RepresentationUpgrade∗
RodrigoVenturaandCarlosPinto-Ferreira
InstituteforSystemsandRoboticsInstitutoSuperiorT´ecnico,TULisbon
Av.RoviscoPais,1
1049-001Lisbon,PORTUGAL{yoda,cpf}@isr.ist.utl.pt
Followingrecentneurophysiologicalresearch,oneim-portantroleofemotionsconsistsinprovidingamecha-nismforadequateandefficientresponsetorelevantstim-uli(Damasio1994).Inthispaperweproposeamethodol-ogyforimplementingsuchamechanism,basedonapre-viouslypresentedemotion-basedagentmodel(Ventura&Pinto-Ferreira1998).Thismodelisfoundedonadoubleknowledgerepresentationparadigm:astimulusreachingtheagentisprocessedundertwodifferentandsimultaneousper-spectives—asimple(termedperceptual)andacomplex(termedcognitive)—fromwhichtwodifferingrepresen-tationschemataarederived.Theperceptualrepresentationisorientedtocapturingtherelevantaspectsoftheenviron-ment,aimingataquickresponsetourgentsituations,whilethecognitiveoneisdirectedtowardshigh-levelcognitiveprocessing.Thesetworepresentationsareassociatedandstoredintheagentmemoryinsuchawaythat,inthefuture,iftheagentisconfrontedwithasimilarsituation,theper-ceptualrepresentationwillhelptheretrievalofthecognitiveoneinanefficientway.Thisindexingmechanismprovidesaquickalgorithmtofindcognitivematches.
Theindexingmechanismaddressedinthispaperwaspre-viouslyformulatedandtheoreticallyanalyzed,undertheas-sumptionthatthematchingofthecognitiveandperceptualimagesareperformedinmetricspaces(Ventura&Pinto-Ferreira2002).Givenastimuluss∈S,theagentextractstwokindsofrepresentations:aperceptualimageiandacognitiveoneiIp∈Ip,allpossibleperceptualc∈andc.EachoneofthesetsIcognitiveimagesisequippedpandIofcwithametricfunction,denotedbydp:Ip×Ip→R+0and
dc:Ic×Ic→R+
0respectively,mappingpairsofimagestodistances,interpretedasdegreesofmismatch.Thememoryisassumedtobeformedbypairsofcognitiveandpercep-tualimagesikc,ik
p(k=1,...).Thegoaloftheindexingmechanismisthentofindthememorypairwhichcognitiveimageminimizesitsdistancetotheoneextractedfromthestimulus,employingtheperceptualrepresentationtodosoinanefficientmanner.
Theresearchpresentedhereconcernsthefollowingprob-∗
ThisworkwaspartiallysupportedbyFCT(ISR/ISTplurianualfunding)throughthePOSConhecimentoProgramthatincludesFEDERCopyrightfunds.
c2007,AmericanAssociationforArtificialIntelli-gence(www.aaai.org).Allrightsreserved.
lem:howtoconstructaperceptualrepresentation(andmet-ric)withthegoalofoptimizingtheindexingefficiency.Inotherwords,theidealperceptualrepresentationandmetricaretheonesthatyieldsmallperceptualdistancesiffthecor-respondingcognitivedistancesarealsosmall.Todoso,twostrategiesareexplored.Onecorrespondstoadaptingaper-ceptualmetric,viaasetofparameters,suchthatcognitiveproximityimpliesperceptualdc(i1c,i2c) (1)forallpossibleimagepairsikc,ik p(k=1,2,3)extractablefromstimuli.Thesecondstrategyaddressestheimprove-mentoftheperceptualrepresentation,inthefollowingsense.Assumingthattheperceptualrepresentationisavec-toroffeaturesextractedfromstimuli,whenthesefeaturesarenotsufficientlyrepresentativetosatisfy(1),thegoalistoupgradetheperceptualrepresentationwithnew,morerepresentative,features.Bothofthesestrategiesareap-proachedhereusingMultidimensionalScaling(MDS)tech-niques(Cox&Cox1994). Inthisframework,agoodperceptualrepresentationisonewhichsatisfiestheimplication(1)forallimagepairs.NotethatthisgoalissimilartotheMDSone,onceoneconsidersthecognitivedistancestobethedissimilarities,andtheper-ceptualones,tobethedistancesamongobjects,intheMDSterminology.However,therearedifferences.InthecaseoftheMDS,themetricisgivenwhiletheobjectcoordinatesaresought.Inthecaseoftheindexing,theobjectcoordi-nates(perceptualimages)aregiven,whilethe(perceptual)metricissubjecttoadaptation. Weproposetoperformagradientdescent,withintheframeworkofMDS,w.r.t.aparametrizationofthepercep-tualmetric,insteadofw.r.t.thepointcoordinates.Re-gardingtheconstructionofadditionalperceptualfeatures,weproposetoappendeachperceptualimagewithapre-specifiedamountofadditionalcomponents.Thesecompo-nentsrepresentthevaluesthatthenewfeaturesougthtotake,foreachoneoftheperceptualimagesinthetrainingset.Theirvaluesarerandomlyinitialized,andsubjecttogradi-entdescentasinthenonmetricMDS.Concerninghowtoobtainthoseaddedcomponentsfornewstimuli,theideaweadvanceistoutilizetheobtainedvaluestoconstructare-gressionmodel.Thatregressionmodelcanthenbeusedtoobtainthenewfeaturesvaluesfornewstimuli.Letaperceptualimageirp,consistingoftheconcatenation ofqnumericalfeaturesxwithpadditionalr1,...,xcomponentsrq,extractedfromagivenstimulus,yr1,...,yrp,bede-notedbythevectorirT additionalcomponentsp=(xcorrespondr1,...,xrq,ytother1,...,yvaluesrp).Thesethatthenewfeaturesoughttotakeforthatparticularper-ceptualimage.Theperceptualmetricemployedhereisparametrizedbyqcoefficientsθ1,...,θq,takingtheform qpdrs= θ2i(xri−xsi)2+(yri−ysi)2(2) i=1 i=1 Thisparametrizationcorrespondstoassigningaweight(rel-evance)toeachperceptualfeaturebeforecalculatingtheEu-clideanmetric.Moreover,whenthealgorithmassignsazero weighttoafeature,thatfeaturecanbedeletedfromtheper-ceptualrepresentation,sinceitisirrelevant(w.r.t.thecogni-tivematching).Theadditionalcomponentsarenotweightedsinceitwouldjustaddredundantdegreesoffreedom. ThecostfunctionemployedhereisthesumoftheMDSstress,usingthecognitivedistancesasdissimilaritiesanddrsasdistances,witharegularizationtermpenalizingtheabsolutevaluesofthemetricparameters qJ=S+ξ |θi|(3) i=1 Thislatterterm,weightedbyξ,isincludedinthecostfunc-tiontodrivetozeroanyweightcorrespondingtoanirrele-vantperceptualcomponent. BasedonthestandardnonmetricMDSalgorithm(Cox&Cox1994),weproposethefollowingone: 1.StartwithaninitialvariablesvectorΛ= [θ1···θq|yT distributed). 11···ynp](e.g.,θi=1,andyrirandomly2.Normalizethemetricparametervector(θ1,...,θq)Ttounitnorm,sincethestressisinvarianttoscalingofthisvector.Theadditionalcomponents{yri}are,however,notnormalized; 3.Computethedistanceset{drs}usingtheparametrizedperceptualmetric(2); 4.Performtheisotonicregressionobtainthesetofdistances{d ˆ(asinnonmetricMDS)to rs};5.Computethecost;ifitsvalueisbelowathreshold,stopthealgorithm; 6.Findthegradientofthecostfunctionw.r.t.thevari-ablesvectorΛ,andperformastepofthegradientdescentmethod;7.Gotostep2. Inordertoevaluatetheresults,ameasureofperformancecalledeval-orderwasintroduced,aimingatassessinghowwelltheindexingmechanismwouldbehave.Thisassess-mentisperformedusingatestsetdisjointfromthetrainingsetemployedinthegradientdescent(cross-validation).In-spiredontheN-bestindexingalgorithmdescribedin(Ven-tura&Pinto-Ferreira2002),theeval-orderisdefinedinthefollowingway:givenacognitiveandperceptualimagespairic,ip,determineallperceptualdistancesfromittoim-agesintheperceptualmemory(i.e.,thetrainingset);then, aftersortingalltheseimagesw.r.t.theperceptualdeterminewhichn-thimagepairikc,ik distances, distancepontheresultingor-deredlisthastheminimumcognitivetoithefirstone,andc,ithusp.Intheidealcase,itcorrespondstoaneval-orderof1.Highervaluescorrespondtoworseperfor-mance. Tovalidatetheproposedmethodology,asimpletest-bedwasdevised.Randompointsx∈Rc(simulatingstimuli)wereuniformlydrawnfromanhypercubecofunitsidelength.Thecognitiveimagesic∈RweresettothecomponentsofxmultipliedbysomefixedcoefficientsW=diag(w1,...,wintroducec)between0and2each:idifferentdegreesofc=Wx.Thesecoefficientsrelevancetothecomponentsofitainedbyconcatenatingc.Theperceptualimageswereob-twovectors:thepfirstcompo-nentsofxweightedbyasecondsetoffixedcoefficientsV=diag(v1,...,vp)(p≤c);andavectoruofnran-domnumbers(noise)between0and1.Thus,theperceptualimageshavep+ncomponents:ip=[(Vx)T|uT]T. Inthefirstphaseofexperimentation,noadditionalper-ceptualcomponentswereconsidered,andthecognitiveandperceptualdimensionsweremadeequal(c=p,n>0).Theresultshaveshownthatthealgorithmwasabletoboth(1)successfullydeterminetherelevanceofeachcomponents,intheformoftheirweightsWregardingthecognitivedis-tance,and(2)todiscardthenoiseperceptualcomponents,bysettingthecorrespondingweightstozero,thusshow-ingasuccessfulcapabilityofidentifyingirrelevantfeatures.Concerningtheeval-orderperformancemeasure,theresultsshowasignificantimprovementoftheeval-orderperfor-manceafterusingthemetricweightsfoundbythealgorithm,whencomparedtoθThesecondphasei=1. oftheexperimentationcomprisedtheintroductionofnewcomponentstotheperceptualrepresen-tation.Todoso,thedimensionofthecognitiveimageswasmadehigherthantheperceptualone,i.e.,c>p.Thus,theperceptualmetricisperformedwithlesscomponentsthanthecognitiveone.Thefirstimpactofthisisthat,withouttheintroductionofnewcomponents,thefinalcostvaluesweremuchhigherthanbefore,duetolackoffit.Thishappensbecausetheperceptualrepresentationhasnotenoughtin-formationtobeabletofaithfulyreplicatethecognitivedis-tances.Theexperimentalresultsshowasignificantreduc-tionofthefinalcostvalues,wheneverthetotaldimensional-ityoftheperceptualrepresentation,includingtheamountofnewcomponents,isgreaterorequalthanc,thusshowinganimprovedfit. References Cox,T.F.,andCox,M.A.A.1994.MultidimensionalScaling.London,UK:Chapman&Hall. Damasio,A.R.1994.Descartes’Error:Emotion,ReasonandtheHumanBrain.Picador. Ventura,R.,andPinto-Ferreira,C.1998.Emotion-basedagents.InProceedingsAAAI-98,1204.AAAI. Ventura,R.,andPinto-Ferreira,C.2002.Aformalindex-ingmechanismforanemotion-basedagent.InProceedingsIASTED-2002,34–40.Malaga,Spain:ACTAPress. 因篇幅问题不能全部显示,请点此查看更多更全内容