.”InternationalJournalofAdvancedSoftComputingApplications1(1):62–76.

AnthonyInman,R.1992.“QualityCertificationofSuppliersbyJITManufacturingFirms.”ProductionandInventoryManagement

Journal31(2):59–61.

Athawale,VijayManikrao,PrasenjitChatterjee,andShankarChakraborty.2010.“SupplierSelectionUsingPROMETHEEII

Method.”InternationalJournalofManufacturingTechnologyIndustrialEngineering1(1):95–102.

Azzeh,Mohammad.,DanielNeagu,andPeterI.Cowling.2010.“FuzzyGreyRelationalAnalysisforSoftwareEffortEstimation.”

EmpiricalSoftwareEngineering15(1):60–90.

Benyoucef,Morad,andMustafaCanbolat.2007.“FuzzyAHP-BasedSupplierSelectioninE-Procurement.”InternationalJournalof

ServicesandOperationsManagement3(2):172–192.

Bevilacqua,M.,F.E.Ciarapica,andG.Giacchetta.2006.“AFuzzy-QFDApproachtoSupplierSelection.”JournalofPurchasing

andSupplyManagement12(1):14–27.

Chamodrakas,I.,D.Batis,andD.Martakos.2010.“SupplierSelectioninElectronicMarketplacesUsingSatisficingandFuzzyAHP.”

ExpertSystemswithApplications37(1):490–498.

Chan,FelixT.S.,andNirajKumar.2007.“GlobalSupplierDevelopmentConsideringRiskFactorsUsingFuzzyExtendedAHP-BasedApproach.”Omega35(4):417–431.

Chan,FelixT.S.,N.Kumar,M.K.Tiwari,H.C.W.Lau,andK.L.Choy.2008.‘‘GlobalSupplierSelection:AFuzzy-AHP

Approach.”InternationalJournalofProductionResearch46(14):3825–3857.

Chatterjee,Prasenjit,PoulamiMikherjee,andShankarChakraborty.2011.“SupplierSelectionUsingCompromiseRankingandOut-rankingApproaches.”JournalofIndustrialEngineeringInternational7(14):61–73.

Chen,C.T.2000.“ExtensionsoftheTOPSISforGroupDecision-MakingUnderFuzzyEnvironment.”FuzzySetsandSystems114

(1):1–9.

Chen,L.S.,andC.H.Cheng.2005.“SelectingISPersonnelUsingRankingFuzzyNumberbyMetricDistanceMethod.”European

JournalofOperationalResearch160(3):803–820.

Chen,Yun-Chin,Jun-YuanKuo,andBang-TingLuo.2011.“ApplyingFuzzyAnalyticHierarchyProcessandGreyRelationAnalysis

toEvaluatetheSupplyChainPerformanceoftheWaferTestingHouse.”AmericanJournalofAppliedSciences8(12):1398–1403.

Dickson,G.W.1966.“AnAnalysisofVendorSelectionSystemsandDecisions.”JournalofPurchasing2(1):5–17.

Haq,A.N.,andG.Kannan.2006.“FuzzyAnalyticalHierarchyProcessforEvaluatingandSelectingaVendorinaSupplyChain

Model.”InternationalJournalofAdvancedManufacturingTechnology29(7–8):826–835.

Ho,William.,XiaoweiXu,andPrasantaK.Dey.2010.“Multi-CriteriaDecisionMakingApproachesforSupplierEvaluationand

Selection:ALiteratureReview.”EuropeanJournalofOperationalResearch202(1):16–24.

Hua,Bai.2008.AFuzzyAHPBasedEvaluationMethodforVendor-Selection.Proceedingsof4thIEEEInternationalConferenceon

ManagementofInnovationandTechnology[ICMIT2008],Bangkok,1077–1081.

Kahraman,Cengiz,UfukCebeci,andZiyaUlukan.2003.“Multi-CriteriaSupplierSelectionUsingFuzzyAHP.”LogisticsInformation

Management16(6):382–394.

Kaufmann,Arnold,andMadanM.Gupta.1991.IntroductiontoFuzzyArithmetic:TheoryandApplications.NewYork,NY:Van

NostrandReinholdPublishers.

Ketata,Raouf,HajerBenMahmoud,andTaiebBenRomdhan.2008.“ANewApproachforResolvingaSupplierSelectionandEval-uationProblem.”MalaysianJournalofComputerScience21(1):66–79.

Khaled,A.A.,SanjoyPaulKumar,RiponKumarChakraborty,andMd.SalahuddinAyuby.2011.“SelectionofSuppliersThrough

DifferentMulti-CriteriaDecisionMakingTechniques.”GlobalJournalofManagementandBusinessResearch11(4):1–11.Kuo,R.J.,L.Y.Lee,andTung-LaiHu.2010.“DevelopingaSupplierSelectionSystemThroughIntegratingFuzzyAHPandFuzzy

DEA:ACaseStudyonanAutoLightingSystemCompanyinTaiwan.”ProductionPlanningandControl21(5):468–484.Lee,AmyH.I.,He-YauKang,andChing-TerChang.2009.“FuzzyMultipleGoalProgrammingAppliedtoTFT-LCD

SupplierSelectionbyDownstreamManufacturers.”ExpertSystemswithApplications36(3):6318–6325.

Lee,AmyH.I.,He-YauKang,Chang-FuHsu,andHsiao-ChuHung.2009.“AGreenSupplierSelectionModelforHigh-Tech

Industry.”ExpertSystemswithApplications36(4):7917–7927.

Li,Guo-Dong.,DaisukeYamaguchi,andMasatakeNagai.2008.“AGrey-BasedRoughDecision-MakingApproachtoSupplier

Selection.”InternationalJournalofAdvancedManufacturingTechnology36(9–10):1032–1040.

Mohammady,Peyman,andAminAmid.2010.“IntegratedFuzzyVIKORandFuzzyAHPModelforSupplierSelectioninanAgile

andModularVirtualEnterprise;ApplicationofFMCDMonServiceCompanies.”TheJournalofMathematicsandComputerScience1(4):413–434.

NilayYucenur,G.,OzalpVayvay,andNihanCetinDemirel.2011.“SupplierSelectionProbleminGlobalSupplyChainsbyAHP

andANPApproachesUnderFuzzyEnvironment.”InternationalJournalofAdvancedManufacturingTechnology56(5–8):823–833.

Omid,Khorasani,andBafrueiMortezaKhakzar.2011.“AFuzzyAHPApproachforEvaluatingandSelectingSupplierinPharmaceu-ticalIndustry.”InternationalJournalofAcademicResearch3(1):346–352.

Downloaded by [Tongji University] at 05:58 08 November 2015 InternationalJournalofProductionResearch3919

Downloaded by [Tongji University] at 05:58 08 November 2015 Ozcan,Kilincci.,andAsliOnalSuzan.2011.“FuzzyAHPApproachforSupplierSelectioninaWashingMachineCompany.”Expert

SystemswithApplications38(8):9656–9664.

Pitchipoo,P.,P.Venkumar,andS.Rajakarunakaran.2012.“ADistinctModelforEvaluationandSelectionofSupplierforanElectro

PlatingIndustry.”InternationalJournalofProductionResearch50(16):4635–4648.

Punniyamoorthy,M.,P.Mathiyalagan,andP.Parthiban.2011.“AStrategicModelUsingStructuralEquationModelingandFuzzy

LogicinSupplierSelection.”ExpertSystemswithApplications38(1):458–474.

Saaty,ThomasL.1990.“HowtoMakeaDecision:TheAnalyticHierarchyProcess.”EuropeanJournalofOperationalResearch48

(1):9–26.

Sen,CeydaGungor,SelcukSen,andHuseyinBaslıgil.2010.“Pre–selectionofSuppliersThroughanIntegratedFuzzyAnalyticHier-archyProcessandMax–MinMethodology.”InternationalJournalofProductionResearch48(6):1603–1625.

Tsai,Chih-Hung,Ching-LiangChang,andLiehChen.2003.“ApplyingGreyRelationalAnalysistotheVendorEvaluationModel.”

InternationalJournaloftheComputer,theInternetandManagement11(3):45–53.

Vaidya,OmkarprasadS.,andSushilKumar.2006.“AnalyticHierarchyProcess:AnOverviewofApplications.”EuropeanJournalof

OperationalResearch169(1):1–29.

Wang,Jia-Wen,Ching-HsueCheng,andKun-ChengHuang.2009.“FuzzyHierarchicalTOPSISforSupplierSelection.”AppliedSoft

Computing9(1):377–386.

Yang,Ching-Chow,andBai-ShengChen.2006.“SupplierSelectionUsingCombinedAnalyticalHierarchyProcessandGreyRela-tionalAnalysis.”JournalofManufacturingTechnologyManagement17(7):926–941.

Yuan,Shouhua,XiaoLiu,TuYiliu,andDeyiXue.2008.“EvaluatingSupplierPerformanceUsingDEAandPiecewiseTriangular

FuzzyAHP.”JournalofComputingandInformationScienceinEngineering8:1–7.Zadeh,L.A.1965.“FuzzySets.”InformationandControl8:338–353.

Zaim,Selim,MehmetSevkli,andMehvesTarim.2003.“FuzzyAnalyticHierarchyBasedApproachforSupplierSelection.”Journal

ofEuroMarketing12(3–4):147–176.

Zeydan,Mithat,CuneytColpan,andCemalCobanoglu.2011.“ACombinedMethodologyforSupplierSelectionandPerformance

Evaluation.”ExpertSystemswithApplications38(3):2741–2751.

Zhang,Shi-fang,andSan-yangLiu.2011.“AGRA–BasedIntuitionisticFuzzyMulti-CriteriaGroupDecisionMakingMethodfor

PersonnelSelection.”ExpertSystemswithApplications38(9):11401–11405.

因篇幅问题不能全部显示,请点此查看更多更全内容