您的当前位置:首页正文

Ligand docking and binding site analysis with PyMOL and Autodock Vina

2022-07-25 来源:步旅网
JComputAidedMolDes(2010)24:417–422DOI10.1007/s10822-010-9352-6

LiganddockingandbindingsiteanalysiswithPyMOLandAutodock/Vina

DanielSeeliger

·BertL.deGroot

Received:22January2010/Accepted:26March2010/Publishedonline:17April2010©TheAuthor(s)2010.ThisarticleispublishedwithopenaccessatSpringerlink.com

AbstractDockingofsmallmoleculecompoundsintothebindingsiteofareceptorandestimatingthebindingaffinityofthecomplexisanimportantpartofthestructure-baseddrugdesignprocess.Forathoroughunderstandingofthestructuralprinciplesthatdeterminethestrengthofaprotein/ligandcomplexboth,anaccurateandfastdockingprotocolandtheabilitytovisualizebindinggeometriesandinteractionsaremandatory.HerewepresentaninterfacebetweenthepopularmoleculargraphicssystemPyMOLandthemoleculardockingsuitesAutodockandVinaanddemonstratehowthecombinationofdockingandvisuali-zationcanaidstructure-baseddrugdesignefforts.KeywordsDocking·Virtualscreening·Autodock·Vina·PyMOLIntroduction

Virtualscreeningofcompoundlibrarieshasbecomeastandardtechnologyinmoderndrugdiscoverypipelines[1].Ifasuitablestructureofthetargetisavailablemoleculardockingcanbeusedtodiscriminatebetweenputativebindersandnon-bindersinlargedatabasesofchemicalsandtoreducethenumberofcompoundstobe

ThisworkwasfundedbytheDeutscheForschungsgemeinschaft(DFG)grantNo.GR207914

D.Seeliger(&)·B.L.deGroot

ComputationalBiomolecularDynamicsGroup,Max-Planck-InstituteforBiophysicalChemistry,AmFassberg11,37077Gottingen,Germanye-mail:dseelig@gwdg.deB.L.deGroot

e-mail:bgroot@gwdg.de

subjectedtoexperimentaltestingsubstantially.Visualexaminationofpredictedbindinggeometries(dockingposes)therebycontributescruciallytothefurtherdevelop-mentofaleadcompoundeithertowardsenhancedbindingaffinity,towardsreducedsideeffectsortowardsreducedsusceptibilitytodrugresistancerelatedmutations.OverthelastyearsthePyMOLmoleculargraphicssystem[2]hasevolvedfrombeingapowerfulmolecularviewerwithexceptional3D-capabilitiesintoaplatformforseveralpro-gramsandapplicationswhichmakeuseofPyMOL’sversatilevisualizationproperties.

Throughitsmulti-layerarchitectureandtheuseofthepowerfulobject-orientedscriptinglanguagePythonatthetop-level,PyMOLisrelativelyeasytoextendandcus-tomizewithoutre-compilingthesourcecode.Extensionscaneithermakeuseofthewizard-interfaceortheplugin-interface,thelatterofwhichisthemorecommonlyuti-lized.Inthefieldofmolecularinteractionstherehavebeenseveral(plugin)-extensionsdevelopedthatgaingreatpop-ularity.TheAPBSplugin[3]isaninterfacetothepopularadaptivePoisson-Boltzmannsolver(APBS[4])programandprovideseasyaccesstoelectrostaticscalculationsandthevisualizationofpotentialenergysurfacesandchargedensitiesonproteinsurfaces.CAVER[5,6]performscalculationsofsubstratepathwaysandentrancetunnelsinproteinstructureswhicharevisualizedinPyMOL.CASTp[7,8,9]detectspocketsandvoidsinproteinstructurestodetermineandcharacterizebindingsites,andeMovie[10]providesanumberoffunctionalitiestocreateanimationsandmovies.

InthepresentworkwedescribeapluginforPyMOLwhichallowstocarryoutmoleculardocking,virtualscreeningandbindingsiteanalysiswithPyMOL.ThepluginrepresentsaninterfacebetweenPyMOLandtwopopulardockingprograms,Autodock[11,12]and

123

418JComputAidedMolDes(2010)24:417–422

AutodockVina[13]andmakesextensiveuseofaPythonscriptcollection(AutodockTools[14])forthesetupofdockingruns.Sincevisualizationiscrucialforstructure-baseddrugdesign,severaltoolshavebeendevelopedtoaddvisualsupportfortheautodocksuite.ThevisualizerAutoDockToolsoffersacompletemolecularviewerandagraphicalsupportforallstepsrequiredforsetupandanalysisofdockingruns.Raccoon(http://autodock.scripps.edu/resources/raccoon),BDT[15]andDOVIS[16]areothergraphicaluserinterfacesforAutodockwithaspecialfocusonlarge-scalevirtualscreening.RaccoonandBDTfocusonastraightforwarddataorganizationimportantforvirtualscreeningbutdonotprovidemolecularviewingfunctionalitywhereasDOVISusesanembeddedJavaviewer.ThePyMOLplugindescribedhereisdevelopedspecificallytomakeuseofPyMOL’sexceptionalmolec-ularviewingcapabilities.PyMOListhemostfrequentlyusedprogramforgeneratingpublicationqualitypicturesofmolecularstructuresandoffersmultipleadvancedrender-ingoptions.Additionallyitprovidesexceptional3D-viewingfunctionalitieswhichcanbeveryusefulinstruc-ture-baseddrugdesign.SincePyMOLsupportsseveralcommonlyusedfileformatsforelectrondensitymapsitisalsothepreferredtoolforcrystallographers.Hence,aneasytohandleAutodock/Vina-pluginforPyMOLisexpectedtolowerthebarrierforscientistwhoarenotdockingexpertstomakeuseofthesepopulardockingprotocolswithintheirpreferredenvironmentandtouseitinconjunctionwithotherapplicationsavailableforPyMOL.

ThepluginprovidesfunctionalitytocarryouttheentireworkflowofadockingstudywithvisualsupportofPy-MOLandagraphicaluserinterface.Inthecurrentversiontheplugincoversthefollowingoperations:Bindingsitedefinitionandadjustment,automaticfilepreparationsforreceptordefinition,straightforwardselectionofflexibleresidues,ligandfilepreparation,generationandviewingof

Fig.1Definitionofadockingboxaroundareferenceligand.Position,sizeandvisualizationpropertiescanbeadjustedwiththeplugin

Fig.2Selectionofsidechainswithinthebindingsiteforthesetupofdockingrunswithflexiblesidechains

affinitygridmaps,viewingofdockingposes,andanalysisandexportofvirtualscreeningresults.

Adockingstudyusuallystartswiththedefinitionofabindingsite,ingeneralarestrictedregionoftheprotein.ThesizeandlocationofthisbindingsiteisvisualizedinPyMOLandcanbeadjustedinteractively.Optionallyres-idueswithinthebindingsitecanbedefinedtobeflexibleduringdocking.Subsequently,thenecessaryfilesforthereceptordefinitionaregeneratedautomatically.Similarly,filepreparationsformultipleligandscanbecontrolledvia

123

JComputAidedMolDes(2010)24:417–422theplugin.TheactualdockingcalculationscanbebelaunchedfromwithinPyMOLandtheresultsbevisualized.Furthermore,theresultsofmultipledockingrunsareautomaticallyanalyzedandarankedlistofthedockedposesisgeneratedanditcanbeexportedindifferentdataformatsforfurtheranalysis.Methods

Bindingsitedefinition

BothAutodockandVinauserectangularboxesforthedefinitionofthebindingsite.Intheplugin,theboxcentercanbydefinedeitherbyprovidingexplicitcoordinatesor,moreuserfriendly,bydefiningaPyMOLselection(e.g.areferenceligand).TheboxcenteristhencalculatedfromthemeancoordinatesoftheatomsfromthePyMOLselectionandthedockingboxdisplayedinthePyMOLwindow.Thesizeandtheexactpositionoftheboxcanalsobeadjustedtotheuser’sdemands.Forvisualizationpurposesthepluginfurthermoreallowstochosebetweentwodisplayoptionsandthecoloroftheboxframe(seeFig.1).

BindingsitedefinitionsdefinedherecanalsobeexportedtoinputfilesforeitherAutodockorVina.Setupandexecutionofdockingruns

AutodockandVinaneedreceptorandligandrepresentationsinafileformatcalledpdbqtwhichisamodifiedproteindatabank[17]formatcontainingatomiccharges,atomtypedefinitionsand,forligands,topologicalinformation(rotat-ablebonds).ThesefilepreparationsarecarriedoutbythepluginusingscriptsfromtheAutodockToolspackage.LigandsforsubsequentdockingrunscaneitherbepreparedonebyonethroughPyMOLselectionsorbyspecifyingadirectorycontainingalibraryofligandstobedocked.

Afterbindingsitedefinitionandreceptorandligandpreparation,dockingrunscanbedirectlylaunchedfromPyMOL.Alternatively,runinputfilescanbewrittentostartthedockingrunsfromthecommandline.BothAutodockandVinaallowforflexibilityofpredefinedsidechainsduringdocking.Herethepluginfacilitatestheselectionofflexiblesidechains.SidechainswithinthedockingboxcanbevisualizedstraightforwardlyandPyMOLselectionscanbetranslatedintoaflexiblereceptordefinition(Fig.2).

Bindingsiteanalysiswithinteractionmaps

Autodockusesinteractionmapsfordocking.Priortotheactualdockingrunthesemapsarecalculatedbythe

419

Fig.3Autodockgridmapsdisplayedwithdifferentcontourlevels.aMapforinteractionsofaliphaticcarbonatomsatcontourlevel5kcal/mol.bSamemapatcontourlevel−0.3kcal/mol.cHydrogenbonddonormapatcontourlevel−0.5kcal/mol

123

420JComputAidedMolDes(2010)24:417–422

programautogrid.Foreachligandatomtype,theinterac-tionenergybetweentheligandatomandthereceptoriscalculatedfortheentirebindingsitewhichisdiscretizedthroughagrid.Thishastheadvantagethatinteractionenergiesdonothavetobecalculatedateachstepofthedockingprocessbutonlylookedupintherespectivegridmap.Inadditiontospeedingupadockingrunsthegridmapsontheirowncanalsoprovidevaluehintsforligandoptimization.Sinceagridmaprepresentstheinteractionenergyasafunctionofthecoordinatestheirvisualinspectionmayrevealpotentialunsaturatedhydrogenacceptorsordonorsorunfavourableoverlapsbetweentheligandandthereceptor.ThepluginthereforeprovidesthefunctionalitytovisualizethesegridmapsinPyMOL.ThemapsgeneratedbyautogridareconvertedtoafileformatreadablebyPyMOL(DXformat)whichallowstodrawisosurfacesandisomeshesanalogoustoelectrondensitymaps.Sinceseveralmapscanbeloadedandcontrolledsimultaneously,arapidinspectionofseveralinteractiontypesismadeveryeasily.Figure3showshowthesegridmapscanbecontrolledviatheplugin.

InFig.3Aanisosurfaceatacontourlevelof5kcal/molfortheinteractionoftheproteinwithaliphaticcarbonatomsisshown.Suchasettingmaybeusedtogetavisualimpressionoftheoverallshapeofthebindingsite.Ligandmodificationswhichcauseapenetrationofsuchawallwillmostlikelynotenhancetheaffinity.InFig.3Bthesamemapisvisualizedatacontourlevelof−0.3kcal/mol.Ascanbeseen,theshapeofthesurface,hereshownasiso-mesh,roughlydescribesanenvelopeoftheligandandrevealsputativespotsofattractiveinteractionsthatmayguidefurtherligandoptimization.Likewise,hydrogenbonddonororacceptorinteractionmapscanguideligand

optimizationsincetheymightrevealunsaturatedacceptorordonorpositions(Fig.3C).

Thepluginprovidesfunctionalitytohandledifferentinteractionmapsandrepresentationsatdifferentcontourlevelsatthesametimeandhence,offersthepossibilitytovisualizedifferentbindingsitepropertieswhichmaypro-videvaluableinsightsforstructure-baseddrugdesign.

Analysisofdockingresults

DockingposesgeneratedbythedockingprogramscanbedirectlyloadedintoPyMOLthroughtheplugin.Posesformultipleligandsmaybehandledsimultaneouslyusinganintuitivenotebooklayout(seeFig.4).Foreachdockingpose,metainformationcontainingthedockingscoreisdisplayedinasmalltextviewer,allowingdirectanalysisofconfiguration/scorerelationships.Moreover,resultsfrommultipledockingrunsaresummarizedinatable(seeFig.5).Thedockingposesarerankedaccordingtotheirdockingscoresandboththerankedlistofdockedligandsandtheircorrespondingbindingposesmaybeexported.Forinstance,therankedlistofdockingresultscanbeexportedinaCSVfileformatwhichcanbedirectlyimportedintoprogramslikeExcel.

Conclusion

WepresentanovelpluginforthepopularmoleculargraphicssystemPyMOLwhichallowstoperformdockingstudiesusingAutodockorAutodock/Vina.Theplugincoversallfunctionalitiesfortheentireworkflowofa

Fig.4Analysisofdockingposes.Left:PyMOLviewerwithdisplayeddockingposes.Right:Poseviewerpageoftheplugin.Posesfrommultipledockingrunsmaybeanalyzedsimultaneouslyusinganintuitivenotebooklayout

123

JComputAidedMolDes(2010)24:417–422Fig.5Virtualscreening

analysis.Arankedlistofdockedligandsisgenerated

automaticallyanditcanbeexportedindifferentdata

formats.Additionally,dockingposesfromdifferentligandscanbeexportedinasinglefile

421

dockingrunplusadditionalfunctionalitytoprepare,exe-cuteandanalyzevirtualscreeningtasks.Sincevisualsupportisanimportantaspectofstructure-baseddrugdesign,thepluginisexpectedtoenhancetheseeffortsbyallowingthecombineduseoftwowidelyuseddockingprogramsandPyMOL.Thepluginisavailablefreeofchargewithsourcecodeandmaybeobtainedfromhttp://wwwuser.gwdg.de/~dseelig/adplugin..

installationandoperationondifferentplatforms(MacOSandWindows)nosupportisprovidedfortheseoperatingsystems.

OpenAccessThisarticleisdistributedunderthetermsoftheCreativeCommonsAttributionNoncommercialLicensewhichper-mitsanynoncommercialuse,distribution,andreproductioninanymedium,providedtheoriginalauthor(s)andsourcearecredited.

References

Systemrequirements

ThepluginhasbeendevelopedonLinuxwithPyMOLversion1.2andrequiresMGLToolsversion1.5.4andNumPyversion1.3.Althoughusersreportedsuccessful

1.KitchenD,DecornezH,FurrJ,BajorathJ(2004)Dockingandscoringinvirtualscreeningfordrugdiscovery:methodsandapplications.NatRevDrugDiscov3(11):935–949

2.DeLanoWL(2002)ThePyMOLmoleculargraphicssystem.http://www.pymol.org

123

422

3.LernerMG,CarlsonHA(2008)Apbspluginforpymol.Uni-versityofMichigan,AnnArbor

4.BakerN,SeptD,JosephS,HolstM,McCammonJ(2001)Electrostaticsofnanosystems:applicationtomicrotubulesandtheribosome.ProcNatlAcadSciUSA98(18):10,0375.Petr

ˇekM,OtyepkaM,Bana´sˇP,Kosˇinova´P,KocˇaJ,Damborsky´J(2006)CAVER:anewtooltoexploreroutesfromproteinclefts,pocketsandcavities.BMCBioinformatics7(1):316

6.Damborsky

`J,PetrekM,Bana´sˇP,OtyepkaM(2007)Identifica-tionoftunnelsinproteins,nucleicacids,inorganicmaterialsandmolecularensembles.BiotechnolJ2:62–67

7.LiangJ,EdelsbrunnerH,WoodwardC(1998)Anatomyofpro-teinpocketsandcavities:measurementofbindingsitegeometryandimplicationsforliganddesign.ProteinSci7:1884–18978.LiangJ,EdelsbrunnerH,FuP,SudhakarP,SubramaniamS(1998)AnalyticalshapecomputingofmacromoleculesII:iden-tificationandcomputationofinaccessiblecavitiesinsideproteins.Proteins:StructFunctGenet33:18–29

9.LiangJ,EdelsbrunnerH,FuP,SudhakarP,SubramaniamS(1998)Analyticalshapecomputationofmacromolecules:I.Molecularareaandvolumethroughalphashape.Proteins:StructFunctGenet33(1):1–17

10.HodisE,SchreiberG,RotherK,SussmanJ(2007)eMovie:a

storyboard-basedtoolformakingmolecularmovies.TrendsBiochemSci32(5):199–204

123

JComputAidedMolDes(2010)24:417–422

11.MorrisGM,GoodsellDS,HallidayDS,HueyR,HartWE,Belew

R,OlsonAJ(1998)Automateddockingusingalamarckiangeneticalgorithmandandempiricalbindingfreeenergyfunction.JCompChem19:1639–1662

12.HueyR,MorrisGM,OlsonAJ,GoodsellDS(2007)Asemi-empiricalfreeenergyforcefieldwithcharge-baseddesolvation.JCompChem28:1145–1152

13.TrottO,OlsonA(2010)AutoDockVina:improvingthespeed

andaccuracyofdockingwithanewscoringfunction,efficientoptimization,andmultithreading.JCompChem31:455–46114.SannerM(1999)Python:aprogramminglanguageforsoftware

integrationanddevelopment.JMolGraphicsMod17:57–6115.VaqueM,ArolaA,AliagasC,PujadasG(2006)BDT:aneasy-to-usefront-endapplicationforautomationofmassivedockingtasksandcomplexdockingstrategieswithAutoDock.Bioinfor-matics22(14):1803

16.ZhangS,KumarK,JiangX,WallqvistA,ReifmanJ(2008)

DOVIS:animplementationforhigh-throughputvirtualscreeningusingAutoDock.BmcBioinformatics9(1):126

17.BermanH,WestbrookJ,FengZ,GillilandG,BhatT,WeissigH,

ShindyalovI,BourneP(2000)Theproteindatabank.URLciteseer.ist.psu.edu/berman02protein.html

因篇幅问题不能全部显示,请点此查看更多更全内容