您的当前位置:首页正文

A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays

2021-03-19 来源:步旅网
ComputersandGeotechnics34(2007)385–396

www.elsevier.com/locate/compgeo

Aneuralnetworkapproachtoestimatingdeflectionofdiaphragm

wallscausedbyexcavationinclays

GordonT.C.Kunga,EvanC.L.Hsiaob,MattSchusterb,C.HseinJuang

ab,*SustainableEnvironmentResearchCenter,NationalChengKungUniversity,Tainan701,Taiwan

bDepartmentofCivilEngineering,ClemsonUniversity,Clemson,SC29634,USAReceived17July2006;receivedinrevisedform20October2006;accepted31May2007

Availableonline15August2007

Abstract

Anartificialneuralnetwork(ANN)-basedapproachforpredictingdeflectionofdiaphragmwallscausedbybracedexcavationinsofttomediumclaysispresentedinthisstudy.Fiveinputvariables,includingexcavationdepth,systemstiffness,excavationwidth,shearstrengthnormalizedwithverticaleffectivestress,andYoung’smodulusnormalizedwithverticaleffectivestress,areadoptedasinputstotheANN.ThedatabasefortrainingandtestingtheANNisgeneratedfromhypotheticalcasesusingfiniteelementmethod.Theper-formanceofthedevelopedANNrevealsthattheinfluenceofeachinputvariableonthewalldeflectionisconsistentwiththeexcavationbehaviorsgenerallyobservedinthefield.Thevalidationusing12excavationcasehistoriescollectedinthisstudyshowsthatthewalldeflectioncausedbybracedexcavationcanbeaccuratelypredictedbythedevelopedANN.Ó2007ElsevierLtd.Allrightsreserved.

Keywords:Neuralnetwork;Bracedexcavation;Walldeflection;Finiteelementmethod;Clays;Casehistories

1.Introduction

Bracedexcavationforbasementsofhigh-risebuildings,stationsofundergroundtransportationsystems,andundergroundparkingspaceisfairlycommoninurbancon-struction.Inthedesignofabracedexcavation,itisessen-tialtoconsidernotonlythestabilityissuesuchasbasalheaveduringconstruction,butalsothepotentialservice-abilityproblemofadjacentbuildingscausedbyexcessivewalldeflectionsandgroundmovements.Fig.1showsthetypicalwalldeflectionandgroundmovementcausedbyexcavationinsofttomediumclays.Asillustrated,theadja-centbuildingmaybedamagedduetotheexcessivedifferen-tialsettlementcausedbytheinducedwalldeflection.Overthepasttwodecades,theissueofwalldeflectionand

*Correspondingauthor.Tel.:+18646563322;fax:+18646562670.E-mailaddress:hsein@clemson.edu(C.H.Juang).

groundmovementhasbecomemoreimportantwithincreasinglitigationassociatedwiththedamageofadjacentbuildings.Thefocusofthispaperislimitedtotheestima-tionofwalldeflection.

Tomitigatethepotentialdamagetothebuildingsadja-centtotheexcavation,itisessentialtobeabletopredictaccuratelytheexcavation-inducedwalldeflectionandgroundmovement.Resultsoffieldmonitoringandobser-vationsinthepastprojectscanprovidesomeguidanceforassessingtheperformanceofafuturebracedexcavation(e.g.,Long[1]).Severalempiricalandsemi-empiricalapproachesforpredictingwalldeflectionandgroundmovementhavebeendevelopedbasedonfieldobservationsand/orfiniteelementmethod(FEM)analyses[2–7].Inrecentyears,useofartificialneuralnetwork(ANN)tech-niqueforpredictingwalldeflectionandgroundmovementhasalsobeenreported[8–11].

Generally,inasimplifiedempiricalchart,itisdesirabletoemployasmallnumberofinputvariables.Forexample,

0266-352X/$-seefrontmatterÓ2007ElsevierLtd.Allrightsreserved.doi:10.1016/j.compgeo.2007.05.007

386G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396

hmhmFig.1.Effectscausedbyexcavationinclays:walldeflection,groundmovementandbuildingresponse.CloughandO’Rourke[5]relatedtwovariables,thefactorofsafetyagainstbasalheaveandthesystemstiffness,totheratioofthemaximumlateralwalldeflectionovertheexca-vationdepth.Whilesimplificationisdesirableandmaybeoutofnecessity,theaccuracyofpredictionsusingsuchsim-plifiedchartsmightnotbedesirable,dependingonthesite,soil,andconstructionconditions.Becausethemaximumlateralwalldeflectionisoftenusedasacriteriontoguardagainsttheexcavation-relatedproblems,itisdesirabletohaveasimpleandeasy-to-usemodelthatcanproduceanaccurateestimateoftheexcavation-inducedmaximumwalldeflection.

Theobjectiveofthispaperistodevelopasemi-empiri-calapproachtoestimatingmaximumlateralwalldeflec-tioninsofttomediumclaysusingartificialneuralnetworks(ANNs).Tothisend,alargenumberofhypo-theticalcasesbasedontwowell-documentedcasehistoriesaregeneratedthroughFEManalyses.ANNsarethentrainedandtestedusingthehypotheticalcasesandfinallyvalidatedthroughthecollectedcasehistories.TheresultsshowthatthedevelopedANNscanaccuratelypredictthelateralwalldeflectioncausedbybracedexcavationinsofttomediumclays.

2.ExistingapproachesforestimatingwalldeflectionExistingempiricalandsemi-empiricalapproachesforestimationofexcavation-inducedwalldeflectionarebrieflyreviewedherein.ManaandClough[3]studiedanumberofcasehistoriesandrecognizedthattherewasastrongcorre-lationbetweenthemaximumlateralwalldeflection(dhm)andthepotentialforbasalheave,intermsoffactorofsafetyagainstbasalheave.Anempiricalchartwasdevel-opedbasedonthecasehistorydataforpredictingthemax-imumwalldeflectioninsofttomediumclaysbymeansofthefactorofsafetyagainstbasalheave,definedbyTer-

zaghi[12].WongandBroms[4]proposedasimpleproce-duretoestimatethelateraldeflectionofstruttedoranchoredsheet-pilewalls.Theprocedurewasdevelopedbasedonanassumptionthatthewallsareflexibleandthelateraldeflectionsaregovernedbyplasticyieldingofthesoilbelowthebottomofexcavation.Theyieldingisinverselyproportionaltothefactorofsafetyofbasalheave.Theexcavationwidth,excavationdepth,andsecantortangentmoduliofthesoilareincludedintheanalysis.Thevalidationoftheirprocedurebasedonlimitedcasehis-toriesfromSingapore,OsloandSanFranciscoshowedthatsatisfactorypredictionsofthewalldeflectioncanbeobtained.

CloughandO’Rourke[5]proposedanempiricalchart(seeFig.2)forestimatingthemaximumlateralwalldeflectionforsofttomediumclays,whichsimultaneouslyconsidersthefactorofsafetyagainstbasalheaveandthesystemstiffness(EI=c4whavg;whereEIisthewallstiffness,cwistheunitweightofwaterandhavgistheaveragesupportspacing).HashashandWhittle[6]conductedaseriesofnumericalinvestigationsusingnonlinearFEMtostudytheeffectsofwallembedmentdepth,supportconditions,andstresshistoryontheundraineddeforma-tionsaroundabraceddiaphragmwallinaclaydeposit.Theiranalysesusedacomprehensiveeffectivestresssoilmodel,MIT-E3(WhittleandKavvadas[13]),todescribeimportantaspectsofclaybehavior,includingsmall-strainnonlinearityandanisotropicstress–strain-strengthbehav-iors.Itisgenerallyconsideredanecessitytoemployasoilmodelthatcanadequatelydescribethesmallstrainbehaviorofsoilinabracedexcavationanalysis[14–16].Severaldesignchartsforestimatingthemaximumlateralwalldeflectionasfunctionsoftheexcavationdepth,supportcondition,andtheeffectofwalllengthonbasestabilitywereestablishedbyHashashandWhit-tle[6].

Sheetpile Walls1 m Thick Slurry Walls h=3.5h=3.5He)%(eH/mhδ(EI)(γh4wavg)Fig.2.Designcurvesformaximumlateralwallmovementforexcavationsinsofttomediumclays(CloughandO’Rourke[5]).G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396

Table1

SummaryoftheexcavationcasehistoriesexaminedCaseno.123456789101112

Casename

Total

excavationstages747655555667

Excavationwidth(m)41.2031.2033.4070.0049.2854.1236.0035.0012.3015.0015.0017.60

Finaldepthofexcavation(m)19.7013.9018.4520.0012.2512.6013.7013.1514.5019.4019.4019.86

Wall

length(m)35.028.031.032.521.522.028.525.026.030.030.035.0

Wallthickness(m)0.90.70.80.70.60.60.70.80.81.11.11.2

WallstiffnessEI(kNm2/m)150538570829591562770829544604044604070829510572801057280274851527485153568320

dhm/He(%)0.540.400.330.620.370.480.350.440.240.310.320.26

Reference

387

TNECChichingFormosaFar-EasternSinyiTaikaiElectronicsTaiwanSugarSubway-1Subway-2Subway-3Subway-4

OuOuOuOuetetetetal.al.al.al.[21][19][19][19]

WuandOu[29]

Unpublishedfile

Tung[30]Unpublishedfilefile

Unpublishedfile

Unpublishedfile

Unpublishedfile

Unpublishedfile

Note:CasesNo.1,2and4areconstructedusingtheTop-downmethod.AllothercasesareconstructedusingtheBottom-upmethod.dhmisthemaximumlateralwalldeflection,andHeistheexcavationdepth.

Addenbrookeetal.[7]conducted30nonlinearFEManalysesofundraineddeepexcavationinstiffclayandtheresultsareusedtosupporttheuseofanewdisplace-mentflexibilitynumber(D)inmulti-proppedretainingwalldesign.Theflexibilitynumberisdefinedas:D=EI/h5,whichissimilartosystemstiffness(EI=cwh4avg)suggestedbyCloughandO’Rourke[5].TheresultsobtainedbyAddenbrookeetal.[7]showedthatthevariationofwalldeflectionsestimatedwithflexibilitynumberislessthanthatestimatedwithsystemstiffness.Thus,useoftheflexi-bilitynumbermightenhancetheengineer’sconfidenceindevelopingsupportstrategiesinagivenexcavation.3.Collectionofexcavationcasehistories

TwelvecasehistoriesofbracedexcavationinsofttomediumclaysinTaipei,whichwereconstructedbytheTop-downmethodorBottom-upmethod,arecollectedforthevalidationoftheANNsdevelopedandpresentedlater.ItisnotedthatwiththeTop-downmethod,slabs(orfloors)areusedassupportinlieuofstrutsandanchors;theyarecastfromthetopoftheexcavationandproceedingdownwardtothebottomoftheexcavation.WiththeBot-tom-upmethod,wheretheretainingwallissupportedbystrutsandanchorsduringtheexcavation,slabsarecastaftertheexcavationfromthebottomofexcavationandproceedingupwardtothetopoftheexcavation.Table1presentsasummaryoftheseexcavationcasehistories,includingexcavationwidth,finaldepthofexcavation,walllength,wallthickness,wallstiffness,andtheratioofmax-imumlateralwalldeflection(dhm)overthefinaldepthofexcavation(He).Thedepthsofexcavationsanddepthswherethestrutsorconcretefloorslabswereinstalledorconstructedforallstagesinthesecasehistoriesareshown

Table2

ProppingarrangementinexcavationcasehistoriesexaminedStageno.1234567

Case1He2.84.98.611.815.217.319.7

HpCase2HeHpCase3HeHpN/A1.03.76.29.512.515.5

Case4He4.958.5512.415.416.920N/A

HpN/A3.457.0510.913.916.4N/A

Case5He23.956.99.8212.25N/AN/A

HpN/A1.383.336.39.23N/AN/A

Case6He2.04.07.09.612.6N/AN/A

HpN/A1.133.056.189.28N/AN/A

Case7He2.13.87.011.113.7N/AN/A

HpN/A1.33.36.510.5N/AN/A

Case8He1.103.707.2510.7513.15N/AN/A

HpN/A0.553.056.5510.05N/AN/A

Case9He2.54.58.512.514.5N/AN/A

HpN/A2.04.08.012.0N/AN/A

Case10He2.06.210.313.616.819.4N/A

HpN/A1.255.359.312.716.0N/A

Case11He2.06.210.313.616.819.4N/A

HpN/A1.255.359.312.716.0N/A

Case12He2.45.869.0611.5614.1617.6619.86

HpN/A1.905.368.5611.0613.6617.16

N/A5.3N/A1.62.08.63.2&04.33.5&011.06.46.97.113.910.510.1510.3N/AN/A13.213.7N/AN/A16.216.5N/AN/A18.45

Note:Heisthedepthofexcavation(m);Hpisthedepthwherethestrutisinstalled(m).

388G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396

inTable2.ItisnotedthatinallthecasesshowninTables1and2,thediaphragmwallwasusedastheretainingstructure.

ThestratigraphyoftheTaipeibasinisgenerallyrepre-sentedbyathickalluviumformation(theSungshanFor-mation)overlainbytheChingmeigravelFormation.TheSungshanFormationwasformedapproximately5000–6000yearsagoanditsthicknessisabout40–50m.Typi-cally,theSungshanFormationhassixalternatingsiltysand(SM)andsiltyclay(CL)layers,butmainlyconsistingofsofttomedium,slightlyover-consolidatedclaywithlowplasticity.TypicalsoilpropertiesoftheSungshanForma-tionhavebeendocumentedinmanypreviousstudies[17,18].

Thewalldeflectionsobservedinthe12casehistoriesareshowninFig.3.Formostcasehistories,thecantileverwalldeflectionbehaviorcanbeobservedatfirstand/orsecondstages,atwhichtimethestruthadnotbeeninstalledorthestiffnessoftheinstalledstrutwasnothighenough.Thediaphragmwallthendisplaysthedeepinwardmove-mentsatsubsequentstages.Fig.4examinesthemaximumwalldeflectionsatgivenexcavationstageswiththecorre-spondingdepthsofexcavation.Mostdatapointsfallintotheregionboundedbythelineofdhm=0.2%Heandthelineofdhm=0.5%He,whichissimilartothosepresentedbyCloughandO’Rourke[5].Itisnotedthatthebest-fitcurveormeantrendline,dhm=0.32%He,isalsoshowninFig.4.Thescatterofthedatareflectsthepossiblevari-ationofdhmatagivenexcavationdepth,sincethedatawerecollectedfromdifferentcases.Thevariationalsopointstothenecessityofemployingmoreinputvariablesintheempiricalmodelforpredictingdhm.

Fig.5comparesthedepthwheredhmoccurredwiththedepthofexcavationforeachstageinallthesecase

Wall deflection (mm)Wall deflection (mm)Wall deflection (mm)Wall deflection (mm)005408012002040600204060800306090120150Depth (m)10152025303505020(a) Case 14060020(b) Case 2406080020(c) Case 34060020(d) Case 44060Depth (m)10152025303505010(e) Case 5203040020(f) Case 6406080020(g) Case 7406080020(h) Case 84060Depth (m)101520253035(i) Case 9(j) Case 10(k) Case 11(l) Case 12Fig.3.Observationsofwalldeflectionforthe12excavationcasehistories.G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396389

150Average of stages 3-7 of all cases(Mean trend line)120Stages 1-2 Stages 3-7%Hem=0.5m)m90δh ( mhm=0.32%Heδ60δh30δ.2%Hehm=000510152025Depth of excavation, He (m)Fig.4.Maximumwalldeflectionversusexcavationdepthofcasehistories.histories.Insomecases,thewallmovementswereofthecantileverpatternatearlystagesofexcavation(stages1and2),andthus,themaximumwalldeflectionoccurredatthetopofthewall(andthus,thedepthswheredhmoccurredarezero).Ingeneral,thedepthswheredhmoccurredatexcavationstages3–7areapproximatelyequaltothedepthsofexcavation.SimilarresultshavepreviouslybeenreportedbyOuetal.[19].Fig.6showstherelation-shipbetweennormalizedmaximumlateralwalldeflectionandfactorofsafetyagainstbasalheave,definedbyTer-zaghi[12],forallcasehistoriesatstages3–7.Thelimits

25)m20( derrucc15o mhδerehw10stnd htprdeDth5ththth00510152025Depth of excavation (m)Fig.5.Depthwherethemaximumwalldeflectionoccurredincasehistories.3.02.5Limits suggested by Mana and Clough [3]Case histories at stages 3-7 )2.0%( eH1.5/mhδ1.00.50.00.51.01.52.02.5Factor of safety against basal heaveFig.6.Relationshipbetweenfactorofsafetyagainstbasalheaveandnormalizedmaximumlateralwalldeflection.suggestedbyManaandClough[3]arealsoshowninthisfigure.ThecasehistoriesoftheTaipeiclaygenerallyfallintotheregionboundedbythetwolimitssuggestedbyManaandClough[3].Thedatapointsfromthecasehisto-riesexaminedareseentobeclosertothelowerlimit,whichcouldbeexplainedbythefactthatManaandClough’slimitswereestablishedmostlywithcasehistoriesofexcava-tionsconstructedwithlow-stiffnesssheet-pilewallsorsol-dierpilewalls,whereasthehigh-stiffnessdiaphragmwallswereusedinthecasehistoriesexaminedherein.4.Establishmentofhypotheticalcases

Becausethenumberofexcavationcasehistoriescol-lectedinthisstudyisnotsufficientfortrainingandtestingoftheintendedANN,alargenumberofhypotheticalcasesaregeneratedandanalyzedusingFEM.Inthissection,fac-torsaffectingwalldeflectionsandgroundmovementsaroundbracedexcavationsarefirstreviewedandtheproce-durefornumericalexperimentationusingFEMtogenerateartificialdataisthendiscussed.4.1.Factorsaffectingwalldeflection

Behaviorofabracedexcavationmaybeaffectedbymanyfactorssuchaswallstiffness,strutspacingandstiff-ness,excavationwidthanddepth,prestress,depthtoanunderlyingstifflayer,soilstiffnessandstrengthdistribu-tion,dewatering,adjacentsurcharge,soilconsolidationandcreep,andworkmanship[2–6,20].Itisnotpracticaltoincorporateallthesefactorsinasimplifiedmethodforpredictingwalldeflection,andthusonlytheessentialfac-torsareusedtogeneratehypotheticalcasesfordevelopingtheintendedANNmodel.

ManaandClough[3]showedthatthewalldeflectionwassignificantlyaffectedbythefactorofsafetyagainstbasalheave,whichcomprisestheeffectofexcavationwidth,shearstrengthofclay,andexcavationdepth.

390G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396

CloughandO’Rourke[5]furtherincludedthesystemstiff-nessasanessentialfactor,whichpointedtotheimportanceofthewallstiffnessandtheaverageverticalstrutspacing.Basedonanextensiveseriesofanalyses,HashashandWhittle[6]reachedaconclusionthatwalllengthhasamin-imaleffectonthepre-failuredeformationsforexcavationindeeplayersofclaywherethereisnoconstraintontoemovement,butdoeshaveamajorinfluenceonthelocationoffailuremechanismwithinthesoil.Theyalsodemon-stratedtheeffectsofstresshistory,includingtheundrainedshearstrength,soilstiffness,andthecoefficientofearthpressureatrest,onthewalldeflection.

Basedmostlyonthesepreviousfindings,fivefactorsareselectedfornumericalexperimentationinthisstudytogen-eratehypotheticalcases;theyareexcavationdepth(He),excavationwidth(B),systemstiffness(S),ratioofshearstrengthoververticaleffectivestress(su=r0oververticalv),andratioofinitialYoung’smoduluseffectivestress(Ei=r0v).

4.2.Numericalexperimentation

Twowell-documentedcasehistories,theTaipeiNationalEnterpriseCenter(TNEC)case(Ouetal.[21])andtheFormosacase(Ouetal.[19]),areusedastheref-erencemodeltoconductalargenumberofnumericalexperimentsusingFEManalysesforestablishingadatabaseforthedevelopmentoftheintendedANNmodel.Fig.7showsthecomparisonofwalldeflectionandgroundsurfacesettlementbetweenobservationsandpre-dictionsforthetwocasesusingFEMwithamodifiedpseudoplasticitysoilmodel(Kung[22]).Thissoilmodelcanaccuratelysimulatenonlinearstress–strainbehaviorofclaysatsmallstrain[23].Thepredictionsofthewalldeflectionandgroundsettlementinexcavationinclays,asthoseshowninFig.7,areconsideredsatisfactoryandformabasisforgeneratinghypotheticalcasesinanumericalexperimentation.

Asmentionedpreviously,theeffectofshearstrengthofclay,claystiffness,wallproperties,andexcavationwidthonbracedexcavationinsofttomediumclaysshouldbeconsideredinthenumericalexperiments.DetailsoftheparametersusedintheanalysesofhypotheticalcasesaregiveninTable3.Thedepthsofinstalledstrutsorcon-structedfloorslabs,theexcavationdepths,andthestrati-graphyconditionsfornumericalexperimentsareassumedtobethesameasthoseintheTNECandFormosacases.Atotalof720differentFEManalysesweremadetosimu-latebracedwallexcavationsinsofttomediumclaydepos-its.TheresultsofFEManalysesgeneratethousandsofinstances(note:aninstanceisadatapointthatconsistsoffiveinputvariables,He,S,B,su=r0outputvariable,themaximumwallv,andEi=r0deflection,v,andonedhm).ItshouldbenotedthatthewalldeflectiondataatthefirsttwostagesofexcavationineachcasearenotincludedinthedatabaseforthedevelopmentoftheANNbecauseatleasttwo-levelstrutsmustbeinstalledpriortodetermining

Wall deflection (mm)Distance from the wall (m)1201008060402000102030405060001020)mm20)(40m t(n hetpm60Stage 1Stage 5eStage 2Stage 6l30eDttStage 3Stage 7eS80Stage 4Predictions40100Stage 1- Stage 750(a)TNEC case Wall deflection (mm)Distance from the wall (m)706050403020100010203040500010)m20)mm( ( ntheStage 1Stage 520tpmeeD40Stage 2Stage 6Stage 3Stage 7ettlSStage 430Predictions60Stage 1- Stage 740(b) Formosa case Fig.7.PredictionsofwalldeflectionandsurfacesettlementonTNECandFormosacasesusingfiniteelementmethodwithasmall-strainsoilmodel.Table3

ParametersofhypotheticalcasesbasedontheTNECandFormosacasesVariables

Selectedvalues12345(a)BasedonTNECcasesu=r0v0.250.290.320.360.40Ei/su15001750203524003000Wallthickness(m)0.60.91.21.5N/AExcavationwidth(m)

10

2039.260100(b)BasedonFormosacasesu=r0v0.250.300.340.4N/AEi/su1500210025003000N/AWallthickness(m)0.60.81.01.21.4Excavationwidth(m)10

20

35

60

100

thesystemstiffness.Furthermore,forpracticalpurposes,thecaseswiththecalculatedmaximumlateralwalldeflec-tionofgreaterthan200mmarediscarded.Thus,atotalof3486instancesaregeneratedfordevelopingtheintendedANN.Theseinstancescollectivelyrepresentbehaviorofwalldeflectioninbracedexcavationsinsofttomediumclays.Intheseinstances,thevariableHeisintherangeof6.9to19.7(m);thevariableSisintherangeof286to10950;thevariableBisintherangeof10to100(m);thevariablesu=r0visintherangeof0.25to0.4;thevariableEi=r0visintherangeof375to1200.

G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396391

5.DevelopmentoftheANN5.1.Procedureandmethodology

Athree-layer,feed-forwardANNtopologyshowninFig.8isadoptedinthisstudy.Amongthe3486instances,abouttwothirds(2324instances)areselectedasthetrain-ingset,andtheotheronethird(1162cases)areusedasthetestingset.Thesamplingprocessisconsideredlargelyran-dom,sincenoeffortwasmadetokeeptrackofthecharacteristicsofinputandoutputvariables.Whileran-domnessinthedataselectionwaslargelymaintained,thetrainingdatasetisbelievedtoberepresentative,asdatafromallrangesweresampled.Thenetworkisfirsttrainedusingthetrainingdataset.Theobjectiveofthenetworktrainingistomaptheinputtotheoutputbydeterminingtheconnectionweightsandbiasesthroughaback-propagationprocedure.Forthethree-layernetwork,theoutputofthenetwork,dhm,iscalculatedasfollows(Juanget(al.[24]):

n\" m!#)

dhm¼f2B0þXWkf1BHkþX

WikPið1Þ

k¼1

i¼1

wheredhmisthemaximumwalldeflection(mm);B0isthebiasattheoutputlayer(justoneneuroninthislayer);Wkistheweightofconnectionbetweenneuronkofthehiddenlayerandthesingleoutputlayerneuron;BHkisthebiasatneuronofthehiddenlayer(k=1,n);Wikistheweightofconnectionbetweeninputvariablei(i=1,m)

Input layerHidden layerOutput layerNeuron 1Heinput 1Neuron 2Sinput 2Neuron 3Binput 3Neuron 4outputδhmsuσv'input 4Neuron 5Eσinput 5Neuron 6v'Neuron 7Fig.8.Aschematicdiagramofthree-layerartificialneuralnetwork.andneuronkofthehiddenlayer;Piistheinputvariable

i;f1(k)isthetransferfunctionofeachneuroninthehiddenlayer;andf2(k)isthetransferfunctionoftheneuronintheoutputlayer.Bothtransferfunctionsf1(k)andf2(k)adoptedinthisstudyaresigmoidfunctionsdefinedby:fNðkÞ¼

11þeÀk

forN¼1;2

ð2Þ

InEq.(1),thenumberofinputvariables(m)is5;theinputvariablesareP1=He,P2=S,P3=B,P4¼su=r0Pv,and5¼Ei=r0v.Thenumberofhiddenneurons(n)isdeter-minedthroughatrialanderrorprocedure;normally,thesmallestnumberofneuronsthatyieldssatisfactoryresults(judgedbythenetworkperformance)shouldbeused.Inthisstudy,sevenhiddenneuronsareselected,asthisnumberisthesmallestnumberofneuronsthatarerequiredtoyieldsatisfactoryresults(judgedbythenetworkperformance).

Inthepresentstudy,theLevenberg–Marquardt(LM)algorithm(DemuthandBeale[25])isadoptedforitseffi-ciencyintrainingnetworks.TheLMalgorithmisimple-mentedwithMatlab(MathWork,Inc.[26])anditsneuralnetworktoolbox(DemuthandBeale[25]),althoughothersoftwareorin-housecomputercodesmayalsobeused.Itshouldbenotedthatallvariablesarescaledintovaluesintherange0.1to0.9beforetraining.Thefinalweightsandbiasesofthetrainednetwork,expressedasthecoeffi-cientsinEq.(1)areshowninTable4.

Fig.9showstheperformanceofthedevelopedANNverifiedwiththetrainingdatasetandthetestingdataset.TheresultsshowthatthedevelopedANNcanaccuratelypredictthemaximumwalldeflectionsofalargenumberofhypotheticalcasesasdefinedbytheFEManalyses.5.2.AssessmentoftheANNapproach

TheperformanceofthedevelopedANNhasbeenshowntobesatisfactory.Additionalassessmentispre-sentedherein.First,theconsistencyofthedevelopedANNisassessedbyemployingthevarioussamplingschemessothatalargenumberofdifferenttrainingandtestingdatasetsarecreatedandusedinthedevelopmentofANN.Theresultsshowthatregardlessofwhichsam-plingschemewasused,theANNasdescribedinEq.(1)withsevenhiddenneuronsyieldspracticallythesamemax-imumwalldeflectionforeachinstance.Thus,thedevel-opedANNisnotsensitivetothechangeofsamplingschemesandcanproduceconsistentpredictionsofthewalldeflection.

UseofagraphtoshowthevariationoftheANN-pre-dictedmaximumwalldeflectiondhmwitheachinputvari-ableisanotherwaytoexaminethebehaviorofthedevelopedANN.However,theANNishighlynonlinearandthus,theconventionalmeansofplottingtheoutputversusoneinputvariablewhilemaintainingallotherinputvariablesasaconstantmaynotalwaysbemeaningful.Inthisstudy,eachofthe12casesisusedforexaminingthe

392G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396

Table4

ConnectionweightsandbiasesoftheneuralnetworkdefinedinEq.(1)

WeightWikInput1(i=1)

HiddenHiddenHiddenHiddenHiddenHiddenHidden

neuronneuronneuronneuronneuronneuronneuron

1234567(k=1)(k=2)(k=3)(k=4)(k=5)(k=6)(k=7)

0.5830.744À3.0184.8423.6987.254À3.413

Input2(i=2)À1.315À1.3873.272À36.397À1.979À48.6652.777

Input3(i=3)À5.501À0.03À0.869À0.0330.8661.773À1.326

Input4(i=4)À1.096À4.002À1.382À1.1280.295À7.058À2.635

Input5(i=5)À1.124À0.12416.5630.598À3.637À12.53637.619

WkOutputneuronÀ73.0557.240À4.4940.4161.1670.8913.925

BiasBkHiddenlayerÀ3.666À1.463À0.0422.615À0.0954.676À1.095

BoOutputlayer

À1.349

250ANN-estimated δhm (mm)200150100500(a) Training data: 2324 instances R2 = 0.95 RMSE = 8.36 COV = 0.13250200150100500(b) Testing data: 1162 instances R2 = 0.95 RMSE = 8.69 COV = 0.13050100150200FEM-based δhm(mm)250050100150200FEM-based δhm(mm)250Fig.9.PerformanceofthedevelopedANN:(a)training,and(b)testing.200160120804000.220016012080400δhm(mm)0.250.30.350.40.45δhm(mm)'su/σvFig.10.VariationoftheANN-predictedwalldeflectionwiththenormalizedshearstrength.400600800Ei/σ'v10001200Fig.11.VariationoftheANN-predictedwalldeflectionwiththenormalizedYoung’smodulus.influenceoftheundrainedshearstrengthoftheclay,repre-sentedbythevariable,su=r0v,andtheYoung’smodulusoftheclay,representedbythevariable,Ei=r0v.Foreachcase,allvariablesaremaintainedasaconstantexceptthatsu=r0visallowedtovary,andthevarianceoftheANN-predicteddhmwithsu=r0visthenplotted.AsshowninFig.10,the

G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396393

decreasingtrendofdhmvaryingwithsu=r0vforallcasesisconsistentandasexpected.

Fig.11showsaplotsimilartoFig.10,wheretheinflu-enceofEi=r0visshownandsimilarconclusioncanbedrawn.Finally,whilenotshownherein,thedecreasing

euvivFig.12.ImportanceindexesofinputvariablesinthedevelopedANN.trendofdhmversussystemstiffness(S),andtheincreasingtrendofdhmversuseachoftheothertwovariables,excava-tionwidth(B)andexcavationdepth(He),areobtained.Thus,thedevelopedANNisshowntobehaveasexpectedusingthe12casehistories.

Additionalsensitivityanalysiswasconductedtoesti-matetheimpactofinputvariablesontheoutput,dhm.YangandZhang[27]suggestedthattherelativestrengthoftheeffectofaninputvariableontheoutputcanbederivedbasedontheweightsstoredinthenetwork.Theydefinedanimportanceindextoexpressthedegreeofsensi-tivityforeachinputvariableontheoutput.FollowingtheprocedurebyYangandZhang[27],theimportanceindexesforthefiveinputvariables,He,B,S,su=r0v,andEi=r0v,are0.89,0.21,0.23,0.89,and1.0,asshowninFig.12.How-ever,theseweightsshouldbeviewedonlyasaroughesti-mate,astheyaredeterminedbasedonthesameassumption,mentionedpreviously,thatonlyoneinputvar-iableatatimeisallowedtovaryalthoughthedevelopedANNishighlynonlinear.

Greaterimportanceindexvaluesforvariables,He,su=r0v,andEi=r0vshowninFig.12areexpected,sincedhm1501209060(c) Case 39009060300306090300906030(g) Case 790090603003060900906030(k) Case 11003060900030(l) Case 126090030(h) Case 860900(d) Case 43060901201501601208040906030(a) Case 1(b) Case 2306001201600906030(e) Case 5(f) Case 6900906030(i) Case 9(j) Case 10900030609003060906030Estimated wall deflection (mm)090603009060300040800306003060Observedwalldeflection(mm)Fig.13.ComparisonofwalldeflectionspredictedbytheANNandtheCloughandO’Rourkemethodatstages3–7ineachofthe12cases.394G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396

hasastrongcorrelationwitheachofthethreevariablesingeneral.ComparedwithHe,su=r0BisrelativelyunimportantvandEi=r0andreflectedv,theexcava-tionwidthinthebehaviorofthedevelopedANN.Thisbehaviorissup-portedbytheresultsofnumericalexperimentationusingFEM.Finally,theresultalsoindicatedthatthesystemstiff-nessSisrelativelyunimportantinthedevelopedANN.Thisresultmaybeexplainedinthefollowing.Foragivenexcavationcase,thestiffnessofretainingwallitself(EI)isaconstant,andthus,thesystemstiffnessineachexcavationstagetendstobeapproximatelythesame,sincethesameverticalspacingofstrutsforeachstageofexcavationisoftenmaintained.Therefore,astheexcavationproceeds,thewalldeflectiontendstoincrease,althoughthesystemstiffnessremainsapproximatelythesame.Asaresult,theinfluenceofthesystemstiffnessSonthewalldeflectionisrelativelylow.ThesameconclusionmaybereachedwithacloseexaminationofFig.2.Thehypotheticalcasesweregeneratedtoemulatemoderndeepbracedexcavationswherethefactorofsafetyagainstbasalheaveissufficientlyhigh(i.e.,greaterthan1.4asshowninFig.6)andthesys-temstiffnessisrelativelylarge(i.e.,greaterthan300inmostinstances).Undertheconditionsofadequatefactorofsafetyagainstbasalheaveandsufficientlylargesystemstiff-ness,thevariationofdhmwiththesystemstiffnessforagivenHeisrelativelyflataccordingtoFig.2.Thus,thebehaviorofthedevelopedANN,whichyieldsalowimpor-tanceindexvalueforthevariableS,issupportedbywell-establishedknowledge.

6.ValidationofthedevelopedANN

The12excavationcasehistoriesintheTaipeiclayareusedtovalidatethedevelopedANN.Threeinputvari-ables,He,BandS,aredeterminedbasedonthegiveninformationforeachcasehistory.Theothertwovariables,su=r0vandEi=r0v,areestimatedbasedontheresultsofsmallstraintriaxialtestsfortheTaipeiclay(Kung[22,28]);theyareestimatedtobeapproximatelyequalto0.31and650,respectively,forall12casehistories.UsingthedevelopedANN,dhmforeachofthe12casesisthencalculatedandcomparedwithfieldobservation.Fig.13showsthemea-sureddhmofthe12excavationcasehistoriesatstages3–7andthosepredictedbythedevelopedANN.Forcompari-son,theresultsobtainedwiththeCloughandO’Rourke[5]methodareshown.AlsoincludedinFig.13arethetwoboundingtrendlines,dhm=0.2%Heanddhm=0.5%He.Mostpredictions(datapoints)fallintotheregionboundedbythetwotrendlinesofdhm=0.2%Heanddhm=0.5%He.TheresultsshowninFig.13indicatethatingeneral,thewalldeflectionsforallcasehistoriesexaminedcanbesatis-factorilypredictedbytheCloughandO’RourkemethodandthedevelopedANN,althoughthelatterwasshowntobemoreaccurateoverall.

Fig.14furthercomparestheperformanceofthetwomethodsinpredictingthe12casehistoriesexamined.Thevaluesofroot-mean-square-error(RMSE)andcoefficient

ofvariation(COV)ofthepredictionsarecalculatedforeachmethod.Here,theRMSEiscalculatedbasedonthepredictedandmeasuredwalldeflectionsatstages3–7inall12cases.TheCOViscalculatedastheratioofRMSE

150)m(a) ANN predictionsmRMSE = 9.63(120 noCOV = 0.20itcel90fed llaw60 detcide30rP00306090120150150)m(b) Clough & O'Rourke m(120RMSE = 20.81 noCOV = 0.43itcel90fed llaw60 detcid30erP00306090120150Observed wall deflection (mm) Fig.14.ComparisonofwalldeflectionspredictedbytheANNandtheCloughandO’Rourkemethodinallcases(stages3–7).)m90m(RMSE = 8.4 noCOV = 0.41itcelfe60d llaw detcid30erp-NNA00306090Observed wall deflection (mm)Fig.15.Comparisonofpredictedandobservedwalldeflectionsatstage2ineachofthe12excavationcases.G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396395

overthemeanofthe44measureddataofwalldeflections.Again,thedevelopedANNisshowntobemoreaccurateoverallinpredictingwalldeflections.

7.Discussion

Oneofthefiveinputvariablesrequiredinthedevel-opedANNissystemstiffness(S),whichdependsonthewallstiffness(EI)andtheaveragesupportspacing(havg),asnotedpreviously.Ingeneral,thesupportspacing(h)isbetweentwostrutlevels,andthus,theANNmodelwasdevelopedforpredictionofmaximumwalldeflectionsstartingfromstage3oftheexcavation.However,onemightconsiderthebottomoftheexcavationasalevelofsupportforthewall.Thus,thepredictionofmaximumwalldeflectionatthecompletionofstage-2excavationmaybepossible.ExtendingthedevelopedANNtopre-dictionofthemaximumwalldeflectionatstage2(with-outre-trainingANN)iscarriedoutforthe12casesexamined,andtheresultsareshowninFig.15.Theaccu-racyoftheANNpredictionofthemaximumwalldeflec-tionsatstage2isconsideredsatisfactory,althoughthepredictionis,asexpected,slightlylessaccuratethanthosepredictionsforthemaximumwalldeflectionsatlaterstages.

8.Summaryandconclusions

Withtheavailabilityofpersonalcomputersandsoft-waretoday,artificialneuralnetworkisincreasinglybecom-inganengineeringtoolforderivingdata-drivenpredictivemodels.ThedevelopedANNscaneasilybeimplementedinspreadsheetmodulesforpracticalapplications.Regard-lessofwhetherastraightforwardneuralnetworkoramoresophisticatedANNisemployed,thedevelopedANNmustconformtothephysicalprinciplesand/orbehaviorofasystemitisintendedtoemulate.ThedevelopedANNmustalsobevalidatedwithactualcases.ThispaperdocumentsthedevelopmentandvalidationofanANNintendedforpredictingthemaximumwalldeflectioninabracedexcava-tioninsofttomediumclays.

BasedontheanalysisofthecollectedcasehistoriesofbracedexcavationintheTaipeisofttomediumclaysandthedevelopment,experimentationandvalidationofthedevelopedANN,thefollowingconclusionsarereached:1.TwelvecasehistoriesofbracedexcavationintheTaipeisofttomediumclayconstructedusingthediaphragmwallmethodarecollectedandanalyzedinthisstudy.Theobservedwalldeflectionsgenerallyfallintotheregionboundedbythetrendlinesofdhm=0.2%Heanddhm=0.5%HesuggestedbyOuetal.[19].Thefac-torofsafetyagainstbasalheave(FS)forexcavationstages3–7inallofthesecasehistoriesisgenerallygreaterthan1.4.Whentheobserveddataareplottedfordhm/HeversusFS,theygenerallyfallintothelimitssuggestedbyManaandClough[3],althoughthese

observeddataareclosertothelowerlimitduetotheuseofstifferdiaphragmwallsinthecollectedcasehistories.

2.

Anartificialneuralnetwork(ANN)isdevelopedforestimatingtheexcavation-inducedwalldeflectionbasedonalargenumberofhypotheticalcasesgeneratedbyafiniteelementmodelthatcansimulateaccuratelythesmallstrainsoilbehavior.FiveinputvariablesareadoptedfortheintendedANN;theyareexcavationdepth,systemstiffness,excavationwidth,ratioofshearstrengthoververticaleffectivestress,andratiooftheYoung’smodulusoververticaleffectivestress.Theresultsoftheextensiveassessmentshowthatthedevel-opedANNconformstothetypicalbehaviorofbracedexcavationinsofttomediumclays.

3.

TheimportanceindexesofthefiveinputvariableswerecalculatedusingthemethoddevelopedbyYangandZhang[27].Theresultsshowedthattheexcavationdepth,ratioofshearstrengthoververticaleffectivestress,andratiooftheYoung’smodulusoververticaleffectivestressarethemostimportantfactorsinthedevelopedANNmodelforpredictionofthelateralwalldeflection.Thesystemstiffnessandtheexcavationwidthwerefoundtoberelativelyunimportantcomparedtotheotherthreevariablesforatypicaldiaphragmwallinsofttomediumclayswithadequatefactorofsafetyagainstbasalheaveandsufficientlylargesystemstiff-ness.Foragivenexcavationprojectwheretheexcava-tiondepthisalreadydetermined,thevariationofshearstrengthandYoung’smodulusofclaysduetosoilvariabilityand/ormeasurementerrorduringsiteinvesti-gationcouldplayasignificantroleintheaccuracyofthewalldeflectionpredictedbytheANN.

4.

ThedevelopedANNisshowntobeabletopredictsat-isfactorilytheexcavation-inducedwalldeflectionsasevi-dencedbytheresultsofvalidationusingthe12casehistoriesthatwerenotusedinthedevelopmentoftheANN.WhencomparedwiththeexistingmethodssuchastheCloughandO’Rourke[5]method,thedevelopedANNyieldsimprovedresultsbasedontheevaluationofthe12casehistories.

5.

ThelimitationsofthedevelopedANNarenotedasfol-lows:(1)themodelassumesnormalworkmanshipandnobasalfailureinthebracedexcavation,(2)construc-tion-relatedissuessuchasdewateringandoverexcava-tionpriortosupportinstallationarenotconsidered,(3)thedevelopedmodelisapplicabletocaseswheretheinputvariablesareintherangesspecified,and(4)theinitialmodulusofelasticitymustbemeasuredwithsmall-straintriaxialtestsorbenderelementtests,insteadofconventionaltriaxialtests.

Acknowledgements

ThestudyonwhichthispaperisbasedwassupportedbytheNationalScienceFoundationthroughGrantNo.

396G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396

CMS-0300198.Thisfinancialsupportisgreatlyappreci-ated.TheresultsandopinionsexpressedinthispaperarethoseofthewritersanddonotnecessarilyreflecttheviewoftheNationalScienceFoundation.Dr.Chang-YuOuisthankedforprovidingpartoftheexcavationcasehistoriesexaminedinthispaperandthejournalreviewersarethankedfortheirconstructivecomments.References

[1]LongM.Databaseforretainingwallandgroundmovementsduetodeepexcavations.JGeotechGeoenvironEng2001;127(3):203–24.[2]KungGTC,JuangCH,HsiaoECL,HashashYMA.Asimplifiedmodelforpredictingwalldeflectionandgroundsurfacesettlementcausedbybracedexcavationinclays.JGeotechGeoenvironEng2007;133(6):731–47.

[3]ManaAI,CloughGW.Predictionofmovementsforbracedcutsinclay.JGeotechEng1981;107(6):759–77.

[4]WongKS,BromsBB.Lateralwalldeflectionsofbracedexcavationsinclay.JGeotechEng1989;115(6):853–70.

[5]CloughGW,O’RourkeTD.Constructioninducedmovementsofinsituwalls.Designandperformanceofearthretainingstructures,GeotechnicalSpecialPublication1990;25:439–70.

[6]HashashYMA,WhittleAJ.Groundmovementpredictionfordeepexcavationsinsoftclay.JGeotechEng1996;122(6):474–86.

[7]AddenbrookeTI,PottsDM,DabeeB.Displacementflexibilitynumberformultiproppedretainingwalldesign.JGeotechGeoenvi-ronEng2000;126(8):718–26.

[8]JenJC,HungSL,ChiSY,ChernJC.Neuralnetworkforecastmodelindeepexcavation.JComputCivilEng2002;16(1):59–65.

[9]GohATC,WongKS,BromsBB.Estimationoflateralwallmovementsinbracedexcavationsusingneuralnetworks.CanJGeotech1995;32(6):1059–64.

[10]HashashYMA,MarulandaC,GhaboussiJ,JungS.Systematic

updateofadeepexcavationmodelusingfieldperformancedata.ComputGeotech2003;30:477–88.

[11]ChuaCG,GohATC.Estimatingwalldeflectionsindeepexcavations

usingBayesianneuralnetworks.TunnellUndergroundSpaceTech-nol2005;20(4):400–9.

[12]TerzaghiC.Theoreticalsoilmechanics.NewYork:JohnWiley&

SonsInc.;1943.

[13]WhittleAJ,KavvadasMJ.FormulationoftheMIT-E3constitutive

modelforoverconsolidatedclays.JGeotechEng1994;120(1):173–98.

[14]JardineRJ,PottsDM,FourieAB,BurlandJB.Studiesofthe

influenceofnon-linearstress–straincharacteristicsinsoil-structureinteraction.Geotechnique1986;36(2):377–96.

[15]BurlandJB.NinthLauritsBjerrumMemorialLecture:‘‘Smallis

beautiful’’–thestiffnessofsoilsatsmallstrain.CanGeotechJ1989;26:499–516.

[16]WhittleAJ,HashashYMA,WhitmanRV.Analysisofdeep

excavationinBoston.JGeotechEng1993;119(1):69–90.

[17]HuangCT,LinYK,KaoTC,ZohZC.Geotechnicalengineering

mappingoftheTaipeicity.In:ProceedingsoftheninthSoutheastAsiageotechnicalsocietyconference,Bangkok,vol.1;1987.p.3.109–120.

[18]WooSM,MohZC.GeotechnicalcharacteristicsofsoilsinTaipei

basin.In:Proceedingofthe10thSoutheastAsiangeotechnicalconference,specialTaiwansession,Taipei,vol.2;1990.p.51–65.[19]OuCY,HsiehPG,ChiouDC.Characteristicsofgroundsurface

settlementduringexcavation.CanJGeotech1993;30:758–67.

[20]O’RourkeTD.Predictingdisplacementsoflateralsupportsystems.

Design,construction,andperformanceofdeepexcavationsinurbanareas.Cambridge,MA:BostonSocietyofCivilEngineers;1989.[21]OuCY,LiaoJT,LinHD.PerformanceofdiaphragmwallusingTop-downmethod.JGeotechGeoenvironEng1998;124(9):798–808.[22]KungTC.Surfacesettlementinducedbyexcavationwithconsider-ationofsmallstrainbehaviorofTaipeisiltyclay.Ph.D.Dissertation,DepartmentofConstructionEngineering,NationalTaiwanUniver-sityofScienceandTechnology,Taipei,Taiwan;2003.

[23]KungGTC,HsiaoECL,JuangCH.Evaluationofasimplifiedsmall-strainsoilmodelforestimationofexcavation-inducedmovements.CanGeotechJ2007;44(6):726–36.

[24]JuangCH,ChenCJ,TienYM.AppraisingCPT-basedliquefaction

resistanceevaluationmethods-artificialneuralnetworkapproach.CanJGeotech1999;36:443–54.

[25]DemuthH,BealeM.Neuralnetworktoolboxuser’sguide.Math-Works,Inc.;2003.

[26]MathWork,Inc.MatlabUser’sManual,Version6.5,ExcelLink

User’sManual,Version2.0.Natick,MA:MathWorks,Inc.;2002.[27]YangY,ZhangQ.Ahierarchicalanalysisforrockengineeringusing

artificialneuralnetworks.RockMechRockEng1997;30(4):207–22.[28]KungGTC.Equipmentandtestingproceduresforsmallstrain

triaxialtests.JChinInstEngr2007;30(4):579–91.

[29]WuCH,OuCY.Walldeflectionandgroundsurfacesettlement

inducedbydeepexcavationintheTaipeiT-2zone.JChinInstCivilHydraulicEng2000;12(3):499–510.

[30]TungCC.Analysisofdeepexcavationbasedonbeammodel.

DepartmentofConstructionEngineering,NationalTaiwanUniver-sityofScienceandTechnology,Taipei,Taiwan;1997.

因篇幅问题不能全部显示,请点此查看更多更全内容