www.elsevier.com/locate/compgeo
Aneuralnetworkapproachtoestimatingdeflectionofdiaphragm
wallscausedbyexcavationinclays
GordonT.C.Kunga,EvanC.L.Hsiaob,MattSchusterb,C.HseinJuang
ab,*SustainableEnvironmentResearchCenter,NationalChengKungUniversity,Tainan701,Taiwan
bDepartmentofCivilEngineering,ClemsonUniversity,Clemson,SC29634,USAReceived17July2006;receivedinrevisedform20October2006;accepted31May2007
Availableonline15August2007
Abstract
Anartificialneuralnetwork(ANN)-basedapproachforpredictingdeflectionofdiaphragmwallscausedbybracedexcavationinsofttomediumclaysispresentedinthisstudy.Fiveinputvariables,includingexcavationdepth,systemstiffness,excavationwidth,shearstrengthnormalizedwithverticaleffectivestress,andYoung’smodulusnormalizedwithverticaleffectivestress,areadoptedasinputstotheANN.ThedatabasefortrainingandtestingtheANNisgeneratedfromhypotheticalcasesusingfiniteelementmethod.Theper-formanceofthedevelopedANNrevealsthattheinfluenceofeachinputvariableonthewalldeflectionisconsistentwiththeexcavationbehaviorsgenerallyobservedinthefield.Thevalidationusing12excavationcasehistoriescollectedinthisstudyshowsthatthewalldeflectioncausedbybracedexcavationcanbeaccuratelypredictedbythedevelopedANN.Ó2007ElsevierLtd.Allrightsreserved.
Keywords:Neuralnetwork;Bracedexcavation;Walldeflection;Finiteelementmethod;Clays;Casehistories
1.Introduction
Bracedexcavationforbasementsofhigh-risebuildings,stationsofundergroundtransportationsystems,andundergroundparkingspaceisfairlycommoninurbancon-struction.Inthedesignofabracedexcavation,itisessen-tialtoconsidernotonlythestabilityissuesuchasbasalheaveduringconstruction,butalsothepotentialservice-abilityproblemofadjacentbuildingscausedbyexcessivewalldeflectionsandgroundmovements.Fig.1showsthetypicalwalldeflectionandgroundmovementcausedbyexcavationinsofttomediumclays.Asillustrated,theadja-centbuildingmaybedamagedduetotheexcessivedifferen-tialsettlementcausedbytheinducedwalldeflection.Overthepasttwodecades,theissueofwalldeflectionand
*Correspondingauthor.Tel.:+18646563322;fax:+18646562670.E-mailaddress:hsein@clemson.edu(C.H.Juang).
groundmovementhasbecomemoreimportantwithincreasinglitigationassociatedwiththedamageofadjacentbuildings.Thefocusofthispaperislimitedtotheestima-tionofwalldeflection.
Tomitigatethepotentialdamagetothebuildingsadja-centtotheexcavation,itisessentialtobeabletopredictaccuratelytheexcavation-inducedwalldeflectionandgroundmovement.Resultsoffieldmonitoringandobser-vationsinthepastprojectscanprovidesomeguidanceforassessingtheperformanceofafuturebracedexcavation(e.g.,Long[1]).Severalempiricalandsemi-empiricalapproachesforpredictingwalldeflectionandgroundmovementhavebeendevelopedbasedonfieldobservationsand/orfiniteelementmethod(FEM)analyses[2–7].Inrecentyears,useofartificialneuralnetwork(ANN)tech-niqueforpredictingwalldeflectionandgroundmovementhasalsobeenreported[8–11].
Generally,inasimplifiedempiricalchart,itisdesirabletoemployasmallnumberofinputvariables.Forexample,
0266-352X/$-seefrontmatterÓ2007ElsevierLtd.Allrightsreserved.doi:10.1016/j.compgeo.2007.05.007
386G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396
hmhmFig.1.Effectscausedbyexcavationinclays:walldeflection,groundmovementandbuildingresponse.CloughandO’Rourke[5]relatedtwovariables,thefactorofsafetyagainstbasalheaveandthesystemstiffness,totheratioofthemaximumlateralwalldeflectionovertheexca-vationdepth.Whilesimplificationisdesirableandmaybeoutofnecessity,theaccuracyofpredictionsusingsuchsim-plifiedchartsmightnotbedesirable,dependingonthesite,soil,andconstructionconditions.Becausethemaximumlateralwalldeflectionisoftenusedasacriteriontoguardagainsttheexcavation-relatedproblems,itisdesirabletohaveasimpleandeasy-to-usemodelthatcanproduceanaccurateestimateoftheexcavation-inducedmaximumwalldeflection.
Theobjectiveofthispaperistodevelopasemi-empiri-calapproachtoestimatingmaximumlateralwalldeflec-tioninsofttomediumclaysusingartificialneuralnetworks(ANNs).Tothisend,alargenumberofhypo-theticalcasesbasedontwowell-documentedcasehistoriesaregeneratedthroughFEManalyses.ANNsarethentrainedandtestedusingthehypotheticalcasesandfinallyvalidatedthroughthecollectedcasehistories.TheresultsshowthatthedevelopedANNscanaccuratelypredictthelateralwalldeflectioncausedbybracedexcavationinsofttomediumclays.
2.ExistingapproachesforestimatingwalldeflectionExistingempiricalandsemi-empiricalapproachesforestimationofexcavation-inducedwalldeflectionarebrieflyreviewedherein.ManaandClough[3]studiedanumberofcasehistoriesandrecognizedthattherewasastrongcorre-lationbetweenthemaximumlateralwalldeflection(dhm)andthepotentialforbasalheave,intermsoffactorofsafetyagainstbasalheave.Anempiricalchartwasdevel-opedbasedonthecasehistorydataforpredictingthemax-imumwalldeflectioninsofttomediumclaysbymeansofthefactorofsafetyagainstbasalheave,definedbyTer-
zaghi[12].WongandBroms[4]proposedasimpleproce-duretoestimatethelateraldeflectionofstruttedoranchoredsheet-pilewalls.Theprocedurewasdevelopedbasedonanassumptionthatthewallsareflexibleandthelateraldeflectionsaregovernedbyplasticyieldingofthesoilbelowthebottomofexcavation.Theyieldingisinverselyproportionaltothefactorofsafetyofbasalheave.Theexcavationwidth,excavationdepth,andsecantortangentmoduliofthesoilareincludedintheanalysis.Thevalidationoftheirprocedurebasedonlimitedcasehis-toriesfromSingapore,OsloandSanFranciscoshowedthatsatisfactorypredictionsofthewalldeflectioncanbeobtained.
CloughandO’Rourke[5]proposedanempiricalchart(seeFig.2)forestimatingthemaximumlateralwalldeflectionforsofttomediumclays,whichsimultaneouslyconsidersthefactorofsafetyagainstbasalheaveandthesystemstiffness(EI=c4whavg;whereEIisthewallstiffness,cwistheunitweightofwaterandhavgistheaveragesupportspacing).HashashandWhittle[6]conductedaseriesofnumericalinvestigationsusingnonlinearFEMtostudytheeffectsofwallembedmentdepth,supportconditions,andstresshistoryontheundraineddeforma-tionsaroundabraceddiaphragmwallinaclaydeposit.Theiranalysesusedacomprehensiveeffectivestresssoilmodel,MIT-E3(WhittleandKavvadas[13]),todescribeimportantaspectsofclaybehavior,includingsmall-strainnonlinearityandanisotropicstress–strain-strengthbehav-iors.Itisgenerallyconsideredanecessitytoemployasoilmodelthatcanadequatelydescribethesmallstrainbehaviorofsoilinabracedexcavationanalysis[14–16].Severaldesignchartsforestimatingthemaximumlateralwalldeflectionasfunctionsoftheexcavationdepth,supportcondition,andtheeffectofwalllengthonbasestabilitywereestablishedbyHashashandWhit-tle[6].
Sheetpile Walls1 m Thick Slurry Walls h=3.5h=3.5He)%(eH/mhδ(EI)(γh4wavg)Fig.2.Designcurvesformaximumlateralwallmovementforexcavationsinsofttomediumclays(CloughandO’Rourke[5]).G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396
Table1
SummaryoftheexcavationcasehistoriesexaminedCaseno.123456789101112
Casename
Total
excavationstages747655555667
Excavationwidth(m)41.2031.2033.4070.0049.2854.1236.0035.0012.3015.0015.0017.60
Finaldepthofexcavation(m)19.7013.9018.4520.0012.2512.6013.7013.1514.5019.4019.4019.86
Wall
length(m)35.028.031.032.521.522.028.525.026.030.030.035.0
Wallthickness(m)0.90.70.80.70.60.60.70.80.81.11.11.2
WallstiffnessEI(kNm2/m)150538570829591562770829544604044604070829510572801057280274851527485153568320
dhm/He(%)0.540.400.330.620.370.480.350.440.240.310.320.26
Reference
387
TNECChichingFormosaFar-EasternSinyiTaikaiElectronicsTaiwanSugarSubway-1Subway-2Subway-3Subway-4
OuOuOuOuetetetetal.al.al.al.[21][19][19][19]
WuandOu[29]
Unpublishedfile
Tung[30]Unpublishedfilefile
Unpublishedfile
Unpublishedfile
Unpublishedfile
Unpublishedfile
Note:CasesNo.1,2and4areconstructedusingtheTop-downmethod.AllothercasesareconstructedusingtheBottom-upmethod.dhmisthemaximumlateralwalldeflection,andHeistheexcavationdepth.
Addenbrookeetal.[7]conducted30nonlinearFEManalysesofundraineddeepexcavationinstiffclayandtheresultsareusedtosupporttheuseofanewdisplace-mentflexibilitynumber(D)inmulti-proppedretainingwalldesign.Theflexibilitynumberisdefinedas:D=EI/h5,whichissimilartosystemstiffness(EI=cwh4avg)suggestedbyCloughandO’Rourke[5].TheresultsobtainedbyAddenbrookeetal.[7]showedthatthevariationofwalldeflectionsestimatedwithflexibilitynumberislessthanthatestimatedwithsystemstiffness.Thus,useoftheflexi-bilitynumbermightenhancetheengineer’sconfidenceindevelopingsupportstrategiesinagivenexcavation.3.Collectionofexcavationcasehistories
TwelvecasehistoriesofbracedexcavationinsofttomediumclaysinTaipei,whichwereconstructedbytheTop-downmethodorBottom-upmethod,arecollectedforthevalidationoftheANNsdevelopedandpresentedlater.ItisnotedthatwiththeTop-downmethod,slabs(orfloors)areusedassupportinlieuofstrutsandanchors;theyarecastfromthetopoftheexcavationandproceedingdownwardtothebottomoftheexcavation.WiththeBot-tom-upmethod,wheretheretainingwallissupportedbystrutsandanchorsduringtheexcavation,slabsarecastaftertheexcavationfromthebottomofexcavationandproceedingupwardtothetopoftheexcavation.Table1presentsasummaryoftheseexcavationcasehistories,includingexcavationwidth,finaldepthofexcavation,walllength,wallthickness,wallstiffness,andtheratioofmax-imumlateralwalldeflection(dhm)overthefinaldepthofexcavation(He).Thedepthsofexcavationsanddepthswherethestrutsorconcretefloorslabswereinstalledorconstructedforallstagesinthesecasehistoriesareshown
Table2
ProppingarrangementinexcavationcasehistoriesexaminedStageno.1234567
Case1He2.84.98.611.815.217.319.7
HpCase2HeHpCase3HeHpN/A1.03.76.29.512.515.5
Case4He4.958.5512.415.416.920N/A
HpN/A3.457.0510.913.916.4N/A
Case5He23.956.99.8212.25N/AN/A
HpN/A1.383.336.39.23N/AN/A
Case6He2.04.07.09.612.6N/AN/A
HpN/A1.133.056.189.28N/AN/A
Case7He2.13.87.011.113.7N/AN/A
HpN/A1.33.36.510.5N/AN/A
Case8He1.103.707.2510.7513.15N/AN/A
HpN/A0.553.056.5510.05N/AN/A
Case9He2.54.58.512.514.5N/AN/A
HpN/A2.04.08.012.0N/AN/A
Case10He2.06.210.313.616.819.4N/A
HpN/A1.255.359.312.716.0N/A
Case11He2.06.210.313.616.819.4N/A
HpN/A1.255.359.312.716.0N/A
Case12He2.45.869.0611.5614.1617.6619.86
HpN/A1.905.368.5611.0613.6617.16
N/A5.3N/A1.62.08.63.2&04.33.5&011.06.46.97.113.910.510.1510.3N/AN/A13.213.7N/AN/A16.216.5N/AN/A18.45
Note:Heisthedepthofexcavation(m);Hpisthedepthwherethestrutisinstalled(m).
388G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396
inTable2.ItisnotedthatinallthecasesshowninTables1and2,thediaphragmwallwasusedastheretainingstructure.
ThestratigraphyoftheTaipeibasinisgenerallyrepre-sentedbyathickalluviumformation(theSungshanFor-mation)overlainbytheChingmeigravelFormation.TheSungshanFormationwasformedapproximately5000–6000yearsagoanditsthicknessisabout40–50m.Typi-cally,theSungshanFormationhassixalternatingsiltysand(SM)andsiltyclay(CL)layers,butmainlyconsistingofsofttomedium,slightlyover-consolidatedclaywithlowplasticity.TypicalsoilpropertiesoftheSungshanForma-tionhavebeendocumentedinmanypreviousstudies[17,18].
Thewalldeflectionsobservedinthe12casehistoriesareshowninFig.3.Formostcasehistories,thecantileverwalldeflectionbehaviorcanbeobservedatfirstand/orsecondstages,atwhichtimethestruthadnotbeeninstalledorthestiffnessoftheinstalledstrutwasnothighenough.Thediaphragmwallthendisplaysthedeepinwardmove-mentsatsubsequentstages.Fig.4examinesthemaximumwalldeflectionsatgivenexcavationstageswiththecorre-spondingdepthsofexcavation.Mostdatapointsfallintotheregionboundedbythelineofdhm=0.2%Heandthelineofdhm=0.5%He,whichissimilartothosepresentedbyCloughandO’Rourke[5].Itisnotedthatthebest-fitcurveormeantrendline,dhm=0.32%He,isalsoshowninFig.4.Thescatterofthedatareflectsthepossiblevari-ationofdhmatagivenexcavationdepth,sincethedatawerecollectedfromdifferentcases.Thevariationalsopointstothenecessityofemployingmoreinputvariablesintheempiricalmodelforpredictingdhm.
Fig.5comparesthedepthwheredhmoccurredwiththedepthofexcavationforeachstageinallthesecase
Wall deflection (mm)Wall deflection (mm)Wall deflection (mm)Wall deflection (mm)005408012002040600204060800306090120150Depth (m)10152025303505020(a) Case 14060020(b) Case 2406080020(c) Case 34060020(d) Case 44060Depth (m)10152025303505010(e) Case 5203040020(f) Case 6406080020(g) Case 7406080020(h) Case 84060Depth (m)101520253035(i) Case 9(j) Case 10(k) Case 11(l) Case 12Fig.3.Observationsofwalldeflectionforthe12excavationcasehistories.G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396389
150Average of stages 3-7 of all cases(Mean trend line)120Stages 1-2 Stages 3-7%Hem=0.5m)m90δh ( mhm=0.32%Heδ60δh30δ.2%Hehm=000510152025Depth of excavation, He (m)Fig.4.Maximumwalldeflectionversusexcavationdepthofcasehistories.histories.Insomecases,thewallmovementswereofthecantileverpatternatearlystagesofexcavation(stages1and2),andthus,themaximumwalldeflectionoccurredatthetopofthewall(andthus,thedepthswheredhmoccurredarezero).Ingeneral,thedepthswheredhmoccurredatexcavationstages3–7areapproximatelyequaltothedepthsofexcavation.SimilarresultshavepreviouslybeenreportedbyOuetal.[19].Fig.6showstherelation-shipbetweennormalizedmaximumlateralwalldeflectionandfactorofsafetyagainstbasalheave,definedbyTer-zaghi[12],forallcasehistoriesatstages3–7.Thelimits
25)m20( derrucc15o mhδerehw10stnd htprdeDth5ththth00510152025Depth of excavation (m)Fig.5.Depthwherethemaximumwalldeflectionoccurredincasehistories.3.02.5Limits suggested by Mana and Clough [3]Case histories at stages 3-7 )2.0%( eH1.5/mhδ1.00.50.00.51.01.52.02.5Factor of safety against basal heaveFig.6.Relationshipbetweenfactorofsafetyagainstbasalheaveandnormalizedmaximumlateralwalldeflection.suggestedbyManaandClough[3]arealsoshowninthisfigure.ThecasehistoriesoftheTaipeiclaygenerallyfallintotheregionboundedbythetwolimitssuggestedbyManaandClough[3].Thedatapointsfromthecasehisto-riesexaminedareseentobeclosertothelowerlimit,whichcouldbeexplainedbythefactthatManaandClough’slimitswereestablishedmostlywithcasehistoriesofexcava-tionsconstructedwithlow-stiffnesssheet-pilewallsorsol-dierpilewalls,whereasthehigh-stiffnessdiaphragmwallswereusedinthecasehistoriesexaminedherein.4.Establishmentofhypotheticalcases
Becausethenumberofexcavationcasehistoriescol-lectedinthisstudyisnotsufficientfortrainingandtestingoftheintendedANN,alargenumberofhypotheticalcasesaregeneratedandanalyzedusingFEM.Inthissection,fac-torsaffectingwalldeflectionsandgroundmovementsaroundbracedexcavationsarefirstreviewedandtheproce-durefornumericalexperimentationusingFEMtogenerateartificialdataisthendiscussed.4.1.Factorsaffectingwalldeflection
Behaviorofabracedexcavationmaybeaffectedbymanyfactorssuchaswallstiffness,strutspacingandstiff-ness,excavationwidthanddepth,prestress,depthtoanunderlyingstifflayer,soilstiffnessandstrengthdistribu-tion,dewatering,adjacentsurcharge,soilconsolidationandcreep,andworkmanship[2–6,20].Itisnotpracticaltoincorporateallthesefactorsinasimplifiedmethodforpredictingwalldeflection,andthusonlytheessentialfac-torsareusedtogeneratehypotheticalcasesfordevelopingtheintendedANNmodel.
ManaandClough[3]showedthatthewalldeflectionwassignificantlyaffectedbythefactorofsafetyagainstbasalheave,whichcomprisestheeffectofexcavationwidth,shearstrengthofclay,andexcavationdepth.
390G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396
CloughandO’Rourke[5]furtherincludedthesystemstiff-nessasanessentialfactor,whichpointedtotheimportanceofthewallstiffnessandtheaverageverticalstrutspacing.Basedonanextensiveseriesofanalyses,HashashandWhittle[6]reachedaconclusionthatwalllengthhasamin-imaleffectonthepre-failuredeformationsforexcavationindeeplayersofclaywherethereisnoconstraintontoemovement,butdoeshaveamajorinfluenceonthelocationoffailuremechanismwithinthesoil.Theyalsodemon-stratedtheeffectsofstresshistory,includingtheundrainedshearstrength,soilstiffness,andthecoefficientofearthpressureatrest,onthewalldeflection.
Basedmostlyonthesepreviousfindings,fivefactorsareselectedfornumericalexperimentationinthisstudytogen-eratehypotheticalcases;theyareexcavationdepth(He),excavationwidth(B),systemstiffness(S),ratioofshearstrengthoververticaleffectivestress(su=r0oververticalv),andratioofinitialYoung’smoduluseffectivestress(Ei=r0v).
4.2.Numericalexperimentation
Twowell-documentedcasehistories,theTaipeiNationalEnterpriseCenter(TNEC)case(Ouetal.[21])andtheFormosacase(Ouetal.[19]),areusedastheref-erencemodeltoconductalargenumberofnumericalexperimentsusingFEManalysesforestablishingadatabaseforthedevelopmentoftheintendedANNmodel.Fig.7showsthecomparisonofwalldeflectionandgroundsurfacesettlementbetweenobservationsandpre-dictionsforthetwocasesusingFEMwithamodifiedpseudoplasticitysoilmodel(Kung[22]).Thissoilmodelcanaccuratelysimulatenonlinearstress–strainbehaviorofclaysatsmallstrain[23].Thepredictionsofthewalldeflectionandgroundsettlementinexcavationinclays,asthoseshowninFig.7,areconsideredsatisfactoryandformabasisforgeneratinghypotheticalcasesinanumericalexperimentation.
Asmentionedpreviously,theeffectofshearstrengthofclay,claystiffness,wallproperties,andexcavationwidthonbracedexcavationinsofttomediumclaysshouldbeconsideredinthenumericalexperiments.DetailsoftheparametersusedintheanalysesofhypotheticalcasesaregiveninTable3.Thedepthsofinstalledstrutsorcon-structedfloorslabs,theexcavationdepths,andthestrati-graphyconditionsfornumericalexperimentsareassumedtobethesameasthoseintheTNECandFormosacases.Atotalof720differentFEManalysesweremadetosimu-latebracedwallexcavationsinsofttomediumclaydepos-its.TheresultsofFEManalysesgeneratethousandsofinstances(note:aninstanceisadatapointthatconsistsoffiveinputvariables,He,S,B,su=r0outputvariable,themaximumwallv,andEi=r0deflection,v,andonedhm).ItshouldbenotedthatthewalldeflectiondataatthefirsttwostagesofexcavationineachcasearenotincludedinthedatabaseforthedevelopmentoftheANNbecauseatleasttwo-levelstrutsmustbeinstalledpriortodetermining
Wall deflection (mm)Distance from the wall (m)1201008060402000102030405060001020)mm20)(40m t(n hetpm60Stage 1Stage 5eStage 2Stage 6l30eDttStage 3Stage 7eS80Stage 4Predictions40100Stage 1- Stage 750(a)TNEC case Wall deflection (mm)Distance from the wall (m)706050403020100010203040500010)m20)mm( ( ntheStage 1Stage 520tpmeeD40Stage 2Stage 6Stage 3Stage 7ettlSStage 430Predictions60Stage 1- Stage 740(b) Formosa case Fig.7.PredictionsofwalldeflectionandsurfacesettlementonTNECandFormosacasesusingfiniteelementmethodwithasmall-strainsoilmodel.Table3
ParametersofhypotheticalcasesbasedontheTNECandFormosacasesVariables
Selectedvalues12345(a)BasedonTNECcasesu=r0v0.250.290.320.360.40Ei/su15001750203524003000Wallthickness(m)0.60.91.21.5N/AExcavationwidth(m)
10
2039.260100(b)BasedonFormosacasesu=r0v0.250.300.340.4N/AEi/su1500210025003000N/AWallthickness(m)0.60.81.01.21.4Excavationwidth(m)10
20
35
60
100
thesystemstiffness.Furthermore,forpracticalpurposes,thecaseswiththecalculatedmaximumlateralwalldeflec-tionofgreaterthan200mmarediscarded.Thus,atotalof3486instancesaregeneratedfordevelopingtheintendedANN.Theseinstancescollectivelyrepresentbehaviorofwalldeflectioninbracedexcavationsinsofttomediumclays.Intheseinstances,thevariableHeisintherangeof6.9to19.7(m);thevariableSisintherangeof286to10950;thevariableBisintherangeof10to100(m);thevariablesu=r0visintherangeof0.25to0.4;thevariableEi=r0visintherangeof375to1200.
G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396391
5.DevelopmentoftheANN5.1.Procedureandmethodology
Athree-layer,feed-forwardANNtopologyshowninFig.8isadoptedinthisstudy.Amongthe3486instances,abouttwothirds(2324instances)areselectedasthetrain-ingset,andtheotheronethird(1162cases)areusedasthetestingset.Thesamplingprocessisconsideredlargelyran-dom,sincenoeffortwasmadetokeeptrackofthecharacteristicsofinputandoutputvariables.Whileran-domnessinthedataselectionwaslargelymaintained,thetrainingdatasetisbelievedtoberepresentative,asdatafromallrangesweresampled.Thenetworkisfirsttrainedusingthetrainingdataset.Theobjectiveofthenetworktrainingistomaptheinputtotheoutputbydeterminingtheconnectionweightsandbiasesthroughaback-propagationprocedure.Forthethree-layernetwork,theoutputofthenetwork,dhm,iscalculatedasfollows(Juanget(al.[24]):
n\" m!#)
dhm¼f2B0þXWkf1BHkþX
WikPið1Þ
k¼1
i¼1
wheredhmisthemaximumwalldeflection(mm);B0isthebiasattheoutputlayer(justoneneuroninthislayer);Wkistheweightofconnectionbetweenneuronkofthehiddenlayerandthesingleoutputlayerneuron;BHkisthebiasatneuronofthehiddenlayer(k=1,n);Wikistheweightofconnectionbetweeninputvariablei(i=1,m)
Input layerHidden layerOutput layerNeuron 1Heinput 1Neuron 2Sinput 2Neuron 3Binput 3Neuron 4outputδhmsuσv'input 4Neuron 5Eσinput 5Neuron 6v'Neuron 7Fig.8.Aschematicdiagramofthree-layerartificialneuralnetwork.andneuronkofthehiddenlayer;Piistheinputvariable
i;f1(k)isthetransferfunctionofeachneuroninthehiddenlayer;andf2(k)isthetransferfunctionoftheneuronintheoutputlayer.Bothtransferfunctionsf1(k)andf2(k)adoptedinthisstudyaresigmoidfunctionsdefinedby:fNðkÞ¼
11þeÀk
forN¼1;2
ð2Þ
InEq.(1),thenumberofinputvariables(m)is5;theinputvariablesareP1=He,P2=S,P3=B,P4¼su=r0Pv,and5¼Ei=r0v.Thenumberofhiddenneurons(n)isdeter-minedthroughatrialanderrorprocedure;normally,thesmallestnumberofneuronsthatyieldssatisfactoryresults(judgedbythenetworkperformance)shouldbeused.Inthisstudy,sevenhiddenneuronsareselected,asthisnumberisthesmallestnumberofneuronsthatarerequiredtoyieldsatisfactoryresults(judgedbythenetworkperformance).
Inthepresentstudy,theLevenberg–Marquardt(LM)algorithm(DemuthandBeale[25])isadoptedforitseffi-ciencyintrainingnetworks.TheLMalgorithmisimple-mentedwithMatlab(MathWork,Inc.[26])anditsneuralnetworktoolbox(DemuthandBeale[25]),althoughothersoftwareorin-housecomputercodesmayalsobeused.Itshouldbenotedthatallvariablesarescaledintovaluesintherange0.1to0.9beforetraining.Thefinalweightsandbiasesofthetrainednetwork,expressedasthecoeffi-cientsinEq.(1)areshowninTable4.
Fig.9showstheperformanceofthedevelopedANNverifiedwiththetrainingdatasetandthetestingdataset.TheresultsshowthatthedevelopedANNcanaccuratelypredictthemaximumwalldeflectionsofalargenumberofhypotheticalcasesasdefinedbytheFEManalyses.5.2.AssessmentoftheANNapproach
TheperformanceofthedevelopedANNhasbeenshowntobesatisfactory.Additionalassessmentispre-sentedherein.First,theconsistencyofthedevelopedANNisassessedbyemployingthevarioussamplingschemessothatalargenumberofdifferenttrainingandtestingdatasetsarecreatedandusedinthedevelopmentofANN.Theresultsshowthatregardlessofwhichsam-plingschemewasused,theANNasdescribedinEq.(1)withsevenhiddenneuronsyieldspracticallythesamemax-imumwalldeflectionforeachinstance.Thus,thedevel-opedANNisnotsensitivetothechangeofsamplingschemesandcanproduceconsistentpredictionsofthewalldeflection.
UseofagraphtoshowthevariationoftheANN-pre-dictedmaximumwalldeflectiondhmwitheachinputvari-ableisanotherwaytoexaminethebehaviorofthedevelopedANN.However,theANNishighlynonlinearandthus,theconventionalmeansofplottingtheoutputversusoneinputvariablewhilemaintainingallotherinputvariablesasaconstantmaynotalwaysbemeaningful.Inthisstudy,eachofthe12casesisusedforexaminingthe
392G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396
Table4
ConnectionweightsandbiasesoftheneuralnetworkdefinedinEq.(1)
WeightWikInput1(i=1)
HiddenHiddenHiddenHiddenHiddenHiddenHidden
neuronneuronneuronneuronneuronneuronneuron
1234567(k=1)(k=2)(k=3)(k=4)(k=5)(k=6)(k=7)
0.5830.744À3.0184.8423.6987.254À3.413
Input2(i=2)À1.315À1.3873.272À36.397À1.979À48.6652.777
Input3(i=3)À5.501À0.03À0.869À0.0330.8661.773À1.326
Input4(i=4)À1.096À4.002À1.382À1.1280.295À7.058À2.635
Input5(i=5)À1.124À0.12416.5630.598À3.637À12.53637.619
WkOutputneuronÀ73.0557.240À4.4940.4161.1670.8913.925
BiasBkHiddenlayerÀ3.666À1.463À0.0422.615À0.0954.676À1.095
BoOutputlayer
À1.349
250ANN-estimated δhm (mm)200150100500(a) Training data: 2324 instances R2 = 0.95 RMSE = 8.36 COV = 0.13250200150100500(b) Testing data: 1162 instances R2 = 0.95 RMSE = 8.69 COV = 0.13050100150200FEM-based δhm(mm)250050100150200FEM-based δhm(mm)250Fig.9.PerformanceofthedevelopedANN:(a)training,and(b)testing.200160120804000.220016012080400δhm(mm)0.250.30.350.40.45δhm(mm)'su/σvFig.10.VariationoftheANN-predictedwalldeflectionwiththenormalizedshearstrength.400600800Ei/σ'v10001200Fig.11.VariationoftheANN-predictedwalldeflectionwiththenormalizedYoung’smodulus.influenceoftheundrainedshearstrengthoftheclay,repre-sentedbythevariable,su=r0v,andtheYoung’smodulusoftheclay,representedbythevariable,Ei=r0v.Foreachcase,allvariablesaremaintainedasaconstantexceptthatsu=r0visallowedtovary,andthevarianceoftheANN-predicteddhmwithsu=r0visthenplotted.AsshowninFig.10,the
G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396393
decreasingtrendofdhmvaryingwithsu=r0vforallcasesisconsistentandasexpected.
Fig.11showsaplotsimilartoFig.10,wheretheinflu-enceofEi=r0visshownandsimilarconclusioncanbedrawn.Finally,whilenotshownherein,thedecreasing
euvivFig.12.ImportanceindexesofinputvariablesinthedevelopedANN.trendofdhmversussystemstiffness(S),andtheincreasingtrendofdhmversuseachoftheothertwovariables,excava-tionwidth(B)andexcavationdepth(He),areobtained.Thus,thedevelopedANNisshowntobehaveasexpectedusingthe12casehistories.
Additionalsensitivityanalysiswasconductedtoesti-matetheimpactofinputvariablesontheoutput,dhm.YangandZhang[27]suggestedthattherelativestrengthoftheeffectofaninputvariableontheoutputcanbederivedbasedontheweightsstoredinthenetwork.Theydefinedanimportanceindextoexpressthedegreeofsensi-tivityforeachinputvariableontheoutput.FollowingtheprocedurebyYangandZhang[27],theimportanceindexesforthefiveinputvariables,He,B,S,su=r0v,andEi=r0v,are0.89,0.21,0.23,0.89,and1.0,asshowninFig.12.How-ever,theseweightsshouldbeviewedonlyasaroughesti-mate,astheyaredeterminedbasedonthesameassumption,mentionedpreviously,thatonlyoneinputvar-iableatatimeisallowedtovaryalthoughthedevelopedANNishighlynonlinear.
Greaterimportanceindexvaluesforvariables,He,su=r0v,andEi=r0vshowninFig.12areexpected,sincedhm1501209060(c) Case 39009060300306090300906030(g) Case 790090603003060900906030(k) Case 11003060900030(l) Case 126090030(h) Case 860900(d) Case 43060901201501601208040906030(a) Case 1(b) Case 2306001201600906030(e) Case 5(f) Case 6900906030(i) Case 9(j) Case 10900030609003060906030Estimated wall deflection (mm)090603009060300040800306003060Observedwalldeflection(mm)Fig.13.ComparisonofwalldeflectionspredictedbytheANNandtheCloughandO’Rourkemethodatstages3–7ineachofthe12cases.394G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396
hasastrongcorrelationwitheachofthethreevariablesingeneral.ComparedwithHe,su=r0BisrelativelyunimportantvandEi=r0andreflectedv,theexcava-tionwidthinthebehaviorofthedevelopedANN.Thisbehaviorissup-portedbytheresultsofnumericalexperimentationusingFEM.Finally,theresultalsoindicatedthatthesystemstiff-nessSisrelativelyunimportantinthedevelopedANN.Thisresultmaybeexplainedinthefollowing.Foragivenexcavationcase,thestiffnessofretainingwallitself(EI)isaconstant,andthus,thesystemstiffnessineachexcavationstagetendstobeapproximatelythesame,sincethesameverticalspacingofstrutsforeachstageofexcavationisoftenmaintained.Therefore,astheexcavationproceeds,thewalldeflectiontendstoincrease,althoughthesystemstiffnessremainsapproximatelythesame.Asaresult,theinfluenceofthesystemstiffnessSonthewalldeflectionisrelativelylow.ThesameconclusionmaybereachedwithacloseexaminationofFig.2.Thehypotheticalcasesweregeneratedtoemulatemoderndeepbracedexcavationswherethefactorofsafetyagainstbasalheaveissufficientlyhigh(i.e.,greaterthan1.4asshowninFig.6)andthesys-temstiffnessisrelativelylarge(i.e.,greaterthan300inmostinstances).Undertheconditionsofadequatefactorofsafetyagainstbasalheaveandsufficientlylargesystemstiff-ness,thevariationofdhmwiththesystemstiffnessforagivenHeisrelativelyflataccordingtoFig.2.Thus,thebehaviorofthedevelopedANN,whichyieldsalowimpor-tanceindexvalueforthevariableS,issupportedbywell-establishedknowledge.
6.ValidationofthedevelopedANN
The12excavationcasehistoriesintheTaipeiclayareusedtovalidatethedevelopedANN.Threeinputvari-ables,He,BandS,aredeterminedbasedonthegiveninformationforeachcasehistory.Theothertwovariables,su=r0vandEi=r0v,areestimatedbasedontheresultsofsmallstraintriaxialtestsfortheTaipeiclay(Kung[22,28]);theyareestimatedtobeapproximatelyequalto0.31and650,respectively,forall12casehistories.UsingthedevelopedANN,dhmforeachofthe12casesisthencalculatedandcomparedwithfieldobservation.Fig.13showsthemea-sureddhmofthe12excavationcasehistoriesatstages3–7andthosepredictedbythedevelopedANN.Forcompari-son,theresultsobtainedwiththeCloughandO’Rourke[5]methodareshown.AlsoincludedinFig.13arethetwoboundingtrendlines,dhm=0.2%Heanddhm=0.5%He.Mostpredictions(datapoints)fallintotheregionboundedbythetwotrendlinesofdhm=0.2%Heanddhm=0.5%He.TheresultsshowninFig.13indicatethatingeneral,thewalldeflectionsforallcasehistoriesexaminedcanbesatis-factorilypredictedbytheCloughandO’RourkemethodandthedevelopedANN,althoughthelatterwasshowntobemoreaccurateoverall.
Fig.14furthercomparestheperformanceofthetwomethodsinpredictingthe12casehistoriesexamined.Thevaluesofroot-mean-square-error(RMSE)andcoefficient
ofvariation(COV)ofthepredictionsarecalculatedforeachmethod.Here,theRMSEiscalculatedbasedonthepredictedandmeasuredwalldeflectionsatstages3–7inall12cases.TheCOViscalculatedastheratioofRMSE
150)m(a) ANN predictionsmRMSE = 9.63(120 noCOV = 0.20itcel90fed llaw60 detcide30rP00306090120150150)m(b) Clough & O'Rourke m(120RMSE = 20.81 noCOV = 0.43itcel90fed llaw60 detcid30erP00306090120150Observed wall deflection (mm) Fig.14.ComparisonofwalldeflectionspredictedbytheANNandtheCloughandO’Rourkemethodinallcases(stages3–7).)m90m(RMSE = 8.4 noCOV = 0.41itcelfe60d llaw detcid30erp-NNA00306090Observed wall deflection (mm)Fig.15.Comparisonofpredictedandobservedwalldeflectionsatstage2ineachofthe12excavationcases.G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396395
overthemeanofthe44measureddataofwalldeflections.Again,thedevelopedANNisshowntobemoreaccurateoverallinpredictingwalldeflections.
7.Discussion
Oneofthefiveinputvariablesrequiredinthedevel-opedANNissystemstiffness(S),whichdependsonthewallstiffness(EI)andtheaveragesupportspacing(havg),asnotedpreviously.Ingeneral,thesupportspacing(h)isbetweentwostrutlevels,andthus,theANNmodelwasdevelopedforpredictionofmaximumwalldeflectionsstartingfromstage3oftheexcavation.However,onemightconsiderthebottomoftheexcavationasalevelofsupportforthewall.Thus,thepredictionofmaximumwalldeflectionatthecompletionofstage-2excavationmaybepossible.ExtendingthedevelopedANNtopre-dictionofthemaximumwalldeflectionatstage2(with-outre-trainingANN)iscarriedoutforthe12casesexamined,andtheresultsareshowninFig.15.Theaccu-racyoftheANNpredictionofthemaximumwalldeflec-tionsatstage2isconsideredsatisfactory,althoughthepredictionis,asexpected,slightlylessaccuratethanthosepredictionsforthemaximumwalldeflectionsatlaterstages.
8.Summaryandconclusions
Withtheavailabilityofpersonalcomputersandsoft-waretoday,artificialneuralnetworkisincreasinglybecom-inganengineeringtoolforderivingdata-drivenpredictivemodels.ThedevelopedANNscaneasilybeimplementedinspreadsheetmodulesforpracticalapplications.Regard-lessofwhetherastraightforwardneuralnetworkoramoresophisticatedANNisemployed,thedevelopedANNmustconformtothephysicalprinciplesand/orbehaviorofasystemitisintendedtoemulate.ThedevelopedANNmustalsobevalidatedwithactualcases.ThispaperdocumentsthedevelopmentandvalidationofanANNintendedforpredictingthemaximumwalldeflectioninabracedexcava-tioninsofttomediumclays.
BasedontheanalysisofthecollectedcasehistoriesofbracedexcavationintheTaipeisofttomediumclaysandthedevelopment,experimentationandvalidationofthedevelopedANN,thefollowingconclusionsarereached:1.TwelvecasehistoriesofbracedexcavationintheTaipeisofttomediumclayconstructedusingthediaphragmwallmethodarecollectedandanalyzedinthisstudy.Theobservedwalldeflectionsgenerallyfallintotheregionboundedbythetrendlinesofdhm=0.2%Heanddhm=0.5%HesuggestedbyOuetal.[19].Thefac-torofsafetyagainstbasalheave(FS)forexcavationstages3–7inallofthesecasehistoriesisgenerallygreaterthan1.4.Whentheobserveddataareplottedfordhm/HeversusFS,theygenerallyfallintothelimitssuggestedbyManaandClough[3],althoughthese
observeddataareclosertothelowerlimitduetotheuseofstifferdiaphragmwallsinthecollectedcasehistories.
2.
Anartificialneuralnetwork(ANN)isdevelopedforestimatingtheexcavation-inducedwalldeflectionbasedonalargenumberofhypotheticalcasesgeneratedbyafiniteelementmodelthatcansimulateaccuratelythesmallstrainsoilbehavior.FiveinputvariablesareadoptedfortheintendedANN;theyareexcavationdepth,systemstiffness,excavationwidth,ratioofshearstrengthoververticaleffectivestress,andratiooftheYoung’smodulusoververticaleffectivestress.Theresultsoftheextensiveassessmentshowthatthedevel-opedANNconformstothetypicalbehaviorofbracedexcavationinsofttomediumclays.
3.
TheimportanceindexesofthefiveinputvariableswerecalculatedusingthemethoddevelopedbyYangandZhang[27].Theresultsshowedthattheexcavationdepth,ratioofshearstrengthoververticaleffectivestress,andratiooftheYoung’smodulusoververticaleffectivestressarethemostimportantfactorsinthedevelopedANNmodelforpredictionofthelateralwalldeflection.Thesystemstiffnessandtheexcavationwidthwerefoundtoberelativelyunimportantcomparedtotheotherthreevariablesforatypicaldiaphragmwallinsofttomediumclayswithadequatefactorofsafetyagainstbasalheaveandsufficientlylargesystemstiff-ness.Foragivenexcavationprojectwheretheexcava-tiondepthisalreadydetermined,thevariationofshearstrengthandYoung’smodulusofclaysduetosoilvariabilityand/ormeasurementerrorduringsiteinvesti-gationcouldplayasignificantroleintheaccuracyofthewalldeflectionpredictedbytheANN.
4.
ThedevelopedANNisshowntobeabletopredictsat-isfactorilytheexcavation-inducedwalldeflectionsasevi-dencedbytheresultsofvalidationusingthe12casehistoriesthatwerenotusedinthedevelopmentoftheANN.WhencomparedwiththeexistingmethodssuchastheCloughandO’Rourke[5]method,thedevelopedANNyieldsimprovedresultsbasedontheevaluationofthe12casehistories.
5.
ThelimitationsofthedevelopedANNarenotedasfol-lows:(1)themodelassumesnormalworkmanshipandnobasalfailureinthebracedexcavation,(2)construc-tion-relatedissuessuchasdewateringandoverexcava-tionpriortosupportinstallationarenotconsidered,(3)thedevelopedmodelisapplicabletocaseswheretheinputvariablesareintherangesspecified,and(4)theinitialmodulusofelasticitymustbemeasuredwithsmall-straintriaxialtestsorbenderelementtests,insteadofconventionaltriaxialtests.
Acknowledgements
ThestudyonwhichthispaperisbasedwassupportedbytheNationalScienceFoundationthroughGrantNo.
396G.T.C.Kungetal./ComputersandGeotechnics34(2007)385–396
CMS-0300198.Thisfinancialsupportisgreatlyappreci-ated.TheresultsandopinionsexpressedinthispaperarethoseofthewritersanddonotnecessarilyreflecttheviewoftheNationalScienceFoundation.Dr.Chang-YuOuisthankedforprovidingpartoftheexcavationcasehistoriesexaminedinthispaperandthejournalreviewersarethankedfortheirconstructivecomments.References
[1]LongM.Databaseforretainingwallandgroundmovementsduetodeepexcavations.JGeotechGeoenvironEng2001;127(3):203–24.[2]KungGTC,JuangCH,HsiaoECL,HashashYMA.Asimplifiedmodelforpredictingwalldeflectionandgroundsurfacesettlementcausedbybracedexcavationinclays.JGeotechGeoenvironEng2007;133(6):731–47.
[3]ManaAI,CloughGW.Predictionofmovementsforbracedcutsinclay.JGeotechEng1981;107(6):759–77.
[4]WongKS,BromsBB.Lateralwalldeflectionsofbracedexcavationsinclay.JGeotechEng1989;115(6):853–70.
[5]CloughGW,O’RourkeTD.Constructioninducedmovementsofinsituwalls.Designandperformanceofearthretainingstructures,GeotechnicalSpecialPublication1990;25:439–70.
[6]HashashYMA,WhittleAJ.Groundmovementpredictionfordeepexcavationsinsoftclay.JGeotechEng1996;122(6):474–86.
[7]AddenbrookeTI,PottsDM,DabeeB.Displacementflexibilitynumberformultiproppedretainingwalldesign.JGeotechGeoenvi-ronEng2000;126(8):718–26.
[8]JenJC,HungSL,ChiSY,ChernJC.Neuralnetworkforecastmodelindeepexcavation.JComputCivilEng2002;16(1):59–65.
[9]GohATC,WongKS,BromsBB.Estimationoflateralwallmovementsinbracedexcavationsusingneuralnetworks.CanJGeotech1995;32(6):1059–64.
[10]HashashYMA,MarulandaC,GhaboussiJ,JungS.Systematic
updateofadeepexcavationmodelusingfieldperformancedata.ComputGeotech2003;30:477–88.
[11]ChuaCG,GohATC.Estimatingwalldeflectionsindeepexcavations
usingBayesianneuralnetworks.TunnellUndergroundSpaceTech-nol2005;20(4):400–9.
[12]TerzaghiC.Theoreticalsoilmechanics.NewYork:JohnWiley&
SonsInc.;1943.
[13]WhittleAJ,KavvadasMJ.FormulationoftheMIT-E3constitutive
modelforoverconsolidatedclays.JGeotechEng1994;120(1):173–98.
[14]JardineRJ,PottsDM,FourieAB,BurlandJB.Studiesofthe
influenceofnon-linearstress–straincharacteristicsinsoil-structureinteraction.Geotechnique1986;36(2):377–96.
[15]BurlandJB.NinthLauritsBjerrumMemorialLecture:‘‘Smallis
beautiful’’–thestiffnessofsoilsatsmallstrain.CanGeotechJ1989;26:499–516.
[16]WhittleAJ,HashashYMA,WhitmanRV.Analysisofdeep
excavationinBoston.JGeotechEng1993;119(1):69–90.
[17]HuangCT,LinYK,KaoTC,ZohZC.Geotechnicalengineering
mappingoftheTaipeicity.In:ProceedingsoftheninthSoutheastAsiageotechnicalsocietyconference,Bangkok,vol.1;1987.p.3.109–120.
[18]WooSM,MohZC.GeotechnicalcharacteristicsofsoilsinTaipei
basin.In:Proceedingofthe10thSoutheastAsiangeotechnicalconference,specialTaiwansession,Taipei,vol.2;1990.p.51–65.[19]OuCY,HsiehPG,ChiouDC.Characteristicsofgroundsurface
settlementduringexcavation.CanJGeotech1993;30:758–67.
[20]O’RourkeTD.Predictingdisplacementsoflateralsupportsystems.
Design,construction,andperformanceofdeepexcavationsinurbanareas.Cambridge,MA:BostonSocietyofCivilEngineers;1989.[21]OuCY,LiaoJT,LinHD.PerformanceofdiaphragmwallusingTop-downmethod.JGeotechGeoenvironEng1998;124(9):798–808.[22]KungTC.Surfacesettlementinducedbyexcavationwithconsider-ationofsmallstrainbehaviorofTaipeisiltyclay.Ph.D.Dissertation,DepartmentofConstructionEngineering,NationalTaiwanUniver-sityofScienceandTechnology,Taipei,Taiwan;2003.
[23]KungGTC,HsiaoECL,JuangCH.Evaluationofasimplifiedsmall-strainsoilmodelforestimationofexcavation-inducedmovements.CanGeotechJ2007;44(6):726–36.
[24]JuangCH,ChenCJ,TienYM.AppraisingCPT-basedliquefaction
resistanceevaluationmethods-artificialneuralnetworkapproach.CanJGeotech1999;36:443–54.
[25]DemuthH,BealeM.Neuralnetworktoolboxuser’sguide.Math-Works,Inc.;2003.
[26]MathWork,Inc.MatlabUser’sManual,Version6.5,ExcelLink
User’sManual,Version2.0.Natick,MA:MathWorks,Inc.;2002.[27]YangY,ZhangQ.Ahierarchicalanalysisforrockengineeringusing
artificialneuralnetworks.RockMechRockEng1997;30(4):207–22.[28]KungGTC.Equipmentandtestingproceduresforsmallstrain
triaxialtests.JChinInstEngr2007;30(4):579–91.
[29]WuCH,OuCY.Walldeflectionandgroundsurfacesettlement
inducedbydeepexcavationintheTaipeiT-2zone.JChinInstCivilHydraulicEng2000;12(3):499–510.
[30]TungCC.Analysisofdeepexcavationbasedonbeammodel.
DepartmentofConstructionEngineering,NationalTaiwanUniver-sityofScienceandTechnology,Taipei,Taiwan;1997.
因篇幅问题不能全部显示,请点此查看更多更全内容