您的当前位置:首页正文

(完整版)ABAQUS实体单元类型总结

2023-03-31 来源:步旅网


在ABAQUS中,基于应力/位移的实体单元类型最为丰富:

(1) 在ABAQUS/Sandard中,实体单元包括二维和三维的线性单元和二次单元,均可以采用完全积分或缩减积分,另外还有修正的二次Tri单元(三角形单元)和Tet单元(四面体单元),以及非协调模式单元和杂交单元。

(2)ABAQUS/Explicit中,实体单元包括二维和三维的线性缩减积分单元,以及修正的二次二次Tri单元(三角形单元)和Tet单元(四面体单元),没有二次完全积分实体单元。

------------------------------------------------------------------------------------------------------------

按照节点位移插值的阶数,ABAQUS里的实体单元可以分为以下三类:

线性单元(即一阶单元):仅在单元的角点处布置节点,在各个方向都采用线性插值。

二次单元(即二阶单元):在每条边上有中间节点,采用二次插值。

修正的二次单元(只有Tri 或Tet 才有此类型):在每条边上有中间节点,并采用修正的二次插值。

**********************************************************************************************

1、线性完全积分单元:当单元具有规则形状时,所用的高斯积分点的数目足以对单元

刚度矩阵中的多项式进行精确积分。

缺点:承受弯曲载荷时,会出现剪切自锁,造成单元过于刚硬,即使划分很细的网格,计算精度仍然很差。

2、 二次完全积分单元:

优点:

(1)应力计算结果很精确,适合模拟应力集中问题;

(2)一般情况下,没有剪切自锁问题(shear locking)。

但使用这种单元时要注意:

(1)不能用于接触分析;

(2)对于弹塑性分析,如果材料不可压缩(例如金属材料),则容易产生体积自锁(volumetric locking);

(3)当单元发生扭曲或弯曲应力有梯度时,有可能出现某种程度的自锁。

3、 线性减缩积分单元:

减缩积分单元,比普通的完全积分单元在每个方向少用一个积分点;

线性缩减积分单元:

只在单元的中心有一个积分点,由于存在沙漏数值问题(hourglass)而过于柔软。采用线性缩减积分单元模拟承受弯曲载荷的结构时,沿厚度方向上至少应划分四个单元。

优点:

(1)对位移的求解计算结果较精确;

(2)网格存在扭曲变形时(例如Quad 单元的角度远远大于或小于90º),分析精度不会受到明显的影响;

(3)在弯曲载荷下不易发生剪切自锁。

缺点:

(1)需要较细网格克服沙漏问题;

(2)如果希望以应力集中部位的节点应力作为分析目标,则不能选用此单元。

——因为线性缩减积分单元只在单元的中心有一个积分点,相当于常应力单元,在积分点上的应力结果实相对精确的,而在经过外插值和平均后得到的节点应力则不精确。

4、 二次减缩积分单元

不但保持线性减缩积分单元的上述优点,还具有如下特点:

(1)即使不划分很细的网格也不会出现严重的沙漏问题;

(2)即使在复杂应力状态下,对自锁问题也不敏感。

使用这种单元要注意:

(1)不能用于接触分析;

(2)不能用于大应变问题;

(3)存在与线性减缩积分单元类似的问题,由于积分点少,得到的节点应力的精度往往低于二次完全积分单元。

5、非协调模式单元(imcompatible modes)

—— 仅在ABAQUS/Standard 有,可克服线性完全积分单元中的剪切自锁问题。

ABAQUS中的非协调模式单元和MSC.NASTRAN中的4节点四边形单元或8节点六面体单元很相似,所以在比较着两种有限元软件的计算结果时会发现,如果在ABAQUS中选择了非协调模式单元,得到的分析结果会和MSC.NASTRAN的结果一致。

优点:

(1)克服了剪切自锁问题,在单元扭曲比较小的情况下,得到的位移和应力结果很精

确;

(2)在弯曲问题中,在厚度方向上只需很少的单元,就可以得到与二次单元相当的结果,而计算成本却明显降低;

(3)使用了增强变形梯度的非协调模式,单元交界处不会重叠或开洞,因此很容易扩展到非线性、有限应变的位移。

但使用这种单元时要注意:如果所关心部位的单元扭曲比较大,尤其是出现交错扭曲时,分析精度会降低。

6、 使用Tri 或Tet 单元要注意:

如果能用Quad 或Hex 单元,就尽量不要使用Tri或Tet 单元;

(1)线性Tri 或Tet 单元的精度很差,不要在模型中所关心的部位及其附近区域使用;

(2)二次Tri 或Tet 单元的精度较高,而且能模拟任意的几何形状,但计算代价比Quad 或Hex 单元大。

(3)二次Tet 单元(C3D10)适于ABAQUS/Standard 中的小位移无接触问题;

修正的二次Tet 单元(C3D10M)适于ABAQUS/Explicit 和ABAQUS/Standard 中的大变形和接触问题;

(4)使用自有网格不易通过布置种子来控制实体内部的单元大小。

7、 杂交单元

在ABAQUS/Standard 中,每一种实体单元都有其对应的杂交单元,

用于不可压缩材料(泊松比为0.5,如橡胶)或近似不可压缩材料(泊松比大于0.475)。

除了平面应力问题之外,不能用普通单元来模拟不可压缩材料的响应,因为此时单元中的应力士不确定的。

ABAQUS/Explicit 中没有杂交单元。

*************************************************************************************************

混合使用不同类型的单元:

1、当三维实体几何形状复杂时,无法再整个实体上使用structure结构化网格或sweep扫略网格划分技术得到Hex单元网格,一种常用的做法是:

(1)对实体不重要的部分使用Free自由网格划分技术,生成Tet单元网格,而对于所关心的部分采用结构化网格或扫略网格划分技术,生成Hex单元网格。

(2)在生成这样的网格时,ABAQUS会给出提示信息,提示将生成非协调的网格,在不同单元类型的交界处将自动创建Tie绑定约束。

2、需要注意的是,在不同单元类型网格的交界处,即使单元角部节点是重合的,仍然

有可能出现不连续的应力场,而且在交界处的应力可能大幅度的增大。

如果在同一实体中混合使用线性和二次单元,也会出现类似的问题。

因此在混合使用不同类型单元时,应确保其交界处远离所关心的区域,并仔细检查分析结果是否正确。

因篇幅问题不能全部显示,请点此查看更多更全内容