一、概述
此刻社会交通的进展,交通检测器的应用愈来愈普及。交通检测器以车辆为检测目标,检测车辆的通过或存在状况,也检测路上车流的各类参数,其作用是为操纵系统提供足够的信息以便进行最优的操纵。经常使用的检测器有环形线圈检测器、超声波检测器、红外线检测器、视频图像处置机等。
1检测能使某种开关触检测器种类很多,其工作原理大致可分为两类:○
2检测因车辆的运动或存在引发的能量转变。压力检测器点闭合的机械力;○
确实是利用机械力检测的例子,而利用能量转变进行检测那么有环形线圈检测器超声波检测器等等。
依照可否检测静止车辆来分,检测器可分为两类。有些检测器如环形线圈、磁强计检测器能检测存在于检测区域的静止或运动的车辆,这种检测器称为存在型检测器;而另一类检测器只能检测运动通过检测区域的车辆,这种检测器称作通过型检测器。
检测器还能够检测和交通有关的环境条件,以便在显现有害的环境条件时能够对交通进行操纵或提出警告。
二、经常使用的交通检测器
环形线圈检测器
环形线圈检测器的组成及其检测原理
环形线圈检测器是一种基于电磁感应原理的车辆检测器,它的传感器是一个埋在路面下面、通过必然工作电流的环形线圈。当车辆通过线圈或停在
线圈上时,车辆引发线圈回路电感量的转变,检测器检测出转变量就能够够检测出车辆的存在,从而达到检测目的。
环形线圈检测器要紧包括:环形线圈、线圈调谐回路和检测电路。 (1)环形线圈
环形线圈是由专用电缆几匝组成(一样为4匝),一样规格为2m×2m的正方形,依照不同的需要,能够改变线圈的形状和尺寸。
对车辆检测起直接作用的是环形线圈回路的总电感。总电感要紧包括环形线圈的自感和线圈与车辆之间的互感。咱们明白,任何载流导线都将在其周围产生磁场,关于长度为l,匝数为N的螺线管型线圈,线圈内磁场强度均匀。道路上的环形线圈不能完全等同于螺线管,考虑其磁场的不均匀修正因子F1,其自感量L自可近似于螺线管得自感量乘修正因子F1,即:
F1r0N2A L自 (3-1)
l式中r是介质的相对磁导率,空气的r1,04107hm1;A为线圈面积。
由上式可知,环形线圈自感的大小取决于线圈的周长、横截面的面积、匝数、周围介质情形,当线圈埋设在路面下时,上述参数就大体确信了。而车辆进入环线线圈是,改变了环形线圈周围介质情形。铁磁车体使磁导率增加,从而感量增加。但另一方面,环形线圈是有源探头在其中加上交变电流,那么在其周围成立起交变电场。当铁磁性的车体进入环形线圈时,车体内会感生涡电流,而且产生与环路向耦合但方向相反的电磁场,即互感,降低线圈环路电感。由于线圈设计成涡流阻碍占支配地位的状态,因此环路总电感量L减少。检测出线圈环路电感量的转变,就能够够判定车辆的存在或通过。
(2)调谐回路
环形线圈作为一个感应元件,通过一个变压器接到被恒流源支持的调谐回路上,该调谐回路是LC谐振回路,设计选择电容C,使调谐回路有一个固定的震荡频率。由电子线路知识可知,LC谐振回路的震荡频率f为:
f12LC (3-2)
这说明,f与L成反比。前面已分析,车辆进入环形线圈将使回路总电感L减少,因此也会使震荡回路频率增大。只要将该回路的输出送检测电路处置取得频率随时刻转变的信号就能够够检测出是不是有车辆通过。
(3)信号检测与输出
检测电路包括相位锁定器、相位比较器、输出电路等,此刻很多型号的环形线圈检测器还包括微处置器,它与检测电路一路组成信号检测处置单元。
相位比较器的一个输入信号是相位锁定器的输出信号,其频率为调谐回路的固有震荡频率,另一个输入信号跟踪车辆通过线圈时谐振回路的频率转变,从而使输出的信号为一反映频率随时刻转变的电压信号也确实是反映车辆通过环形线圈的进程的信号。
输出电路先将相位比较器输出的信号进行放大,然后以两种方式输出,即模拟量输出、数字量输出。模拟量输出用来别离车型,数字信号输出用来计数或操纵。亦可用微机综合处置输出信号取得各类交通参数。带有微处置机的环形线圈检测器那么能够直接做到这一点。
从图3-1能够看出,当车辆前沿进入线圈一边时,检测器被触发产生信号输出,而当车辆后沿离驶线圈另一边时,信号强度低于阈值,输出电平降为零。车辆那个实际对环形线圈作用的长度Lji称为车辆有效长度。车辆有效长度数值上约等于车辆长度与线圈长度之和。
显然,大多数情形下都利用检测器的数字电平输出。为了检测不同的交通参数和适应不同检测或操纵要求可设置检测器工作于方波和短脉冲两种输
出方式。当检测器运行于“方波”的工作方式时,只要车辆进入环形线圈,检测器就产生并维持信号输出(当车辆离开环形线圈后,仍可设置信号持续一段时刻)。电路中的计时器自动计测信号持续时刻,这对有些交通操纵参数如占有率等的检测计算很有效途。当检测器运行于“短脉冲”的输出方式时,每当车辆通过环形线圈检测器就产生一个短脉冲(100μs~150μs),这种方式在双线圈测速系统中得以应用。 环形线圈检测系统的组成
环形线圈检测系统包括埋于路面下面的环形线圈、接线盒、传输电缆、信号检测处置单元等。检测车辆时,将一个或多个环形线圈按必然的方式埋于路面下,线头接入接线盒,信号由传输电缆送入信号检测处置单元,该电路单元通常包括了微处置器,直接处置检测数据,计算一些交通操纵参数。
环形线圈检测系统与操纵中心的主控机通过电缆连接、通信,主控机可发送信号,设置检测器的检测周期等工作状态,并监测检测器故障;检测器那么将检测数据如车辆计数、占有率等传送至主控机,以便完成操纵系统的信息存储、优化配置、方案选择和事件检测等功能,实现系统的最正确操纵成效。
超声波检测器
超声波检测器是一种在高速公路上应用较多的检测器,它利用车辆形状对超声波波前的阻碍来实现检测。超声波车辆检测的探头具有发射和同意双重功能,被设置于道路的正上方或斜上方,向路面发射超声波,并接收来自车辆的反射波。
超声波车辆检测器的工作原理可分为两种:传播时刻差法和多普勒法。 (1) 传播时刻差法
这是一种将超声波分割成脉冲射向路面并接收其反射波的方式。当有车
辆时,超声波会经车辆提早返回,检测出超前于路面的反射波,就说明车辆存在或通过。
如图3-3a所示,假设超声波探头距地面高度为H,车辆高度为h,波速v,发自探头的超声波脉冲的反射波从路面和车辆返回的时刻别离为t和t’,那么:
t=
2H2Hh t’= (3-13) vv可见时刻t’与车辆高度h向对应。那个特点即用来判别车辆存在,也可用于估量车高。从图3-3b还可看出,调整启动脉冲的启动时刻和宽度,能够限制输出信号发生的时刻t’的范围,由式(3-13)就能够够得出能被检测出来的车辆对应的车高范围。一样超声波检测器能检测出车高处于~的车辆。
图3-3 超声波传播时刻差法检测车辆原理
a超声波探头与车高;b脉冲序列
(2) 多普勒法
超声波探头向空间发射超声波同时接收信号,若是有移动物体,那么接收到的反射波信号就会呈现多普勒效应。利用此方式可检测正在驶近或正在远离的车辆,而不能检测出处于检测范围内的静止车辆。
由于超声波检测器采纳悬挂式安装,这与路面埋设式检测器(如环形线圈)相较有许多优势。第一是不需破坏路面,也不受路面变形的阻碍;第二
利用寿命长,可移动,架设方便,在日本交通工程中被大量采纳。其不足的地方是容易受环境的阻碍,当风速6级以上时,反射波产生飘移而无法正常检测;探头下方通过的人或物也会产生反射波,造成误检。因此超声波检测器要依照必然的标准安装。
从架设方便,利用寿命长等方面来讲,路面埋设式检测器不如超声波检测器,因此超声波检测器成为目前利用量仅次于环形线圈的一种检测器。
红外检测器
基于光学原理的车辆检测器用得比较多的是红外检测器与激光检测器,下面要紧介绍红外检测器(图3-4)。
车辆 红外接收管 调制解调器 选通 放大 整流 红外发射管 调制脉冲发生器 抗干扰网络 驱动电路 图3-4 红外检测器检测框图 输出端 红外检测一样采纳反射式或阻断式检测技术。例如反射式检测探头,它包括一个红外发光管和一个接收管。无车时,接收管不受光;有车时,同意车体反射的红外线。其工作原理是由调制脉冲发生器产生调制脉冲,经红外探头向道路上辐射,当由车辆通过时,红外线脉冲从车体反射回来,被探头的接收管接收。经红外调解器调解,再通过选通、放大、整流和滤波后触发驱动器输出一个检测信号。
这种检测器存在的缺点是:工作现场的尘埃、冰雾会阻碍系统的正常工
作。
视频图像处置技术
基于视频图像处置的车辆检测技术是最近几年来慢慢进展起来的一种新型车辆检测方式,它具有无线、可一次检测多参数和检测范围较大的特点,利用灵活,有着良好的应用前景。
视频图像处置车辆检测系统通常由电子摄像机、图像处置机(包括微处置器)、显示器等部份组成。如图3-5,摄像机对道路的必然区域范围摄像,图像经传输线送入图像处置机,图像处置机对信号进行模/数转换、格式转换等,再由微处置器处置图像背景,实时识别车辆的存在,判别车型,由此进一步推导其他交通参数。图像处置机还可依照需要给监控系统的主控机、报警器等设备提供信号,操纵中心那么依照这些信号制定操纵策略,发出整个操纵系统的操纵信号。
图3-5 图像处置车辆检测系统
视频图像处置方式处置的是摄像机摄取的图像。目前的系统一样还不能当即处置持续图像,而是以某一速度处置一系列的图像帧。摄像机将视场场景即光学图像转换成一帧一帧的电子信号。具体来讲,设一帧图像由N个必然大小的像元组成,光电元件将每一个像元的平均光亮度转换成电信号,经扫描装置逐个扫描,这些像元相应的电信号依次通过信道被发送出来,成为
一帧电信号。如图3-5,摄像机设置于道路上方或侧上方,设S(x,y,t)表示摄像机视场范围内一点(x,y),在t时刻的反射光强,通过摄像机摄像,该点图像强度用函数I(x,y,t)表示,该信号被转化成数字信号存储、处置。
由于每帧图像包括数十万个像元,摄像频率约30帧/s,因此需要大量的存储空间。为了减少像元所占存储空间,提高实时处置速度,通常在多帧图像中取一帧中的一些特定线段作为检测线进行处置。一旦选定检测线,图像处置机中的处置程序就估测无车时检测线上的背景强度(最简单的方式确实是估算背景的统计平均值)从而取得阈值。将检测线中所含的像元的强度I(x,y,t)与阈值比较,超过阈值,说明在点(x,y)处有车辆存在或通过,不然就表示无车通过。
图3-6 图像处置车辆检测示用意
图3-6中的横线m1、m2…mm确实是在图像上设定的检测线,与摄像机视场中设置的一些等距离的检测站一、检测站二、…检测站m相对应。纵线表示个车道的界限。用上述方式处置识别各车道横线所包括像元的强度是不是超过阈值,从而判定车辆的存在或通过。图像处置机自动计数就得出通过横线的车辆数,这也确实是该横线对应的现场检测站的车辆数。用相邻横线的距离除以车辆通过相邻横线的时刻,图像处置机可很容易的由程序计测出车速,而且可据此推算出其它交通参数。
在实际的图像处置系统中,背景处置是一个复杂而棘手的问题。图像处置程序必需考虑到对多种干扰因素的补偿,如不同路面对光的反射、阴影等。
由于图像处置方式是在摄像机摄取的图像的基础上实现识别和检测的,因此在摄像机的视场范围内能做多点检测而不需额外增加设备,也确实是说可处置必然区域范围而不是一个点的交通流。检测系统拆装时,不损坏路面,不阻碍交通,只需妥帖安装好摄像装置。
雷达检测器
雷达检测器是基于多普勒效应原理进行工作的。其原理是:当发射换能器向地面发射微波时,若是由车辆在微波发射线的覆盖区域内通过,会使部份微波发生反射,且被接收换能器收到。依照多普勒效应,接收到的微波频率将比原发射频率略高或略低,即产生频差(频率误差)。利用检测电路,将频差转化为脉冲信号,即可检测车辆的存在或通过,同时也能够测定车速。
雷达检测器有组和式和分离式两种。传感器和电子检测装置合为一体的叫做组合式雷达检测器。这种检测器结构紧凑,制造和安装也比较简便,其要紧缺点是维修不方便。分离式检测器是将传感器和电子检测装置分开安装,这种检测器只将传感器悬挂在道路上方(可利用电灯杆安装),而电子检测装置安装在路边的检测箱内,以便于维修。相对而言雷达检测器的利用只是在一些特殊场合,因为它的保护比较复杂。
雷达检测器要求车辆速度至少在5km/h以上,只有如此才能靠得住的检测到车辆的存在。
3、检测器的选用
在不同的道路、交通和天气条件下,不同的检测技术所表现出来的技术性能也具有必然的不同,检测器的选用也不同,表1给出了不同应用处所经常使用的检测技术分析比较(不包括经常使用的环形线圈)。最经常使用的为环形线圈检测器,它能够测量一切需要测量的操纵参数,而且与它的能力
相较,它的价钱是比较低的。目前来讲,环形线圈仍具有足够的准确性和靠得住性。
表1不同应用处所可选用的检测技术 应用场所 交叉路口信号控制 检测需求与条件 *检测停止车辆 *一般天气条件 *检测停止车辆 *恶劣气象条件 *不需要检测停止车辆 *恶劣气象条件 *模拟检测6×6英尺感应线 常用技术 *真实现场微波雷达 *被动红外检测器 *多普勒微波雷达 *超声波 *视频检测 *真实现场微波雷达 *超声波 *长波、红外视频检测 *真实现场微波雷达 *多谱勒微波雷达 *超声波 *长波、红外视频检测 *视频检测器 *真实现场微波雷达 *被动红外 *真实现场微波雷达 *多谱勒微波雷达 *被动红外线 *超声波 *视频检测 *真实现场微波雷达 *多谱勒微波雷达 *超声波 *视频检测 *视频检测 *激光雷达 *真实现场微波雷达 交叉路口信号控制 交叉路口信号控制 交通信号实时自动控制 圈探测区域 *可侧面安装 城市道路或高速公路车辆计数 *车速在比较低的情况下, 检测并计数, *车速在比较低的情况下, 检测并计数, *按车辆长度 车速检测 车辆识别
因篇幅问题不能全部显示,请点此查看更多更全内容