您的当前位置:首页正文

深基坑监测总结报告

2023-12-19 来源:步旅网
 深基坑监测总结报告

第一章 工程概况

XX路隧道工程是XX路改造工程的一部分,XX路改造工程由XX路地下通道、两侧排水管道、西广场人行地下通道及雨水泵站组成。XX路地下通道由隧道和引道组成,全长约1000m。隧道为闭合框架结构,采用整板基础,跨度22m,长约540m;引道为钢筋混凝土U型槽或毛石混凝土挡土墙结构,拟采用整板基础,跨度22m,长约460m。排水管道沿道路两侧布置,雨水泵站基底尺寸约9m*8m。本监测项目为对XX路隧道工程深基坑开挖及施工过程进行监测。

XX路现状道路宽约60m,道路中设有双向2车道高架桥〔已于隧道施工前拆除〕,桥宽10m,全长900m,XX路两侧分布有几个较大的公共场站和车站,路西侧主要有航海长途客运站、XX路西侧公交枢纽;东侧分布有武昌火车站、宏基长途客运站。主要单位有武昌区千家街小学、WW市公共客运交通监察办公室第三管理站、九州饭店、中铁快运公司、七一九研究所等。

图1-1XX路隧道

XX路现为进出武昌火车站的唯一道路,其车流量极大,且车行、人行交错,

1

深基坑监测总结报告

交通极为繁忙。

本工程范围内道路沿线现状地下管线较多,有给水、雨水、污水、电力、电信、燃气、有线电视、路灯及交通信号等管线。除电信、电力、部分给水管布置于现状人行道上外,大部分管线布置在车行道下。隧道开挖主要影响的管线有排水箱涵、煤气、给水。人防埋深约9m~12m,为钢筋混凝土结构,其净空尺寸为3m×2.55m,零散分布,隧道北敞口段东侧分布较多。

WW地区属于我国东南季风气候区,具有冬寒夏热,春湿秋旱,四季分明,降水充分冬季少雪等特点,年平均气温16.3度,极端高温41.3度,极端低温-18.0度。地貌单元属长江冲积三级阶地,地区内地势较平坦,局部地段稍有起伏,地面标高在m~m之间变化。

根据地质报告,本场地主要分布地层有:人工填积〔Qml〕和第四系湖〔塘〕相沉积(Ql )层、第四系全新统冲积层〔Q4al〕、第四系上更新统冲洪积层〔Q3al+pl〕、志留系强风化泥岩、石英砂岩。各岩土层具体的分布埋藏条件、野外鉴别特征列于下表:

表1-1岩土层性质特征描述表 地层编号岩土名称 〔1-1〕杂填土 年代 层顶层厚颜色 状态 湿成因 埋深〔m〕 度 〔m〕 Qml 压包含物及分布特征 缩性 主要有沥青及混凝土组成的地坪、其下夹碎石、片石等,全场区分布。 土石 等级 Ⅰ 杂 密实 干 〔1-2〕素填土 Q ml 褐~松散 稍黄褐 湿 高 主要由粘性土组成,夹少量碎石、砂等,场地大部分地段分布。 高 含有机质、腐殖质、有臭味,场区局部分布。 Ⅰ 〔1-3〕淤泥 〔2-1〕粉质粘土 〔2-2〕Q l 0.5~3 灰~流~湿 灰黑 软塑 灰~可塑 稍褐灰 湿 灰可塑 稍Ⅰ Q4 al2~5 中含铁锰氧化物、云母Ⅱ ~片及白色高岭土条高 纹,场区局部分布。 中 含铁锰氧化物、云母Ⅱ Q4 al0.7 2

深基坑监测总结报告

粉质粘土 〔3-1〕粉质粘土 Q3al+pl~7 褐~黄褐 湿 片及白色高岭土条纹,场区部分地段分布。 中含铁锰氧化物及条纹偏状高岭土,场区绝大低 部分地段分布。 中 含铁锰氧化物及白色高岭土条纹,场区局部分布。 中 含铁锰氧化物及其结核,混有少量粉土、粉砂,场区大部分地段分布。 Ⅲ 0.5 ~11 11~14 黄褐 硬塑 稍湿 黄褐 可塑 稍湿 褐黄 可塑 很湿 〔3-1a〕Q3粉质粘土 〔3-2〕Q3粉质粘土夹粉土、粉砂 〔4〕粉砂 Q3al+plⅡ al+pl 9~6 Ⅱ al+pl 0.6褐黄 中密 饱~16 和 中 含氧化铁、云母片,Ⅲ 粘粒含量高,混有少量粉土、粉质粘土,整个场区均有分布。 中含云母片及粘性土,偏局部地段夹砾石,部低 分钻孔揭露。 低 局部夹少量卵石,部分孔揭露。 Ⅲ 〔5-1〕中砂 〔5-2〕角砾夹中粗砂 〔6〕卵石夹粗砂砾 〔7-1〕粉质粘土 〔7-2〕粘土 〔7-3〕粘土 〔8〕强风化泥岩、石英砂岩 Q3al+pl 21~37 33~40 29~43 17 黄 中饱密~和 密实 密实 饱和 密实 饱和 Q3al+pl1~7 黄 Ⅲ .4Q3+pl plal 黄 低 卵石成份以砂岩及石Ⅲ 英砂岩为主,磨圆度一般,部分孔揭露。 中仅个别利用孔出现 偏低 低 仅个别利用孔出现 低 仅个别利用孔出现 Ⅲ Q3 8 灰~可塑 稍褐灰 湿 褐黄 硬塑 稍湿 灰~硬稍青灰 塑~湿 坚硬 灰坚硬 稍绿~湿 黄绿 Q3Q3pl+el 24~25 25.4~35 1.4~7 4.4~11 未穿透 Ⅲ Ⅲ pl+elS2f 低 仅利用孔揭露 Ⅲ 场地各土〔岩〕层的承载力特征值及压缩模量等相关设计参数见下表: 表1-2承载力及压缩模量 地层编号及名称 〔2-1〕粉质粘土 〔2-2〕粉质粘土 土工试验 fak(kPa) 104 198 Es(MPa) 标准贯入试验 N 3 8 fk(kPa) 85 180 综合建议值 fak(kPa) 95 185 Es(MPa) 3

深基坑监测总结报告

〔3-1〕粉质粘土 〔3-1a〕粉质粘土 〔3-2〕粉粉质粘土 质粘土夹粉土 粉土粉砂 粉砂 〔4〕粉砂 〔5-1〕中砂 〔5-2〕角砾夹中粗砂 〔6〕卵石夹粗砂砾 〔7-1〕粉质粘土 〔7-2〕粘土 〔7-3〕粘土 〔8〕强风化泥岩、石英砂岩 380 170 172 15 15 22 30 41 390 180 210 340 420 210 340 420 480 250 400 550 500 E0 E0 170 380 200 本场地分布有上层滞水及弱孔隙承压水两种类型地下水。

m~3.10m之间。弱孔隙承压水主要赋存于〔4〕、〔5〕、〔6〕单元饱和砂类土层中。 施工情况

XX路地下通道由隧道和引道〔U型槽及挡土墙〕组成,隧道设计范围为K0+000~K1+003.349,暗埋段宽22m,敞口段宽度从~22m渐变。隧道K0+004.15~K0+230段〔长〕为隧道南敞口段;K0+230~K0+770段〔长540m〕为隧道暗埋段;K0+770~K0+998.85段〔长〕为隧道北敞口段。隧道实际全长,其中暗埋段长540m,敞口段。

基坑隧道部分支护采用钻孔灌注桩桩+内支撑支护形式,桩间采用喷射混凝土封闭找平,桩顶设冠梁,设1道和2道支撑。基坑开挖深度引道及敞口段0~7.78m深;暗埋段7.78~11.5m深。基坑南北两端引道部分放坡开挖,挡土墙支护。基坑安全等级为二级。

XX路隧道施工从2007年6月开始拆除高架桥,8月份开始施工支护桩。期间我们根据支护桩的施工进度开始埋设测斜管、钢筋计和土压力盒。2008年2月份支护桩施工基本完成,开始开挖。期间监测工作根据施工进度布设冠梁位移沉降监测点。并开始布设支撑、立柱、联系梁的应力监测元件。2008年8月份基坑开挖完毕、结构施工完毕,施工方对基坑进行了全面回填。期间监测工作进行各项数据采集、数据处理和编制监测报告工作。基坑回填完毕后,监测工作结

4

深基坑监测总结报告

束。

XX路隧道基坑在K0+150~K0+300和K0+460~K0+870设置一道钢支撑,在K0+300~K0+460设置两道钢支撑。下列图是基坑施工断面图〔图1-1〕,断面位于基坑K0+460位置。

支撑杆件

图1-1 基坑施工断面图

第二章 监测依据和监测方案设计

5

深基坑监测总结报告

1、《深基坑工程技术标准》〔DB42/59-1998〕 2、《工程测量标准》〔GB50026-93〕 3、《岩土工程勘察标准》〔GB50021-94〕 4、《建筑地基基础设计标准》〔GBJ7-89〕 5、《建筑变形测量标准》〔JBJ/T 8-97〕 6、《建筑基坑支护技术规程》(JGJ120-99) 7、公司的《管理手册》《程序文件》《作业文件》

8、WW市市政工程设计研究院有限责任公司编写的《武昌火车站XX路隧道支护施工图》

本基坑工程设计基坑安全等级为二级,结合设计规定基坑边坡容许变形值〔40mm〕、预警值〔32mm〕,确定按照二等变形观测等级进行测量。沉降观测点测站高差中误差〔mm〕≤0.50,位移观测点坐标中误差〔mm〕≤。

表2-1仪器投入一览表

序号 仪器名称 1 2 3 4 全站仪 水准仪 测斜仪 应力读数仪 厂家及型号 NIKON Leica 精度 ” 数量 监测项目 1 1 1 1 位移 沉降 桩体深部位移 土压力、钢筋计、轴力计 航天部33所CX-06A 0.1/8(mv/角秒) 金坛土木仪器厂 1hz

XX路隧道工程深基坑呈长条形,分为中铁一局和中铁十一局两个标段进行施工,两个标度的施工进度不同步,根据现场的施工进度依次布设各类观测点。监测工作从2007年9月13日开始安装监测桩的钢筋计、土压力盒和测斜管,共计布设监测桩7个〔其中1根被破坏〕,位移、沉降监测点77个,测斜管13根〔其中5根被破坏〕,轴力计10组。至2008年8月30日基坑全面回填,基坑监测工作结束时,共进行了50余次观测,提供了44次观测报告。图2-1为基坑平

6

深基坑监测总结报告

面图。

北cx749B50B48BB46B473B45B44B2B1B3B4B5B6B7B51B52B53B54B55B56B12B57B58B14B15B8B9B10B11B59B60B13B61B62B63B64B16B17B65B6669B67B68BB26B24B2572B71BB7029B28BB2775B74BB7332B31B7877BB76B34B35B33BB84B83B8280B81B79BB41B40B39B38B37B36B85B42B86B43B18B19B20B21B30B22B23中铁十一局标段中铁一局标段

图2-1XX路隧道基坑平面图

第三章 监测数据分析

7

深基坑监测总结报告

桩顶位移监测

桩顶的位移和沉降观测,从桩顶冠梁做好时开始进行。水平位移采用坐标法进行观测。施工方先施工基坑两端引道及敞口段,完成并回填后向中部推进。引道及敞口段开挖深度浅,施工进度较快。根据观测结果,该段位移变形较小,加上受到施工条件的限制,后期停止了该段的观测项目。下面我们根据观测数据来对桩顶的位移情况进行说明。

桩顶位移量-时间曲线图40开始开挖此处回填B35B36B37B38B39B40B411月2日3月3日12月5日1月12日1月23日3月17日3月24日4月4日4月11日4月20日4月24日12月24日4月30日位移量(mm)3020100时间

图3-1a中铁一局标段桩顶位移曲线图〔基坑东侧〕

B46B47B45B44B2B1B3B4cx7B50B48B49B5B6B7B51B52B53B54B55B56B12B57B58B8B9B10B11B59B60B13B61B14B15B62B63B64B16B17B65B6669B67B68BB26B24B2572B71BB7028B29B27B75B74BB73B32B3177B76B34B33BB18B19B20B21B30B22B23北84B78B81BB41B37B35B85B86B4380B79BB82B83B42B39B38B40B36

图3-1b中铁一局标段桩顶位移点布置图〔基坑东侧〕

从图3-1a中可以看出,监测点位移量较小,在开挖初期位移量增长较快,安装支撑后变形速度减小,后期变形平稳,B35正处于两个施工开挖段的分界点,故在开挖后位移量变化较大,同样在此点处支撑安装后变形速率减小到达稳定。

对应基坑东侧,基坑西侧的监测点位移变化趋势与东侧相同,但基坑西侧平均位移量〔9mm〕小于东侧位移量〔15mm〕。见图3-2。

8

深基坑监测总结报告

桩顶位移量-时间曲线图40位移量(mm)30201001月2日12月5日1月16日1月30日2月13日2月27日3月12日12月19日3月26日4月9日B78B79B80B81B82B83B84-10时间

图3-2中铁一局标段桩顶位移量〔基坑西侧〕

基坑东西两侧地质情况相同,开挖支护情况相同。不同的是基坑的东侧紧邻宏基客运站,车流量是基坑西侧的2~3倍,车流形成的动荷载是东侧位移量大于西侧位移量的主要原因。

基坑开挖后期,施工至中铁一局标段和横穿隧道的地铁站交接处,监测点B24~B25;B66~B67之间的基坑开挖到底,但冠梁和支撑都没有安装。期间我们对此处进行了严密监测,增加了B67-1、B67-2两个观测点。

桩顶位移量-时间曲线图40位移量(mm)开挖到底回填B66B67B67-1B67-230201008月7日8月8日8月9日8月10日8月11日8月12日8月13日8月14日8月15日8月16日8月17日8月18日8月19日8月20日8月21日时间

图3-3a悬臂梁段〔未安装支撑段〕位移曲线

9

深基坑监测总结报告

北B46B47B45B44B2B1B3B4cx749B50B48BB5B6B7B51B52B53B54B55B56B12B57B58B14B15B8B9B10B11B59B60B13B61B62B63B64B67-2B67-1B66B67B65B68B69B22B23B26B24B25B85B86B4372B71BB7029B28BB2775B74BB73B32B3177B76B34B33B80B79BB83B82B40B39B38B42B36B16B17B18B19B20B21B30图3-3b悬臂梁段〔未安装支撑段〕位移点布置图

图3-3a说明,此处监测点位移量最大12.6mm,没有超出报警值〔32mm〕,处于安全状态。该段基坑开挖时南北两端已经回填,开挖深度9m,开挖段长度20m。该段支护桩呈悬臂状态,桩顶大部分位移在基坑开挖到底这段时间完成。由于基坑从开挖到底到回填时间较短,所以此处位移量不大,变形稳定。

基坑位移变形最大的位置处于中铁十一局标段的基坑东侧,5月10日观测到位移量最大到达34.1mm(B-10)。6月10日位移量最大到达38.0mm(B-13)。

监测点位移量-时间曲线图开挖到底结构完成开始开挖40.0第2道支撑安装支撑安装位移量(mm)30.020.010.00.04月7日6月3日7月5日3月10日3月24日4月20日4月27日5月13日5月22日2008-5-4上午6月15日8月7日B10B11B12B13-10.0-20.0时间

图3-4a位移变形最大处基坑位移曲线图

北B85cx7B50B48B49B5B6B7B51B52B53B54B55B56B12B86B43B46B47B44B1B45B2B3B4B5758BB14B8B9B10B13B15B11B59B60B61B62B63B64B16B17B65B68B6972B71BB7029B28BB2775B74BB73B32B3177B76B34B33B80B79BB83B82B40B39B38B42B36B18B19B20B21B30B22B23B26B24B25图3-4b位移变形最大处基坑位移点布置图

10

深基坑监测总结报告

B10处基坑开挖深度m,设1道支撑。B13处基坑开挖深度11m,设2道支撑。5月4日该段基坑开挖到底后我们对此处进行了连续观测,该段基坑桩顶位移量呈增大趋势。结合沉降观测数据来看,该处沉降量不大〔〕,对应测测斜数据〔CX01〕说明,此处深层位移最大发生在m深处〔23.24mm〕,测斜曲线没有明显拐点,第一道支撑轴力〔ZC3〕受压不大〔186.19KN〕,轴力变化没有加剧。

综合考虑,我们预计该段基坑在B12处第二道支撑安装完毕后趋于稳定。对此处采取的措施是加强监测频率,同时对施工方提出了防范要求,清除坑周堆载。事实证明,此处监测点在第二道支撑安装完毕后到达稳定。见图3-4a。

总体来看,桩顶位移变形量除个别点超出预警值外,大部分点变形量不大,变形速度稳定,基坑边坡没有发生坍塌事故。基坑边坡的安全保证了基坑施工的正常施工,也保证了基坑周边XX路能够顺利通行。

桩顶(B13),平均沉降7.7mm,所有观测点的累计沉降值都小于预警值〔32mm〕,都在控制范围内,在施工过程中基坑周围地面没有发生过大的地表沉降。随着基坑的开挖,观测点呈下沉趋势,总体态势平稳。

沉降量-时间曲线图02008年4月7日2008年5月5日2008年6月2日2008年3月24日2008年3月31日2008年4月14日2008年4月21日2008年4月28日2008年5月12日2008年5月19日2008年5月26日2008年6月9日2008年6月16日-5沉降量(mm)-10-15-20-25-30B04B05B06B07B08B09B10B11B12日期

图3-5桩顶部分监测点沉降曲线图

基坑外道路受到基坑开挖影响较小,由于基坑外道路在基坑开挖后不久进行了道路改造施工,所以监测点被破坏。且基坑外车流人流较大,对观测和路面下沉影响较大,所以道路沉降观测只能作为参考。

11

深基坑监测总结报告

测斜数据说明,桩身在基坑施工开挖过程中总变形量较小,在基坑开挖初期桩身测斜曲线呈“斜直线形”,到支撑安装后CX1、CX2、CX13逐渐变成“弓形”,说明支撑约束了桩上部〔设1道支撑,安装在桩顶部冠梁上〕,使得桩身中部向坑内位移形成“弓形”。CX5、CX6、CX12在整个基坑监测过程中测斜曲线一直为“斜直线形”,说明在此处的基坑边坡依靠悬臂桩可以到达稳定。其中CX2处开挖深度11m,设2道支撑,第1道支撑安装在0.5m深处,第2道支撑安装在7m深处。其它测斜孔处均设1道支撑。下列图列出各孔测斜曲线:

位移量(mm)-20-10302520151050-5-10-15-20位移量(mm)10203000.51.52.53.54.5CX01测斜曲线深度(m)5.56.57.58.59.510.50.51.52.53.54.55.56.57.58.59.510.511.5深度(m)CX02测斜曲线 3-25 10 4- 3 15 4-16 13 5- 4 15 5- 6 11 5-13 16 5-28 16 4- 1 10 4- 3 15 4-16 13 5- 4 15 5- 6 11 5-13 16 5-17 14 5-23 10 5-28 17 6- 7 15

12

深基坑监测总结报告

CX12测斜曲线30CX06测斜曲线3020 3-18 15 4- 3 15 4-16 14 4-20 15 5- 4 11 5- 6 11 5-10 11 5-13 15 5-17 14 5-23 10 5-28 15 6- 7 15位移量(mm)201001000.53.56.59.511-10-20深度(m)12.5-10-20深度(m)C11测斜曲线CX05测斜曲线30 3-18 15 4- 3 14 4-16 14 4-18 11 4-23 11 5- 4 11 5- 6 11 5-10 11 5-13 15 5-17 14 7- 5 182010030位移量(mm)20100 3-18 15 3-25 90.51.52.53.54.55.56.57.58.59.5-10-2010.5-10-20深度(m)深度(m) 13

3-18 14 4- 3 14 4-18 10 4-20 14 5- 4 10 5- 6 10 5-10 10 5-13 15 5-17 14 5-23 10 5-28 14 6- 7 15位移量(mm)0.51.52.53.54.55.56.57.58.59.525位移量(mm)8258110.53.56.59.512.51410.5 深基坑监测总结报告

位移量(mm)-20B51B52B53B54-100.51.52.53.54.55.51020300说明:测斜曲线图内:+值方向为基坑内,-值为基坑外。

深度(m)B50B48B49B46B473B45B44B2B1B3B4B5B6B7CX13测斜曲线6.57.58.59.510.511.512.5 12- 5 15 12-23 15 12-24 14 1- 2 10 1- 6 14 1-11 10 1-23 9 2-26 14 3-18 14 4-29 10 5- 4 11 5- 6 10 5-10 10

图3-6a支护桩测斜曲线图

cx8B55B56B12B13B57B58B8B9B10B11B59B60cx1B61B14B15B62B63B64cx2B16B17B65B6669B67B68BB26B24B2572B71BB70cx12B30cx137877BB76B34B35B33B75B74BB73B32B31B84B83B8280B81B79BB41B40B39B38B37B36B85B42B86B43B18B19B20B21B22B2328B29B27Bcx6图3-6b支护桩测斜孔位布置图

总体来看,基坑支护桩变形正常,没有超出预警值。我们从中可以发现一些规律: CX2分布在中铁十一局标段,开挖深度较深,设两道支撑,测斜曲线呈“弓形”mm)位于6.5m深处;CX5、CX6、CX12分布在中铁一局标段,设置一道支撑,测斜曲线呈“斜直线”mm)位于顶部。结合轴力监测数据,CX2处安装的ZC3轴力计显示出第1道轴力从安装后压力一直在增加,最大增加到213.89KN。支撑起到支点的作用,约束桩体的变形,而使桩体测斜曲线呈“弓形”。而CX5处的ZC11轴力变化平稳,支撑受压力较小〔53.92KN〕,对桩顶的约束不够,使

14

深基坑监测总结报告

得桩体变形呈“斜直线形”。 :

从轴力观测数据来看,支撑轴力在支撑安装后呈增加趋势,基坑开挖到底后轴力增加到峰值,然后支撑轴力呈下降趋势。轴力观测数据说明:支撑轴力变化正常,没有超出预警值。

下面为各轴力变化曲线图:

ZC3轴力-时间变化曲线600.00400.00轴力(KN)200.000.004月3日5月1日4月10日4月17日4月24日5月8日5月15日5月22日-200.00-400.00-600.00支撑立柱联系梁时间

图3-7 ZC3轴力曲线图〔受拉“+”;受压“-”〕

ZC4支撑轴力-时间变化曲线600.00400.00轴力(KN)200.000.004月1日4月8日5月6日4月15日4月22日4月29日5月13日5月20日5月27日6月3日-200.00-400.00-600.00时间6月10日支撑立柱联系梁

图3-8 ZC4轴力曲线图〔受拉“+”;受压“-”〕

15

深基坑监测总结报告

ZC11轴力-时间变化曲线600.00400.00200.000.00轴力(KN)4月9日4月16日4月23日4月30日5月7日5月14日5月21日5月28日-200.00-400.00-600.00-800.00时间6月4日支撑立柱联系梁

图3-9 ZC11轴力曲线图〔受拉“+”;受压“-”〕

ZC13轴力-时间变化曲线600.00400.00轴力(KN)200.000.004月3日5月1日5月8日4月10日4月17日4月24日5月15日5月22日5月29日6月5日6月12日-200.00-400.00-600.00时间6月19日支撑立柱联系梁

图3-10 ZC13轴力曲线图〔受拉“+”;受压“-”〕

从图中可以看出,支撑呈受压状态,立柱一般呈受压状态,联系梁受拉或受压没有明显规律。

16

深基坑监测总结报告

各轴力比较图2000-200135791113151719支撑ZC3支撑ZC4支撑ZC5支撑ZC6支撑ZC7支撑ZC11支撑ZC12支撑ZC13支撑ZC15轴力(KN)-400-600-800-1000-1200-1400观测次数

图3-11 各支撑轴力比较图〔受拉“+”;受压“-”〕

从图中可以看出,不同位置的轴力受力状态差异很大,其中ZC5受力最大〔1236.75KN〕,ZC6、ZC7受压力较大〔400~800KN〕,其他支撑受压力较小〔0~300KN〕,原因为ZC5处基坑挖深最深〔11m〕,变形较大〔B16,37.2mm〕。

支撑受力随工况变化较明显,例如支撑ZC3安装时,桩顶位移量mm〔B10〕,随着桩顶位移量增大到mm,轴力从KN增大到KN。之后桩顶位移,轴力平稳。轴力与位移量之间关系呈正比。

5月10日后支撑开始逐步拆除,在支撑拆除期间,轴力变化很不稳定。但此时基坑大部分已经回填,支撑拆除对桩顶位移量影响不大。

桩身钢筋应力变化监测说明:支护桩的钢筋受到的应力不大,且变化平稳,施工过程中没有出现桩身被拉断、拉弯的现象。

以68#桩为例:68#桩身在迎土侧3m深、6m深、9m深处主筋安装了3支钢筋计和3支土压力盒。在基坑侧3m深、6m深、9m深处主筋对应安装了3支钢筋计。桩身应力变化量较小〔最大值7.39KN〕,在基坑施工开挖过程中比较平稳,在基坑施工后期,受到支撑拆除影响,3m深处的钢筋应力变化幅度较大。

17

深基坑监测总结报告

68#49B50B48BB46B473B45B44B2B1B3B4B5B6B7B51B52B53B54B8B9B10B11143#B55B56B57B58B12B13B14B15B59B60216#B61B62B18B63B64298#41#B65B66123#72B71BB7029B28BB27B30223#7877BB76B34B35B33B75B74BB73B32B31B84B83B8280B81B79BB41B40B39B38B37B36B85B42B86B43B16B1769B67B68BB19B20B21B22B23B26B24B25图3-12a 测试桩布置平面图

68#桩身应力-时间变化曲线(基坑侧)8.006.004.00受力(KN)2.000.003月18日3月25日4月1日4月8日4月15日4月22日4月29日5月6日5月13日5月20日5月27日6月3日-2.00-4.00-6.00-8.00时间图3-12b 68#桩身基坑侧应力曲线图

68#桩身应力-时间变化曲线(临土侧)8.006.004.00受力(KN)2.000.003月18日3月25日4月1日4月8日4月15日4月22日4月29日5月6日5月13日5月20日5月27日6月3日6月10日6月10日3m6m9m-2.00-4.00-6.00-8.003m6m9m时间

图3-12c 68#桩身迎土侧应力曲线图

从图中可以看出,3m、6m钢筋均受压,而9m处钢筋受拉,说明桩身存在反弯点,位于6m~9m之间。68#桩处开挖深度为7.1m,桩长设计为11m。其意义在于支护桩的临界深度为9m,9m以下支护桩部分作用较小。

18

深基坑监测总结报告

通过对基坑侧和临土侧的应力变化比较,发现支护桩的受力在同一深度基坑侧和临土侧的受力正好相反,分别为压应力和拉应力,随深度变化不大。见图3-13、图3-14。

图3-13迎土侧钢筋应力-深度曲线 图3-14迎土侧钢筋应力-深度曲线

总体来看,监测结果说明:支护桩钢筋每根受拉、压力在+8KN~-8KN之间,小于设计允许值〔150KN〕,且变化稳定,说明桩身安全稳定。

在基坑开挖过程中,土压力变化比较稳定。下列图是土压力随时间变化曲线:

19

深基坑监测总结报告

图3-15 68#桩后土压力变化曲线

143桩后土压力-时间曲线0.080.060.04土压力(Mpa)0.020.003月18日3月25日4月1日4月8日4月15日4月22日4月29日5月6日5月13日5月20日5月27日6月3日6月10日-0.02-0.04-0.06-0.08时间6月17日3m8m13m

图3-16 143#桩后土压力变化曲线

41桩后土压力-时间曲线0.080.060.04土压力(Mpa)0.020.003月18日3月25日4月1日4月8日4月15日4月22日4月29日5月6日5月13日5月20日5月27日6月3日6月10日-0.02-0.04-0.06-0.08时间6月17日3m8m13m

图3-17 41#桩后土压力变化曲线

从图中可以看出:在整个基坑开挖过程中,土压力较小且变化不明显,总体呈减小趋势。

20

深基坑监测总结报告

图3-18 68#桩后土压力-深度曲线

从图中可以看出,土压力最大的部位在8m深处,桩侧顶部和底部土压力较小,随着基坑的开挖呈土压力呈增大趋势,但变化均匀,变化量不大。综合看来,桩后土压力正常,符合土压力变化规律。 3.7监测汇总

表3-1基坑监测最大值统计表:

观测项目 位移监测 沉降监测 测斜监测 应力监测 轴力监测 土压力 累计最大量 ,(B16) ,〔B13〕 ,(CX2) 最大压力89.21KN,(143#) 最大1121.84,〔ZC5〕 土压力最大0.07Mpa,(143#) 预警值 容许值 32mm 32mm 32mm 40mm 40mm 40mm 备注 预警 正常 正常 正常 正常 正常 从表中可以看出,除个别位移监测数据超出预警值,其他监测数据均小于预警值,基坑监测数据说明:基坑的设计和施工均满足了基坑自身安全和环境安全。从监测过程中,监测数据对施工起到了指导和建议作用,充分发挥了监测的作用。

21

深基坑监测总结报告

第四章 监测数据处理系统和预警处理系统

针对于本基坑,我们开发了一套基坑监测数据处理系统,系统平台采用.net平台,编成语言为VBA,数据库为SQLserver2000。

系统常用工作报表 数据输出输入模块管理 系统维护 变形观测数据处理系统项目管理数据备份管理 数据安全设置 工程基本信息 数据处理公式 该系统在数据处理和检索方面别具优势,集合了多项监测项目的数据处理功能,包括对位移基准点联测、沉降观测数据的平差处理,在处理应力观测项目可

22

工程管理 生成报表 报表预处理 监测说明 输出打印 参数管理 预警参数管理 作业管理 位移观测 沉降观测 报表管理 应力观测 轴力观测 水位观测 等等

图4-1变形数据处理系统树形图

深基坑监测总结报告

以根据设定值来剔除粗差。数据检索可以使用日期和点名来组合调用,系统处理数据效率高,对电脑配置要求不高,在本监测工程中承担了整个数据处理任务。

监测数据超过预警值仅仅代表结构出现不安全的苗头或趋势,并不代表结构部安全,需要采取相应的工程措施。为了明确结构是否安全,分析造成不安全趋

施 工 监控量测 监测设计 资料调研 量测结果的微机信息处理系统 量测结果的综合处理及反分析 监测结果的综合评价 报送设计、监理单位 量测结果的形象化、具体化 经验类比 理论分析 甲方、标准要求等 结构稳定、安全性判断 预测下个施工阶段的支护结构、周边建筑、管线的安全性,提交修正施工建议 反馈设计施工 是否改变设计、施工方法 N 调整设计参数、改变施工方法或辅助施工措施 Y 新设计施工方法 图4-2 监测反馈程序框图

势的原因,拟定保证工程安全的施工措施,需要对监测数据进行进一步的进行分析,预测结构下一个施工阶段的变形与内力变化情况,判断结构是否安全,对改变施工工艺与流程后的结构响应进行反馈。为此本项目将进一步采用以下技术手段进行数据分析、结构安全性预测:

(1)监测数据的时程分析,即在取得监测数据后,要及时整理,绘制位移或应力的时态变化曲线图,即时态散点图,在时态散点图上分析结构变形、沉降、应力是收敛还是发散。

23

深基坑监测总结报告

(2)基于监测数据的结构安全性预测。在取得足够的数据后,还应根据散点图的数据分布状况,选择合适的函数,对监测结果进行回归分析,以预测该测点可能出现的最大位移值或应力值,预测结构和建筑物在下一个施工阶段的安全状况。

(3)基于监测数据、理论分析模型、结构相应的联合分析预测。由于在本监测系统中埋设了桩后土压力、桩身应力、支撑轴力测点,可以动态了解周围土体对桩的作用,因而可以利用实测的外力作用计算桩的变形与应力变化情况,同时可以将计算结果与预测结果、实测结果进行比较,从而了解支护桩的实际性能,为分析支护桩的安全形态提供依据。

24

深基坑监测总结报告

第五章 监测工作评述

从监测各项统计数据可知,基坑变形均在允许值范围内。至基坑回填完毕,基坑支护结构和基坑周边环境均没有发生任何过大的位移和沉降。总体来讲,基坑变形在施工期间是正常稳定的,本基坑的支护设计和施工是安全合理的。

本着为服务工程、验证设计的监测理念,我们通过各种监测手段对基坑进行量测,量测的范围包括基坑冠梁的倾斜和变形、围护桩的受力变化、支撑的受力变化、基坑周边建筑物、管线变形等等,手段主要包括位移、沉降、轴力、土压力、测斜、钢筋应力等等,依据是监测数据、各项极限值、发展趋势。量测结果及时反馈施工方,当变形量或变形速率过大时,及时分析原因,提出预警,有利于施工单位及时采取一定措施控制变形,到达安全的目的。在监测过程中,还根据监测成果优化设计,在一定程度上为施工单位节约了工程成本和工期。

监测元件的保护和施工单位作业层面对监测重要性的认识是需要提高的,部分监测点在施工过程中被破坏,监测元件存活率在80%左右。

感谢甲方〔WW市两站办〕的信任和支持,也感谢XXX和XXX给予的便利和帮助。

25

因篇幅问题不能全部显示,请点此查看更多更全内容