您的当前位置:首页正文

2023年物理教学教师心得体会 篇2

2024-07-18 来源:步旅网

  本学期我执教高三20班和22班,紧张的一个学期转瞬即逝,为了以后能在工作中扬长避短,取得更好的成绩,现将本期工作总结如下:

  一,紧跟备课组认真组织好课堂教学,努力完成教学进度。

  二,加强高考研讨,努力实现备考工作的科学性和实效性。

  本学期,物理备课组的教研活动时间较灵活。备课组成员将在教材处理,教学内容的选择,教法学法的设计,练习的安排等方面进行严格的商讨,确保教学工作正常开展。主要内容分为两部分:一是商讨综合科的教学内容,确定教学知识点和练习。二是针对物理课上的教学问题展开研讨,制定和及时调整对策,强调统一行动。另外,到外校取经,借鉴外校老师的经验,听取他们对高考备考工作的意见和建议,力求效果明显。三是多向老教师学习,多听他们的课,学习他们的课堂组织学习他们的教学思路,加强交流,取长补短,不断改进教学水平

  三,对尖子生时时关注,不断鼓励。时时关心他们的状态。而对学习上有困难的学生,更要多给一点热爱,多一点鼓励,多一点微笑。

  四,经常对学生进行有针对性的心理辅导,让他们远离学习上的困扰,轻松迎战高考。

  五,构建物理学科的知识结构,把握各部分物理知识的重点,难点。灵活的掌控课堂。

  物理学科知识主要分力,电,光,热,原子物理五大部分。

  力学是基础,电学与热学中的许多复杂问题都是与力学相结合的,因此一定要熟练掌握力学中的基本概念和基本规律,以便在复杂问题中灵活应用。力学可分为静力学,运动学,动力学以及振动和波。

  静力学的核心是质点平衡,只要选择恰当的物体,认真分析物体受力,再用合成或正交分解的方法来解决即可。一般来说三力平衡用合成,画好力的合成的平行四边形后,选定半个四边形———三角形,进行解三角形的数学工作就行了。

  运动学的核心是基本概念和几种特殊运动。基本概念中,要区分位移与路程,速度与速率,速度,速度变化与加速度。几种运动中,最简单的是匀变速直线运动,用匀变速直线运动的公式可直接解决;稍复杂的是匀变速曲线运动,只要将运动正交分解为两个匀变速直线运动后,再运用匀变速公式即可。对于匀速圆周运动,要知道,它既不是匀速运动(速度方向不断改变),也不是匀变速运动(加速度方向不断变化),解决它要用圆周运动的基本公式。

  力学中最为复杂的是动力学部分,但是只要清楚动力学的3对主要矛盾:力与加速度,冲量与动量变化和功与能量变化,并在解决问题时选择恰当途径,许多问题可比较快捷地解决。一般来说,某一时刻的问题,只能用牛顿第二定律(力与加速度的关系)来解决。对于一个过程而言,若涉及时间可用动量定理;若涉及位移可用功能关系;若这个过程中的力是恒力,那么还可用牛顿第二定律加匀变速直线运动的公式来解决。但是这种方法,要涉及过程中每一阶段的物理量,计算起来相对麻烦。如果能用动量定理或机械能守恒来解就会方便得多,因为这是两个守恒定律,如果只关心过程的初末状态,就不必求解过程中的各个细节。那么在什么情况下才能用上述两个定律呢只要体系所受合外力为零(该条件可放宽为:外力的冲量远小于内力的冲量)时,体系总动量守恒;若体系在某一方向所受合外力为零,那么体系在这一方向上的动量守恒。

  振动和波这一部分是建立在运动学和动力学基础之上的,只不过加入了振动与波的一些特性,例如运动的周期性(解题时要注意通解,即符合要求的答案有多个),再如波的干涉和衍射现象等等。

  热学有两大部分,分子运动论和气体性质。对于分子运动论,如果去为每条理论寻找实验基础,那么书上的各知识点自然就掌握了;热力学第一定律:外界对气体做功W与气体所吸热量Q之和等于气体的内能增量腅。其次,V与W有关系,若气体体积V增加,气体必对外做功;理想气体温度T与内能E有关,若理想气体温度升高,其分子平均平动动能必增大,而理想气体分子间无相互作用,因此分子势能不变,所以其体内能E必增大。这6个物理量的关系清楚了,热学本身的问题就解决了。至于热学和力学的综合问题,以力学为基础,将气体压力F用气体压强P和受力面积S表示,即,F=PS。

  电学是物理学中的另一大部分,可分为:静电,恒定电流,电与磁,交流电和电磁振荡,电磁波5部分。

  静电部分包括库仑定律,电场,场中物以及电容。电场这一概念比较抽象,但是电荷在电场中受力和能量变化是比较具体的,因此,引入电场强度(从电荷受力角度)和电势(从能量角度)描写电场,这样电场就可以和力学中的重力场(引力场)来类比学习了。但大家要注意,质点间是相互吸引的万有引力,而点电荷间有吸引力也有排斥力;关于电势能完全可以与重力势能对比:电场力做多少正功电势能就减少多少。为了使电场更加形象化,还人为加

  入了描述电场的图线———电场线和等势面,如果能熟练掌握这两种图线的性质,可以帮助你形象理解电场的性质。

  场中物包括在电场中运动的带电粒子和在电场中静电平衡的导体。对于前者,可以完全按力学方法来处理,只是在粒子所受的各种机械力之外加上电场力罢了。对于后者要掌握两个有效的方法:画电场线和判断电势。

  恒定电流部分的核心是5个基本概念(电动势,电流,电压,电阻与功率)和各种电路的欧姆定律以及电路的串并联关系。特别强调的是,基本概念中要着重理解电动势,知道它是描述电源做功能力的物理量,它的大小可以通俗理解为电源中的非静电力将一库仑正电荷从电源的负极推至正极所做的功。对于功率一定要区分热功率与电功率,二者只有在电能完全转化为内能时才相等。欧姆定律的理解来源于功能关系,使用时一定要注意适用条件。

  电与磁的核心是三件事:电生磁,磁生电和电磁生力,只要掌握这三件事的产生条件,大小,方向,这一部分的主要矛盾就抓住了。这一部分的难点在于因果变化是互动的,甲物理量的变化会引起乙物理量的变化,而乙反过来又影响甲,这一变化了的甲继续影响乙……这样周而复始。

  交流电这一部分要特别注意变压器的原副线圈的电压,电流,电功率的因果关系,对于已经制作好的变压器,原线圈的电压决定副线圈的电压(电压在允许范围内变化),而副线圈的电流和功率决定原线圈的电流和功率。

  电磁振荡,电磁波部分的难点在于LC振荡回路中的各物理量变化,只要弄清电感线圈和电容的性质,明确物理过程,掌握各物理量的变化规律,问题就不难解决。

显示全文