机器视觉是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等多个领域的交叉学科。它不仅是人眼的延伸,更重要的是具有人脑的一部分功能。近年来,随着计算机技术尤其是多媒体技术和数字图像处理及分析理论的成熟,以及大规模集成电路的迅速发展,机器视觉技术得到了广泛的应用研究,取得了巨大的经济与社会效益。
一、机器视觉的研究背景
“作为一项关键性的自动化技术,机器视觉在发展中国家中对经济的现代化非常重要。为了在世界市场中进行竞争,发展中经济不能无限期的依赖于廉价劳动力。“ AIA市场分析员Kellett说。同样地,现代化必须实现高效率、高生产率以及高质量。这也是机器视觉的作用所在,”对机器视觉长期需求这样的趋势是发展中国家实现经济现代化的基础。因此,机器视觉对于世界经济的发展将越来越重要。”
传统地来讲,外观检查和质量控制是通过人类专家来完成的。虽然人类在很多情况下可以把这项工作做的比机器更好,但是他们的速度比机器慢,并且很快就会感觉疲倦。此外在一个行业里很难找到或者留住人类专家,他们需要接受培训,而且他们的技能需要花时间去培养。还有些情况就是检测工作往往很乏味或者很困难,甚至对那些训练有素的专家来说也是一样。某些应用中,精确的信息必须被很迅速或者重复地提取和使用(例如目标跟踪和机器人引导)。在一些环境下(例如水下检测,原子能工业,化学工业等)检测可能很困难或者很危险。在这种高要求的情况下,计算机视觉可以很有效的取代人工检测。同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以人大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。
半导体行业是最先利用机器视觉技术进行检测的行业,其他行业也随之而来。作为生产机械的OEM的设计工程师,最基本的问题就是:“我是要检测这个部件还是整个这个产品”。检测可以得到高质量的产品,但是也会有这样的事实存在:检测成本或者产品质量要求并不需要这样的检测。比如说牙签,假设每一个装有500个牙签的盒子里有一两个不合恪,大多数人都不会怎么担心。但是对于很多产品,假如前面的盒了里装的不是牙签,而是针头,试想不合格品可能会带来什么样的后果,所以产品功能性的检测都是不可缺少的,即使只是外观检测,要证明内在的品质也必须要做到无缺陷。因此,为了达到这个目的,许多OEM将机器视觉世用到他们将要卖给用户的系统中。机器视觉能够为整个系统增值,表现在三个方面:提高生产效率,提高制造过程的精确性,减少成本。 那么,对丁一个设计工程师来说,怎么样才能知道机器视觉是否适合他的系统呢?尽管最早的最基本的机器视觉系统在20世纪70年代引入,工业就将其视为主流应用。这就导致设计工程师要考虑它是否合适他们的应用,同时要考虑利用机器视觉检测的成本与其所能带来的利润。 高复杂度产品行业,比如说半导体行业和电子行业,由于它们的复杂性和小型化,从传统上推动着机器视觉市场的发展。但是如今,所有产业,包括自动化、
制药、造纸等等都依靠机器视觉系统检测产品以提高产品质量。工业专家们预言:在未来的20年到50年,机器视觉将成为横跨所有行业的通用性技术,几乎所有出产的产品部会由机器视觉系统来检测。
机器视觉自起步发展到现在,应经有15年的发展历史。应该说机器视觉作为一种应用系统,其功能特点是随着工业自动化的发展而逐步完善和发展的。由于机器视觉系统可以快速获得大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统也广泛地应用于工况监视、成品检验和质量控制等领域。 使用机器视觉系统有以下五个主要原因:
精确性一由于人眼有物理条件的限制,在精确性上机器有明显的优点。即使人眼依靠放大镜或显微镜来检测产品,机器仍然会更加精确,因为它的精度能够达到千分之一英寸。
重复性一机器可以以相同的办法一次一次的完成检测工作而不会感到疲倦。与此相反,人眼每次检测产品时都会有细微的不同,即使产品是完全相同的。 速度一机器能够更快的检测产品。特别是当检测高速运动的物体时,比如说生产线上,机器能够提高生产效率。
客观性一人眼检测还有一个致命的缺陷,就是情绪带来的主观性,检测结果会随工人心情好坏产生变化,而机器没有喜怒哀乐,检测的结果自然非常可观可靠。
成本一由于机器比人快,一台自动检测机器能够承担好几个人的任务。而且机器不需要停顿、不会生病、能够连续工作,所以能够极大的提高生产效率。
二、机器视觉的的发展现状与趋势
1、机器视觉系统的发展
机器人视觉系统按其发展可分为三代。第一代机器人视觉的功能一般是按规定流程对图像进行处理并输出结果。这种系统一般由普通数字电路搭成,主要用于平板材料的缺陷检测。第二代机器人视觉系统一般由一台计算机,一个图像输入设备和结果输出硬件构成。视觉信息在机内以串行方式流动,有一定学习能力以适应各种新情况。第三代机器人视觉系统是目前国际上正在开发使用的系统。采用高速图像处理芯片,并行算法,具有高度的智能和普通的适应性,能模拟人的高度视觉功能。 在Roberts之前都是基于二维的,而且多数是采用模式识别的方法完成分类工作的。Roberts首先用程序成功地对三维积木世界进行解释,在之后类似的研究中,Huffman。 Clowes以及Waltz等人对积木世界进行了研究并分别解决了由线段解释景物和处理阴影等问题。积木世界的研究反映了视觉早期研究中的一些特点,即从简化的世界出发进行研究。这些工作对视觉研究的发展起了促进作用,但对于稍微复杂的景物便难以奏效。
20世纪70年代中期,以Marr, Barrow和Tenebaum等人为代表的一些研究者提出了一整套视觉计算的理论来描述视觉过程,其核心是从图像恢复物体的三维形状。在视觉研究的理论上,以Marr的理论影响最为深远。其理论强调表示的重要性,提出要从不同层次去研究信息处理的问题。对于计算理论和算法实现,他又特别强调计算理论的重要性。这一框架虽然在细节上甚至在主导思想上还存在不完备的方面,许多方面还有很多争议,但至今仍是目前计算机视觉研究的基本框架。 进入80年代中后期,随着移动式机器人等的研究,视觉研究与之密
切结合,大量引入了空间几何的方法以及物理知识,其主要目标是实现对道路和障碍的识别处理。这一时期引入主动视觉的研究方法,使用了距离传感器,并采用了多传感器融合等技术。
2、国内外技术的发展现状
国外机器视觉发展的起点难以准确考证,其大致的发展历程是:20世纪50年代提出机器视觉概念,20世纪70年代真正开始发展,20世纪80年代进入发展正轨,20世纪90年代发展趋于成熟,20世纪90年代后高速发展。在机器视觉发展的历程中,有3个明显的标志点,一是机器视觉最先的应用来自“机器人”的研制,也就是说,机器视觉首先是在机器人的研究中发展起来的;二是20世纪70年代CCD图像传感器的出现,CCD摄像机替代硅靶摄像是机器视觉发展历程中的一个重要转折点;三是20世纪80年代CPU、DSP等图像处理硬件技术的飞速进步,为机器视觉飞速发展提供了基础条件。
在国外,机器视觉的应用普及主要体现在半导体及电子行业,其中大概40%-50%都集中在半导体行业。具体如PCB印刷电路:各类生产印刷电路板、组装技术、设备;单、双面、多层线路板,覆铜板及所需的材料及辅料;电子封装技术与设备;丝网,印刷设备及丝网周边材料等。SMT表面贴装:SMT工艺与设备、焊接设备、测试仪器、返修设备及各种辅助工具及配件、SMT材料、贴片剂、胶粘剂、焊剂、焊料及防氧化油、焊膏、清洗剂等;再流焊机、波峰焊机及自动化生产线设备。电子生产加工设备:电子元件制造设备、半导体及集成电路、制造设备、元器件成型设备、电子工模具。机器视觉系统还在质量检测的各个方面已经得到了广泛的应用,并且其产品在应用中占据着举足轻重的地位。 国内机器视觉发展的大致历程:真正开始起步是20世纪80年代,20世纪90年代进入发展期,加速发展则是近几年的事情。中国正在成为世界机器视觉发展最活跃的地区之一,其中最主要的原因是中国已经成为全球的加工中心,许许多多先进生产线己经或正在迁移至中国,伴随这些先进生产线的迁移,许多具有国际先进水平的机器视觉系统也进入中国。对这些机器视觉系统的维护和提升而产生的市场需求也将国际机器视觉企业吸引而至,国内的机器视觉企业在与国际机器视觉企业的学习与竞争中不断成长
1990年以前,仅仅在大学和研究所中有一些研究图像处理和模式识别的实验室。 20世纪90年代初,一些来自这些研究机构的工程师成立了他们自己的视觉公司,开发了第一代图像处理产品,例如基于ISA总线的灰度级图像采集卡,和一些简单的图像处理软件库,他们的产品在大学的实验室和一些工业场合得到了应用,人们能够做一些基本的图像处理和分析工作。1990-1998年为初级阶段。期间真正的机器视觉系统市场销售额微乎其微。主要的国际机器视觉厂商还没有进入中国市场。自从1998年,越来越多的电子和半导体工厂,包括香港和台湾投资的工厂,落户广东和上海。带有机器视觉的整套的生产线和高级设备被引入中国。1998-2002年定义为机器视觉概念引入期。在此阶段,许多著名视觉设备供应商,例如,北京和利时电机技术有限公司曾经被五家外国公司选做主要代理商或解决方案提供商。从2002年至今,我们称之为机器视觉发展期,中国机器视觉呈快速增长趋势。
在国内,以上行业本身就属于新兴的领域,再加之机器视觉产品技术的普及不够,只是低端方面的应用,曾导致以上很多行业的应用几乎空白。目前在我国
随着配套基础建设的完善,技术、资金的积累,各行各业对采用图像和机器视觉技术的工业自动化、智能化需求开始广泛出现,国内有关大专院校、研究所和企业近两年在图像和机器视觉技术领域进行了积极思索和大胆的尝试,逐步开始了工业现场的应用。其主要应用于制药、印刷、矿泉水瓶盖检测等领域。这些应用大多集中在如药品检测分装、印刷色彩检测等。真正高端的应用还很少,因此,以上相关行业的应用空间还比较大。当然、其他领域如指纹检测等等领域也有着很好的发展空间。
3、机器视觉的发展趋势
(1)技术方面的趋势是数字化、实时化、智能化
图像采集与传输的数字化是机器视觉在技术方面发展的必然趋势。更多的数字摄像机,更宽的图像数据传输带宽,更高的图像处理速度,以及更先进的图像处理算法将会推出,将会得到更广泛的应用。这样的技术发展趋势将使机器视觉系统向着实时性更好和智能程度更高的方向不断发展。 (2)功能多和产品小型化
更多功能的实现主要是来自于计算能力的增强,更高分辨率的传感器(10Mpixels),更快的扫描率(500次/s)和软件功能的提高.PC处理器的速度在得到稳步提升的同时,其价格也在下降,这推动了更快的总线的出现,而总线又反过来允许具有更多数据的更大图像以更快的速度进行传输和处理.产品的小型化趋势让这个行业能够在更小的空间内包装更多的部件,这意味着机器视觉产品变得更小,这样他们就能够在厂区所提供的有限空间内应用.例如在工业配件上LED已经成为主导光源,它的小尺寸使成像参数的测定变得容易,他们的耐用性和稳定性非常适用于工厂设备。
(3)基于嵌入式的产品将取代板卡式产品
从产品本身看,机器视觉会越来越趋于依靠PC技术。且基于嵌入式的产品将逐渐取代板卡式产品,这是一个不断增长的趋势。主要原因是随着计算机技术和微电子技术的迅速发展,嵌入式系统应用领域越来越广泛,尤其是其具备低功耗技术的特点得到人们的重视。另外,嵌入式操作系统绝大部分是以C语言为基础的,使用高级语言的优点是可以提高工作效率,缩短开发周期,更主要的是开发出的产品可靠性高、可维护性好、便于不断完善和升级换代等。
(4)市场份额迅速扩大
目前,在我国机器视觉技术还不太成熟,主要靠进口国外整套系统,价格比较昂贵。随着技术的进步和市场竞争的激烈,价格下降已成必然趋势,这意味着机器视觉技术将逐渐被接受。另外,机器视觉市场将不断增大。一方面已经采用机器视觉产品的应用领域,对机器视觉产品的的依赖性将更强;另一方面机器视觉产品将应用到其他更广的领域。 (5)行业方面发展更加迅速
机器视觉行业专业性公司增多,投资和从业人员增加,竞争加剧是机器视觉行业未来几年的发展趋势,机器视觉行业作为一个新兴的行业将逐步发展成熟,将越来越越受到人们的重视。
机器视觉技术诞生和应用,极大地解放了人类劳动力,提高了生产自动化水平,改善了人类生活现状,其应用前景极为广阔,目前在国外,机器视觉技术已广泛应用于生产,生活中,而我国正处于初步阶段,急需广大科技工作者的共同
努力,来迅速提高我国机器视觉技术的发展水平,为我国的现代化建设做出自己的贡献。
三、机器视觉的概述
1、机器视觉的概念
机器视觉又叫计算机视觉,是计算机系统对人的视觉的模拟和延伸。机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作
2、机器视觉的特点和优缺点
(1)机器视觉系统的特点:
提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。 (2)机器视觉系统的优点:
1、非接触测量,对于观测者与被观测者都不会产生任何损伤,从而提高系统的可靠性。
2、机器视觉系统具有较宽的光谱响应范围,例如使用人眼看不见的红外测量,扩展了人眼的视觉范围。
3、长时间稳定工作,人类难以长时间对同一对象进行观察,而机器视觉则可以长时间地作测量、分析和识别任务。 (3)机器视觉系统的缺点
世界各国的研究者们按照Marr提出的基本理论框架,对计算机视觉系统的各个研究层次进行了大量的研究,并提出了相应的解决方法,但总的来讲,这些方法都存在着一些问题,或缺乏通用性,或抗干扰能力差,或存在多解性,其原因如下:一是计算机视觉是一个逆问题,即输入图像为二维图像的灰度,它是三维物体几何特征、光照、物体材料表面性质、物体的颜色、摄像机参数等许多因素的函数。由灰度反推以上各种参数是逆问题,而这些问题大都是非线形的,问题的解不具有唯一性,而且对噪声或离散化引起的误差都极其敏感;另一个原因是Marr的视觉系统框架是一个自上而下的、模块的、单向的、数据驱动型的结构。神经生理学的深入研究表明,这种结构与人的视觉系统还有很大差距,生物视觉系统的认知过程是一种与外界交互作用的有目的、主动性过程,而不仅仅是一种被动式的反应。
3、机器视觉的构成
一个典型的工业机器视觉应用系统包括如下部分:光源,镜头,CCD照相机,图像处理单元(或图像捕获卡),图像处理软件,监视器,通讯/输入输出单元等。首先采用摄像机获得被测目标的图像信号, 然后通过A/ D 转换变成数字信号
传送给专用的图像处理系统,根据像素分布、亮度和颜色等信息,进行各种运算来抽取目标的特征,然后再根据预设的判别准则输出判断结果,去控制驱动执行机构进行相应处理。机器视觉是一项综合技术,其中包括数字图像处理技术、机械工程技术、控制技术、光源照明技术,光学成像技术、传感器技术、模拟与数字视频技术、计算机软硬件技术、人机接口技术等。 机器视觉强调实用性,要求能够适应工业现场恶劣的环境,要有合理的性价比、通用的工业接口、较高的容错能力和安全性,并具有较强的通用性和可移植性。 它更强调实时性,要求高速度和高精度。
4、机器视觉的功能
(1)识别:可识别一维码,二维码,字符;还可以识别颜色。 (2)检测:可检测特征有无,检测物品表面缺陷等。
(3)定位:找出零件上某特征坐标位置,输出给外部控制机构。 (4)测量:用于精密测量,可测量长度,宽度,角度,直径等等。
四、机器视觉与图像采集技术在各个领域的应用
视觉技术的最大优点是与被观测对象无接触,因此,对观测与被观测者都不会产生任何损伤,十分安全可靠,这是其它感觉方式无法比拟的. 理论上,人眼观察不到的范围机器视觉也可以观察,例如红外线、微波、超声波等,而机器视觉则可以利用这方面的传感器件形成红外线、微波、超声波等图像. 另外,人无法长时间地观察对象,机器视觉则无时间限制,而且具有很高的分辨精度和速度. 所以,机器视觉应用领域十分广泛,可分为工业、科学研究、军事和民用4 大领域.
4. 1 工业领域
工业领域是机器视觉应用中比重最大的领域,按照功能又可以分成4 类:产品质量检测、产品分类、产品包装、机器人定位. 其应用行业包括印刷包装、汽车工业、半导体材料/ 元器件/ 连接器生产、药品/ 食品生产、烟草行业、纺织行业等.下面以纺织行业为例具体阐述机器视觉在工业领域的应用[9 ] .在纺织企业中,视觉检测是工业应用中质量控制的主要组成部分,用机器视觉代替人的视觉可以克服人工检测所造成的各种误差,大大提高检测精度和效率. 正是由于视觉系统的高效率和非接触性,机器视觉在纺织检测中的应用越来越广泛[10 - 12 ] ,在许多方面已取得了成效.机器视觉可用于检测与纺织材料表面有关的性能指标见表4. 目前主要的研究内容可分为3 大类: 纤维、纱线、织物. 由于织物疵点检测(在线检测) 需要很高的计算速度,因此,设备费用比较昂贵. 目前国内在线检测的应用比较少,主要应用是离线检主要的检测有纺织布料识别与质量评定、织物表面绒毛鉴定、织物的反射特性、合成纱线横截面分析、纱线结构分析等. 此外还可用于织物组织设计、花型纹板、棉粒检测、分析纱线表面摩擦。
4. 2 民用领域
机器视觉技术可用在智能交通、安全防范、文字识别、身份验证、医疗设备等方面. 在医学领域,机器视觉用于辅助医生进行医学影像的分析,主要利用数字图像处理技术、信息融合技术对x 射线透视图、核磁共振图像、CT 图像进行适当叠加,然后进行综合分析,以及对其它医学影像数据进行统计和分析。
4. 3 科学研究领域
在科学研究领域可以利用机器视觉进行材料分析、生物分析、化学分析和生命科学,如血液细胞自动分类计数、染色体分析、癌症细胞识别等。
4. 4 军事领域
视觉技术可用在航天、航空、兵器(敌我目标识别、跟踪) 及测绘. 在卫星遥感系统中,机器视觉技术被用于分析各种遥感图像,进行环境监测,根据地行、地貌的图像和图形特征,对地面目标进行自动识别、理解和分类等。
五、机器视觉的关键技术
机器视觉是一项综合技术,包括图像处理、机械工程技术、控制、电光源照明、光学成像、传感器、模拟与数字视频技术、计算机软硬件技术(图像增强和分析算法、图像卡、I/ O 卡等) 。 这些技术在机器视觉中是并列关系,相互协调应用才能构成一个完整的工业机器视觉应用系统。 机器视觉强调能够适应工业现场恶劣的环境、有合理的性价比、较强的通用性和可移植性,即实用性;它更强调高速度和高精度,即实时性.机器视觉应用系统中,用到很多技术,但关键技术主要体现在光源照明、光学镜头、摄像机(CCD) 、图像采集卡、图像信号处理以及执行机构等。
5. 1 光源照明
好的光源和照明是目前机器视觉应用系统成败的关键,应当具有以下特征: ①尽可能突出目标的特征,在物体需要检测的部分与非检测部分之间尽可能产生明显的区别,增加对比度; ②保证足够的亮度和稳定性; ③物体位置的变化不应影响成像的质量.光源按其照射方法可分为背向照明、前向照明、结构光照明和频闪光照明等. 背向照明是被测物放在光源和摄像机之间,其优点是能获得高对比度的图像;前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装;结构光照明是将光栅或线光源等投射到被测物上,根据它们所产生的畸变,解调出被测物的三维信息;频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步,这样能有效地拍摄高速运动物体的图像[5 ] . 照明亮度、均匀度、发光的光谱特性要符合实际的要求,同时还要考虑光源的发光效率和使用寿命。
其中,L ED 光源具有显色性好、光谱范围宽(可覆盖整个可见光范围) 、发光强度高、稳定时间长等优点,而且随着制造技术的成熟,其价格越来越低,必将在现代机器视觉领域得到越来越广泛的应用。
5. 2 光学镜头
光学镜头一般称为摄像镜头或摄影镜头,简称镜头,其功能就是光学成像. 镜头是系统中的重要组件,对成像质量有着关键性的作用,在组建机器视觉系统时,硬件设备要根据实际需要选择合适口径和焦距的镜头。
5. 3 CCD 摄像机及图像采集卡
CCD(Charge coupled device) 摄像机及图像采集卡共同完成对目标图像的采集与数字化.目前,CCD、CMOS 等固体器件已经是成熟的应用技术. 线阵图像敏
感器件,像元尺寸不断减小,阵列像元数量不断增加,像元电荷传输速率得到极大提高.所示为一种高性能线阵CCD 器件的参数从中可以看到,线阵器件像元数和数据的传输率大大提高,而且器件设计集成了新的功能,具有可编程能力,如增益调整、曝光时间选择、速率调节以及维护等。
在线阵器件性能提高的同时,高速面阵图像器件性能也在快速提高. 某种超高速面阵CCD 器件,允许的最大分辨率达1 280 ×1 024 像素,最大帧率1MHz ,可采集4 帧图像,且像素灵敏度达12 bit s[8 ] .在基于PC 机的机器视觉系统中,图像采集卡是控制摄像机拍照完成图像采集与数字化,协调整个系统的重要设备. 一般具有以下功能模块: ①图像信号的接收A/ D 转换模块,负责图像放大与数字化; ②摄像机控制输入输出接口,主要负责协调摄像机进行同步或实现异步重置拍照、定时拍照; ③总线接口,负责通过计算机内部总线高速输出数字数据,一般是PCI 接口,传输速率可达130Mbp s ,完全能胜任高精度图像的实时传输,且占用较少CPU 时间; ④显示模块,负责高质量的图像实时显示; ⑤通讯接口,负责通讯.目前,图像采集卡种类很多,按照不同的分类方法,有黑白图像和彩色图像采集卡,有模拟信号和数字信号采集卡,有复合信号和RGB 分量信号输入采集卡. 在选择图像采集卡时,主要应考虑到系统的功能需求、图像的采集精度和与摄像机输出信号的匹配等因素。
5. 4 图像信号处理
图像信号的处理是机器视觉系统的核心. 视觉信息的处理技术主要依赖于图像处理方法,它包括图像变换、数据编码压缩、图像增强复原、平滑、边缘锐化、分割、特征抽取、图像识别与理解等内容. 随着计算机技术、微电子技术以及大规模集成电路的发展,为了提高系统的实时性,图像处理的很多工作都可以借助硬件完成,如DSP 芯片、专用图像信号处理卡等,软件主要完成算法中非常复杂、不太成熟或尚需不断探索和改进的部分.处理时间上,要求处理速度必须大于等于采集速度,才能保证目标图像无遗漏,完成实时处理。
参考文献:
[1 ] 章炜. 机器视觉技术发展及其工业应用[J ] . 红外,2005 ,27 (2) :11 - 17. [2 ] Forsyth D A ,J ean Ponce . Computer Vision[M] . Inc : Prentice Hall ,2003.
[3 ] 唐向阳, 张勇, 李江有,等. 机器视觉关键技术的现状及应用展望[J ] . 昆明理工大学大学学报( 理工版) , 2004 , 29 (2) : 36
[4 ] 段峰, 王耀南, 雷晓峰,等. 机器视觉技术及其应用综述[J ] . 自动化博览, 2002 (3) : 59 - 62. [5 ] 刘焕军,王耀南. 机器视觉中的图像采集技术[J ] . 电脑与信息技术,2003 (1) :18 - 21. [6 ] 贾云得. 机器视觉[M] . 北京:科学出版社,2000 :1 - 15.
[7 ] 颜发根,丁少华,陈乐,等. 基于PC 的机器视觉系统[J ] . 可编程控制器与工厂自动化,2004 (7) :129 - 131.
[8] Salembier P ,Serra J . Flat Zones Filtering ,Connected Operator ,and Filters by Reconst ruction [J ] . IEEE Transactions on Image Processing ,1995 ,4 (8) :1153 - 1160.
[9] 卢官明. 区域生长型分水岭算法及其在图像序列分割中的应用[J ] . 南京邮电学院学报(自然科学版) ,2000 ,20 (3) :51 - 54.
[10 ] 夏德深,傅德胜. 现代图像处理技术与应用[M] . 南京:东南大学出版社,2001 :80 - 100.
[11] 吴平川,路同浚,王炎. 带钢表面自动检测系统研究现状与展望. 无损检测. 2000,22(7):
312-315.
[12] 戴军,赵海洋,冯心海. 机器视觉[J].机械设计与制造工程,1998,(7).
[13] 于德敏. 用于提高结构光测量精度的虚拟网络标定法[A]. 天津市图像图形学会论文集,2001(10).
[14] 刘金桥,吴金强 机器视觉系统发展及其应用[期刊论文]-机械工程与自动化 2010(1). [15] 韩冰,林明星,丁凤华. 机器视觉技术及其应用分析[期刊论文]-农业装备与车辆工程 2008(10).
[16] 张五一,赵强松,王东云. 机器视觉的现状及发展趋势[期刊论文]-中原工学院学报 2008(1). [17] 陈梅兰 .机器视觉关键技术与应用实例分析[期刊论文]-现代计算机(专业版) 2006(1). [18] 仲林国. 基于机器视觉技术的嵌入式系统研究[学位论文]硕士 2005.
因篇幅问题不能全部显示,请点此查看更多更全内容