信道容量的概念

发布网友 发布时间:2022-04-20 09:33

我来回答

1个回答

热心网友 时间:2023-06-30 22:24

信息论不研究信号在信道中传输的物理过程,它假定信道的传输特性是已知的,这样信道就可以用抽象的数学模型来描述。在信息论中,信道通常表示成:{X,P(Y|X),Y},即信道输入随机变量X、输出随机变量Y以及在输入已知的情况下,输出的条件概率分布 P(Y|X)。根据信道的统计特性是否随时间变化分为:
①恒参信道(平稳信道):信道的统计特性不随时间变化。卫星通信信道在某种意义下可以近似为恒参信道。
②随参信道(非平稳信道):信道的统计特性随时间变化。如短波通信中,其信道可看成随参信道
信道容量是信道的一个参数,反映了信道所能传输的最大信息量,其大小与信源无关。对不同的输入概率分布,互信息一定存在最大值。我们将这个最大值定义为信道的容量。一但转移概率矩阵确定以后,信道容量也完全确定了。尽管信道容量的定义涉及到输入概率分布,但信道容量的数值与输入概率分布无关。我们将不同的输入概率分布称为试验信源,对不同的试验信源,互信息也不同。其中必有一个试验信源使互信息达到最大。这个最大值就是信道容量。
信道容量有时也表示为单位时间内可传输的二进制位的位数(称信道的数据传输速率,位速率),以位/秒(b/s)形式予以表示,简记为bps。
通信的目的是为了获得信息,为度量信息的多少(信息量),我们用到了熵这个概念。在信号通过信道传输的过程中,我们涉及到了两个熵,发射端处信源熵——即发端信源的不确定度,接收端处在接收信号条件下的发端信源熵——即在接收信号条件下发端信源的不确定度。接收到了信号,不确定度小了,我们也就在一定程度上消除了发端信源的不确定性,也就是在一定程度上获得了发端信源的信息,这部分信息的获取是通过信道传输信号带来的。如果在通信的过程中熵不能够减小(不确定度减小)的话,也就没有通信的必要了。最理想的情况就是在接收信号条件下信源熵变为0(不确定度完全消失),这时,发端信息完全得到。
通信信道,发端 X,收端 Y。从信息传输的角度看,通过信道传输了I(X;Y)=H(X)-H(X|Y),(接收Y前后对于X的不确定度的变化)。I该值与两个概率有关, p(x),p(y|x),特定信道转移概率一定,那么在所有 p(x) 分布中,max I(X;Y)就是该信道的信道容量C(互信息的上凸性)。 信道是由输入集A、输出集B和条件概率P(y│x),y∈B,x∈A所规定的。当B是离散集时,归一性要求就是(图1)当B是连续集时,P(y│x)应理解为条件概率密度,上式就成为积分形式。如A和B都是离散集,信道所传送的信息率(每符号)就是输出符号和输入符号之间的互信息(图2)
互信息与P(y│x)有关,也与输入符号的概率P(x)有关,后者可由改变编码器来变动。若能改变P(x)使I(X;Y)最大,就能充分利用信道传输信息的能力,这个最大值就称为单用户信道容量C,即 (图3)式中∑为所有允许的输入符号概率分布的集。
当A或B是连续集时,相应的概率应理解为概率密度,求和号应改为积分,其他都相仿。 多用户信道容量问题要复杂一些。以二址接入信道为例, 这种信道有两个输入 X2∈A1和X2∈A2,分别与两个信源联结,发送信息率分别为R1和R2;有一个输出Y,用它去提取这两个信源的信息。若信道的条件概率为P(y│x1,x2),则(图4)式中I(X1;Y│X2)为条件互信息,就是当X2已确知时从Y中获得的关于X1的信息; I(X2;Y│X1)的意义相仿;I(X1,X2;Y)为无条件互信息,就是从Y中获得的关于X1和X2的信息。E1和 E2分别为所有允许的输入符号的概率分布P1(x1)和P2(x2)的集。
当X1和X2相互时,这些条件互信息要比相应的无条件互信息大,因此两个信息率R1和R2的上界必为上面三个式子所*。若调整P1(x1)和P2(x2)能使这些互信息都达到最大,就得到式中的C1,C2,C0。(图5)因此R1和R2的范围将如图中的一个截角四边形区域,其外围封闭线就是二址接入信道的容量上界。m址接入信道有类似的结果。更一般的多用户的情况还要复杂。
要使信道容量有确切的含义,尚须证明相应的编码定理,就是说当信息率低于信道容量时必存在一种编码方法,使之在信道中传输而不发生错误或错误可任意*近于零。已经过严格证明的只有无记忆单用户信道和多用户信道中的某些多址接入信道和退化型广播信道。对某些有记忆信道,只能得到容量的上界和下界,确切容量尚不易规定。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com