发电厂发出交流电的频率是50赫兹,波形是正弦波。通常称工频。波形图如下:
在电力系统方面,谐波是指多少倍于工频频率的波形,简称“次”,是指从2次到30次范围,如5次谐波电压(电流)的频率是250赫兹,7次谐波电压(电流)的频率是350赫兹;超过13次的谐波称高次谐波。
从图二看出电压波形有开口,电流波形是方波,与图一所示波形有很大的差别。
电力谐波对电力网(包括用户)危害是十分严重的,它是一种电力污染,一种人们(用五官直接感受而不通过仪器)看不见、嗅不到、摸不着的污染。所以往往不被人们注意。 ★ 谐波对电力系统产生的危害主要有以下几点: 1、对电力设备的危害
(1)加速电力变压器绝缘老化,缩短变压器使用寿命。
(2)使开关(断路器)过载,造成经常性跳闸。由于谐波电流在导体表面流
动,引起导体发热,降低了开关的实际容量所致。
(3)使无功补偿设备部件损坏,无法进行无功补偿,加大线路损失,降低变压器额定容量。 2、对变电所的继电保护产生干扰,易造成保护误动作,导致区域性停电事故。 3、干扰通讯,影响通讯网络。通讯系统使用大量计算机容易受谐波干扰。 4、对精密设备及家用电器产生危害,如空调、微波炉、电视等。 谐波是怎么产生的?
什么是谐波?供电系统的谐波是怎么定义的?
\"谐波\"一词起源于声学。有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。傅里叶等人提出的谐波分析方法至今仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。 到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分和关注。国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。
供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1) 称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。谐波实际上是一种 干扰量,使电网受到“污染”。电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般 为2≤n≤40。
谐波是怎么产生的?
电网谐波来自于3个方面:
一是发电源质量不高产生谐波:
发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀
一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。
二是输配电系统产生谐波:
输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。
三是用电设备产生的谐波:
晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。
变频装置。变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。
电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。
气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。
家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。
谐波有什么危害?
电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。谐波的危害电力系统中谐波的危害是多方面的,概括起来有以下几个方面:
1. 对供配电线路的危害
(1) 影响线路的稳定运行
供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。这样,谐波将严重威胁供配电系统的稳定与安全运行。
(2) 影响电网的质量
电力系统中的谐波能使电网的电压与电流波形发生畸变。如民用配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流。另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。
2. 对电力设备的危害
当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。另外,谐波的存在往往使电压呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。一般来说,电压每升高10%,电容器的寿命就要缩短1/2左右。再者,在谐波严重的情况下,还会使电容器鼓肚、击穿或爆炸。
对电力变压器的危害
谐波使变压器的铜耗增大,其中包括电阻损耗、导体中的涡流损耗与导体外部因漏磁通引起的杂散损耗都要增加。谐波还使变压器的铁耗增大,这主要表现在铁心中的磁滞损耗增加,谐波使电压的波形变得越差,则磁滞损耗越大。同时由于以上两方面的损耗增加,因此要减少变压器的实际使用容量,或者说在选择变压器额定容量时需要考虑留出电网中的谐波含量。除此之外,谐波还导致变压器噪声增大,变压器的振动噪声主要是由于铁心的磁致伸缩引起的,随着谐波次数的增加,振动频率在1KHZ左右的成分使混杂噪声增加,有时还发出金属声。
对电力电缆的危害
由于谐波次数高频率上升,再加之电缆导体截面积越大趋肤效应越明显,从而导致导体的交流电阻增大,使得电缆的允许通过电流减小。另外,电缆的电阻、系统母线侧及线路感抗与系统串联,提高功率因数用的电容器及线路的容抗与系统并联,在一定数值的电感与电容下可能发生谐振。
对用电设备的危害
对电动机的危害
谐波对异步电动机的影响,主要是增加电动机的附加损耗,降低效率,严重
时使电动机过热。尤其是负序谐波在电动机中产生负序旋转磁场,形成与电动机旋转方向相反的转矩,起制动作用,从而减少电动机的出力。另外电动机中的谐波电流,当频率接近某零件的固有频率时还会使电动机产生机械振动,发出很大的噪声。
对低压开关设备的危害
对于配电用断路器来说,全电磁型的断路器易受谐波电流的影响使铁耗增大而发热,同时由于对电磁铁的影响与涡流影响使脱扣困难,且谐波次数越高影响越大;热磁型的断路器,由于导体的集肤次应与铁耗增加而引起发热,使得额定电流降低与脱扣电流降低;电子型的断路器,谐波也要使其额定电流降低,尤其是检测峰值的电子断路器,额定电流降低得更多。由此可知,上述三种配电断路器都可能因谐波产生误动作。
对于漏电断路器来说,由于谐波汇漏电流的作用,可能使断路器异常发热,出现误动作或不动作。对于电磁接角器来说,谐波电流使磁体部件温升增大,影响接点,线圈温度升高使额定电流降低。对于热继电器来说,因受谐波电流的影响也要使额定电流降低。在工作中它们都有可能造成误动作。
对弱电系统设备的干扰
对于计算机网络、通信、有线电视、报警与楼宇自动化等弱电设备,电力系统中的谐波通过电磁感应、静电感应与传导方式耦合到这些系统中,产生干扰。其中电感应与静电感应的耦合强度与干扰频率成正比,传导则通过公共接地耦合,有大量不平衡电流流入接地极,从而干扰弱电系统。
影响电力测量的准确性
目前采用的电力测量仪表中有磁电型和感应型,它们受谐波的影响较大。特别是电能表(多采用感应型),当谐波较大时将产生计量混乱,测量不准确。
谐波对人体有影响
从人体生理学来说,人体细胞在受到刺激兴奋时,会在细胞膜静息电位基础
上发生快速电波动或可逆翻转,其频率如果与谐波频率相接近,电网谐波的电磁辐射就会直接影响人的脑磁场与心磁场。
什么是谐波
电力系统中有非线性(时变或时不变)负载时,即使电源都以工频50HZ供电,当工频电压或电流作用于非线性负载时,就会产生不同于工频的其它频率的正弦电压或电流,这些不同于工频频率的正弦电压或电流,用富氏级数展开,就是人们称的电力谐波。
随着经济发展,大功率可控硅的广泛应用,大量非线性负荷增加,特别是电子技术、节能技术和控制技术的进步,在化工、冶金、钢铁、煤矿和交通等部门大量使用各种整流设备、交直流换流设备和电子电压调整设备,电熔炼设备、电化学设备、矿井起重设备、露天采掘设备、电气机车等与日俱增,同时种类繁多的照明器具、娱乐设施和家用电器等普及使用,使得电力系统波形严重畸变。
在三相供电中,当三相负载均衡时,三相电流应该是对称的,在中性线上的合成电流为零。如果三相负载不均衡时,只有去掉衡值以后的电流流入中性线,其值也小于相线电流。根据这一情况,过去设计人员通常把中性线的容量减小为相线容量的一半。
但在我供电公司的多次例行检测配电变压器三相电流时发现,三相电流基本平衡时,中性线电流却可达到150a左右。根据低压电网运行经验知道,低压电网中中性线断线机率远远大于相线(不包括导线机械强度因素)。究其原因,是由于谐波对中性线电流的影响。 1 中性线中的谐波电流
在实际的电力系统运行中,含在许多非线性负荷,当电流流过与所加正弦电压不呈线性关系的负荷时,电流要产生畸变,形成非正弦波电流。
在中性线上,虽然基波电流可互相抵消,但三次谐波整倍数的谐波电流则不能抵消,相反还要在中性线上叠加。最新研究发现,相电流为100a时,中性线电流
竟达150a。有时中性线电流可轻易地接近相电流的两倍,致使中性线导线被烧坏。
随着电脑、空调、微波炉等电器的大量应用,谐波问题越来越明显,所以在供电设计与安装中,应把谐波作为重要指标来考虑。 2 抑制谐波的措施 (1)改善供电结构:
首先应尽量将产生大量谐波的非线性负荷与基本上不产生谐波的用电设备分在不同供电母线上。因为将多个谐波源接于同一段母线上,利用谐波的相互补偿作用可降低电网谐波含量。其次是将三相整流变压器采用y,d(y/△)或d,y(△/y)的接线,可消除3的整数倍高次谐波,从而使注入电网的谐波电流只有5,7,11等次,这是抑制谐波最基本的方法。 (2)装设滤波器:
滤波器通常安装在非线性负荷侧母线上,使其固有频率按要求和某些特征频率共振,从而吸收大部分谐波源注入电网的谐波电流。滤波器可分为调谐滤波器和高通滤波器两大类。调谐滤波器的特点是滤波器调谐于某一频率,成为该次谐波的低阻通路,通常用于幅值较大的5、7、11等谐波的滤波。也可把滤波器调谐于某两个特定频率之间,用一套滤波器去减小这两种谐波分量,这样可减少滤波器的投资。高通滤波器不是削弱某一特定次数的谐波,通常用于抑制比调谐滤波器更高次的谐波(如17、19、23、25……)或幅值较小的低次谐波。 (3)增加中性线容量:
既然中性线因谐波电流的影响而可能产生超过相线的电流,那么增加中性线的容量就显得很有必要了。根据以上分析可知,如果通过理论计算或实测的中性线谐波电流较大时,就必须增大中性线容量。建议使用四芯等截面电缆。 (4)采用d,yn11接线组别的变压器:
变压器是非线性设备,它工作时也会向电网注入谐波,尤其是变压器空载或轻载时。从变压器制造来分析,如果变压器铁芯磁通未饱和时,则励磁电流与铁芯中的磁通成正比变化,其波形为正弦波,无谐波分量。然而,变压器的制造设计均取变压器工作磁通密度在磁化曲线的拐点处,铁芯工作在起始的饱和部分。如磁通波形为正弦波时,则激磁电流呈尖顶波。如果激磁电流为正弦波时,则磁通为平顶波。两种接线组别变压器副边波形分析如表1所示。
表1 两种接线组别变压器副边波形分析
变压器接线组原边绕组有无3原边激磁电流 铁芯中磁通波感应副边电压 别 n次谐波通路 波形 形 波形 y,yno 无通路 正弦波 平顶波 高次谐波分量大 d,yn11 有通路,可环流尖顶波 正弦波 正弦波 采用d,yn11接线组别的配电变压器,由于三次谐波电流可在d接线高压绕组的闭合回路流通,所以相电压中没有三次谐波分量,这样就抑制了高次谐波电流,从而达到使中性线中谐波电流减小的目的。
摘要:电网中谐波问题日益严重,文章对此综述了谐波危害及抑制谐波的方法。 关键词:电网 谐波 危害 抑制技术
随着工业、农业和人民生活水平的不断提高,除了需要电能成倍增长,对供电质量及供电可靠性的要求也越来越多,电力质量(Power Quality)受到人们的日益重视。例如,工业生产中的大型生产线、飞机场、大型金融商厦、大型医院等重要场合的计算机系统一旦失电,或因受电力网上瞬态电磁干扰影响,致使计算机系统无法正常运行,将会带来巨大的经济损失。电梯、空调等变频设备、电视机、计算机、复印机、电子式镇流器荧光灯等已成为人民日常生活的一部分,如果这些装置不能正常运行,必定扰乱人们的正常生活。但是,电视机、计算机、复印机、电子式照明设备、变频调速装置、开关电源、电弧炉等用电负载大都是非线性负载,都是谐波源,如将这些谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变,增加谐波成份。
近几年,传感技术、光纤、微电子技术、计算机技术及信息技术日臻成熟。集成度愈来愈高的微电子技术使计算器的功能更加完美,体积愈来愈小,从而促使各种电器设备的控制向智能型控制器方向发展。随着微电子技术集成度的提高,微电子器件工作电压变得更低,耐压水平也相对更低,更易受外界电磁场干扰而导致控制单元损坏或失灵。例如,20世纪70年代计算机迅速普遍推广,
电磁干扰及抑制问题更是十分突出,一些功能正常的计算机常出现误动作,而无法找出原因。1966年日本三基电子工业公司率先开发了“模拟脉冲的高频噪音模拟器”,将它产生的脉冲注入被试计算机的电源部分,结果发现计算机在注入100~200V脉冲时就误动作,难怪计算机在现场无法正常工作,其原因之一是计算机的电源受到了污染。因此,受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。
国际电工委员会(IEC)已于1988年开始对谐波限定提出了明确的要求。美国“IEEE电子电气工程师协会”于1992年制定了谐波限定标准IEEE—1000。在IEEEstd.519—1992标准中明确规定了计算机或类似设备的谐波电压畸变因数(THD)应在5%以下,而对于医院、飞机场等关键场所则要求THD应低于3%。 1 电网谐波的产生 1.1 电源本身谐波
由于发电机制造工艺的问题,致使电枢表面的磁感应强度分布稍稍偏离正弦波,因此,产生的感应电动势也会稍稍偏离正弦电动势,即所产生的电流稍偏离正弦电流。当然,几个这样的电源并网时,总电源的电流也将偏离正弦波。 1.2 由非线性负载所致 1.2.1 非线性负载
谐波产生的另一个原因是由于非线性负载。当电流流经线性负载时,负载上电流与施加电压呈线性关系;而电流流经非线性负载时,则负载上电流为非正弦电波,即产生了谐波。 1.2.2 主要非线性负载装置
(1)开关电源的高次谐波:开关电源由五部分组成:一次整流、开关振荡回路、二次整流、负载和控制,这几个部分产生的噪声不完全一样。这几种干扰可以通过电源线等产生辐射干扰,也可以通过电源产生传导干扰。 (2)变压器空载合闸涌流产生谐波
铁心中磁通变化时,会产生8~15倍额定电流的涌流,由于线圈电阻的存在,变压器空载合闸涌流一般经过几个周波即可达到稳定。所产生的励磁涌流所含的谐波成份以3次谐波为主。
(3)单相电容器组开断时的瞬态过电压干扰:电力电子调速系统普遍应用于工业中改进电机效率及灵活性设备,调速装置内电力电子器件对过电压特别
敏感,因此线路中瞬态过电压会造成调速系统的过电压保护误跳闸。由于与中压母线相连的电容器要经常操作,这意味着调速系统误跳闸事故会经常发生; (4)电压互感器铁磁谐振过电压:在我国10kV、35kV等级的中性点不接地配电网中,为了监视对地绝缘,一般采用三相五柱式电压互感器。在正常情况下,三相对地电压是平衡的,但是由于发生单相接地故障等原因,会导致三相对地电压平衡的破坏,还有可能使电压互感器线圈电感L和系统对地电容C在参数上配合,而产生谐振过电压。
(5)整流器和逆变器产生的谐波电压、电流:整流器的作用将交流电转成直流电,而逆变器是将直流电转变成交流电。其电路中的二极管视为理想二极管,即正向阻抗接近零,反向阻抗无穷大。因此,只允许电流单方向流动,从整流器的输出端看,每相电流波形为矩形波,不是正弦波,利用傅氏级数展开式展开周期的矩形波形,可以看到除了工频正弦波(50Hz基波)外,还叠加了一系列高次波形——谐波。应该说电动机采用变频器进行调速,可以高水平完成调速外,也可以节省大量电能(近30%),但如前面分析,变频调速过程中要产生高次谐波,即形成高次谐波污染,造成厂区的电视、音响系统不能正常工作,还要干扰二次仪表——压力、流量、可编程控制器及智能控制器正常工作,谐波还要使变压器、电动机、电容器及电抗器产生过热。
(6)电弧炉运行引起电压波动:随着冶炼工业的发展,当然会更多地使用电弧炉,这是一个重要负荷。运行时,电极和金属碎粒之间会发生频繁断路,而在熔化期间,电源两相短路,一旦熔化金属从电极上落下,电弧熄灭,电源又开路,因此,可以说冶炼过程是频繁的短路-开路-短路的过程,会引起用户端电压波动及白炽灯闪烁,一般电压波动频率是0.1Hz~几十Hz,这种谐波是以3次谐波为主。 2 谐波的危害 2.1 污染公用电网
如果公用电网的谐波特别严重,则不但使接入该电网的设备(电视机、计算机等)无法正常工作,甚至会造成故障,而且还会造成向公用电网的中性线注入更多电流,造成超载、发热,影响电力正常输送。 2.2 影响变压器工作
谐波电流,特别是3次(及其倍数)谐波侵入三角形连接的变压器,会在其绕组中形成环流,使绕组发热。对Y形连接中性线接地系统中,侵入变压器的中性线的3次谐波电流会使中性线发热。 2.3 影响继电保护的可靠性
如果继电保护装置是按基波负序量整定其整定值大小,此时,若谐波干扰叠加到极低的整定值上,则可能会引起负序保护装置的误动作,影响电力系统安全。
2.4 加速金属化膜电容器老化
在电网中金属化膜电容器被大量用于无功补偿或滤波器,而在谐波的长期作用下,金属化膜电容器会加速老化。 2.5 增加输电线路功耗
如果电网中含有高次谐波电流,那么,高次谐波电流会使输电线路功耗增加。
如果输电线是电缆线路,与架空线路相比,电缆线路对地电容要大10~20倍,而感抗仅为其1/3~1/2,所以很容易形成谐波谐振,造成绝缘击穿。
2.6 增加旋转电机的损耗
国际上一般认为电动机在正常持续运行条件下,电网中负序电压不超过额定电压的2%,如果电网中谐波电压折算成等值基波负序电压大于这个数值,则附加功耗明显增加。
2.7 影响或干扰测量控制仪器、通讯系统工作
例如,直流输电中,直流换流站换相时会产生3~10kHz高频噪声,会干扰电力载波通信的正常工作。 3 谐波抑制技术
3.1 整机电源需留有较大贮备量
为了使测量、控制装置能满足负载较大变化范围,因此在设计整机电源时,可给予较大贮备量,一般选取0.5~1倍余量; 3.2 对干扰大的设备与测控装置采用不同相线供电
因为测量、控制装置的许多干扰是由电源线窜入的,因此在规划供电线路时,对干扰大的设备与测控装置采用不同相线供电,; 3.3 将测量、控制装置的供电与动力装置的供电分开
因为动力装置的负荷变动大,测量、控制、微机及电视机的负荷小,动力装置产生的干扰大,供电电源分开后,测量、控制、微机及电视机的电源与动力装置的电源相互隔离,可以大大减少通过电源线的干扰。
3.4 其余抑制高次谐波的技术 3.4.1 开关电源干扰的抑制技术
一般采用的办法是:电源滤波、屏蔽及减少开关电源本身干扰能量。 采用电源滤波器,电源滤波器可以阻止电网中的干扰进入开关电源,也可以阻止开关电源的干扰进入电网。
屏蔽技术可以有效地防止向外辐射干扰。
减少开关电源本身干扰,利用改善线圈绕制工艺,确保绕组之间紧密耦合,以减少变压器漏感。还可以在高频整流二极管上串入可饱和磁芯线圈,利用流过反向电流时,因磁芯不饱和而产生的较大电势阻止反向电流上升。 3.4.2 变压器空载合闸涌流抑止方法
根据方程Φ1=-Φmcos(ωt+α)=Φmsinωt,如果合闸时,α=90(即U1=U1m便合闸),则:
Φ1=-Φmcos(ωt+α)=Φmsinωt没有暂态分量,合闸后磁通立即进入稳定状态,理论上可以避免冲击涌流过程。 3.4.3 抑制单相电容器组开断瞬态过电压方法
如果采用选相断路器投切电容器,则可以消除或大大降低投切电容器产生的瞬态过电压,从而使接在母线上的电力电子调速系统可以稳定地工作,接在母线上的其余设备也可不受过电压干扰的影响。 3.4.4 抑制电压互感器铁磁谐振方法
其方法是要使它脱离谐振区,采用中性点不接地的电压互感器或采用电容分压器可以从根本上避免铁磁谐振。 3.4.5 抑止整流和逆变产生的谐波
(1)在变频器前加装电源滤波器。一种成本比较低的方法是在电源侧加装三只680μf250VAC的电容,(分别接在L-N上)这种方法可使电磁干扰电流降至原来的1/10,效果较明显;
(2)变频器的电源电缆采用屏蔽电缆,屏蔽电缆穿铁管并接地,输出电缆也穿铁管并接地,屏蔽层应在接变频器处和电机处两端都接地。 3.4.6 抑止电弧炉运行时的干扰
(1)在合适地段加入电容补偿装置,补偿无功波动;
(2)可以重新安排供电系统。 4 结束语
随着非线性电力设备的广泛应用,电力系统中谐波问题越来越严重,一方面造成了电力设备的损坏,加速绝缘老化,另一方面也影响了计算机、电视系统等电子设备正常工作,直接扰乱了人们的正常生活。
谐波问题涉及供电部门、电力用户和设备制造商,谐波问题已引起人们的高度重视。应合理规划电网,电力电子设备(特别一次设备)应符合电磁发射水平,电子设备、电子仪器应满足电磁兼容性要求。 参考文献
1 郎维川.供电系统谐波的产生、危害及其防护对策.《高电压技术》 2002;6
2 孙书敏.治理谐波危害、抑制电网污染、提高电源质量.《2002年(江苏)工程电气设计学术论文集》
3 IEC 61000-3-2.1995,.EMC part 3 -2 Limits for harmonic current dmission.
带中性线低压供电系统的三次谐波及滤波
[ 作者:芬兰诺基亚电容器有限公司 中国代表处 廖淅埙 | 文章来源: | 点击数: | 更新时间:2004-11-29 ] [ 文字: 变小 变大 ]
摘 要 三次谐波污染主要存在于低压配电网中,以建筑系统最为严重。其对电网的危害主要有:功率损耗增加、设备寿命缩短、接地保护功能失常、遥控功能失常、电网过热等;对配电站会造成电子器件误动作、电容器损坏、附加磁场、中性线过载和电缆着火。文章主要介绍了消除三次谐波的各种方法及性能比较。
关键词 三次谐波 滤波 滤波器 1 三次谐波源
输电及配电系统规定:在频率恒定情况下,电压和电流均以正弦波波形运行。然而在非线性负荷接入系统时,产生的附加的谐波电流会引起电流和电压畸变。产生三次谐波的非线性单相负荷主要有(不考虑暂态及非正常工作状态):
(1)荧光灯、节能灯及其镇流器; ①市场调查表明,目前国内市场绝大多数的荧光灯电子镇流器三次谐波电流含量高达80%~90%;
②高档的电子镇流器三次谐波电流含量分三种标准:L标准:
其谐波电流含量<37%;H标准:其谐波电流含量<30%;带灯丝预热控制的
电子镇流器其谐波电流含量<10%。市场上的商品实际上达不到标准要求;
③节能型电感镇流器标准规定THDI<20%,其中三次谐波电流含量占主要成分。
(2)电弧焊接设备(电弧的非线性类负荷);
(3)计算机开关型电源及显示器(大型显示屏幕);
(4)彩色电视机及监视器,如证券公司、体育场馆、商业中心和新闻中心的电视墙的显示幕墙。普通型彩色电视机THDI可达127%,三次谐波电流含量高达90%;
(5)晶闸管调压电源(如加热器、调光器、电化学电源等); (6)晶闸管调功电源(如加热器、电化学电源等);
(7)整流电源(如电器的工作电源、充电器、直流传动及电化学电源等);
(8)开关型稳压电源及UPS;
(9)变频器(AC-DC-AC及AC-AC型)。
①变频的家用电器,如空调、洗衣机、风机、泵、微波炉; ②工业及建筑用的调速电动机; ③中频电源。 2 三次谐波的影响
各次谐波在电路中的作用是不相同的,谐波的叠加与相序有关。同一电路中的某些谐波相互作用时,会相互减弱或相互抵消。但在更多的场合往往相互叠加,使波形发生明显的畸变。只有3次谐波出现时,波形才如图1所示(忽略,详见本期杂志);
相线与中性线之间的非线性负荷产生三次谐波电流,并在中性线进行叠加。由于三次谐波及其倍数次谐波呈零序特征,因此中性线上的三次谐波电流是三相中三次谐波电流的代数和,会引起过载风险使所有的谐波电流造成电流和电压畸变,还形成150Hz的电磁场,对其周围的电子控制、保护及通信设备和系统产生干扰,主要表现为:
(1)因为三次谐波的零序性,低压母线上的三次谐波电压主要与中性线的三次谐波电流有关;
①当变压器接法为Y-Yn0时,零序性的三次谐波电流将成为励磁电流,在此零序励磁电抗上产生较大的压降,即三次谐波电压,很容易造成低压母线上的电压总畸变率超标;
②当变压器接法为△-Yn0时,10kV侧的变压器绕组形成三次谐波电流流通的回路,该回路阻抗为变压器漏抗,远较零序励磁阻抗小为20倍左右,从而不会在低压母线产生很大的三次谐波电压,见图2(忽略,详见本期杂志);
(2)如果低压三相的三次谐波电流不平衡,则存在正序和负序的三次谐波分量:
①如果配电变压器为Y-Yn0接线,低压侧正序和负序的三次谐波电流会在高压侧绕组感应出三次谐波电压,对高压侧产生影响;
②如果配电变压器为△-Yn11接线,低压侧正序和负序的三次谐波电流在高压侧绕组感应出的三次谐波电流在△绕组形成环流,对高压侧产生的三次谐波影响要比变压器为Y-Yn0接线时小,但增加了变压器高压绕组的损耗。
(3)由于中性线中三相负荷不平衡引起的工频电流和三次谐波电流的叠加有可能大于相电流,当三相的三次谐波平衡时,由于Y-Yn0接线的变压器铁芯中零序的三次谐波无通路,磁通只能经铁心、空气和外壳等构成回路,产生附加损耗和局部过热;而在Y-Yn11接线中,△绕组为三次谐波电流提供通路,它所产生的三次谐波磁通将抵消铁芯中的原三次谐波磁通,从而使铁心中的合成磁通基本上呈正弦波,减少了附加损耗,但谐波电流的存在使K因子因谐波发热而降低变压器输送能力,正常值为1.0和电流波峰系数增大,造成供电变压器的利用率下降或过载;
(4)由于中性线中电流过大,使配电系统中性线的电缆、导线出现过负荷引起绝缘老化加速,增加了火灾隐患。主要原因有:
①国内普遍选取中性线导体的截面积是相线的50%; ②已运行的许多按老标准设计制造的电缆中,中性线导体的截面积是相线的33%;
③已运行的许多按新标准设计制造的电缆中,中性线导体的截面积是相线的50%;
④中性线与相线导体选取相同截面积,无论工程设计、材料制造、安装、投入使用所占的比例都很小。
(5)由于电流和电压畸变,增加了供电系统中其他设备和材料的损耗,引起附加发热、加速绝缘老化、减少使用寿命;
(6)由于电流和电压畸变,增加了供电系统中设备和材料的振动和噪音;
(7)由于电流和电压畸变,使无功补偿电容器组由于并联谐振而损坏,电动机等绕组类设备绝缘击穿而损坏;
(8)电流和电压畸变及150Hz电磁场:引起测量精确度异常,对控制所需要的同步信号的捕捉与锁相条件恶化、干扰增加,从而使电子控制、测量、保护及通信设备运行不正常; (9)对用UPS供电的广播电视节目录制及播放系统产生附加背景噪声,并损坏UPS设备;
(10)使照明光源闪烁而损坏;图像显示设备频闪,显示失真;
(11)三次谐波电流对其他设备和器材的负面影响要大于其对产生三次谐波电流的谐波源的影响。 3 三次谐波滤波
滤波器与谐波源越近,滤波效果越好,这是减小谐波电流和谐波电压畸变的最好办法尤其适用于非线性负荷的供电点集中、又与线性负荷共由一个变压器供电的情况。如果三次谐波电流引起的三次谐波电压畸变及变压器过载是主要问题建议在主电源配电柜装设滤波器。 目前,工程中对带中性线低压供电系统降低三次谐波的方式主要有4种:
(1)被动式并联型滤波器(可以广泛使用);
(2)被动式串联型的滤波器(由于使低压母线上的谐波电压升高,不但不能消除非线性负荷之间的相互干扰,反而增大了对线性负荷的干扰;由于增加了中性线的阻抗,引起配电系统接地故障保护灵敏度下降); (3)带中性线的有源滤波器; ①并联型(可以推广使用);
②串联型(目前由于商用产品较少,很少使用);
③并联型有源滤波器与被动式滤波器并联使用(可以推广使用);
④串联型有源滤波器与被动式滤波器并联使用(目前由于商用产品较少,很少使用);
⑤串联型有源滤波器与被动式滤波器串联使用(目前由于商用产品较少,很少使用)。
(4)双Z接线的变压器 利用变压器原、付边绕组的曲折接线来消除电源侧谐波对负荷的影响和负荷侧谐波对电源侧的影响,具有消除谐波的功能。既可以作为供电变压器也可以作为隔离变压器,适用于三相式负荷: ①对单独的非线性负荷单独装设; ②对集中的非线性负荷装设(不能消除非线性负荷之间的相互干扰)。
3.1 被动式并联型滤波器
3.1.1 滤波器的构成。如图3所示(忽略,详见本期杂志)。 滤波器由电容器串联电抗器构成,谐波滤波器产生基波无功功率,以达到目标功率因数。电抗器的电感值选择使其对三次谐波形成很低阻抗的串联谐振大部分的谐波电流可被滤除。
谐波滤波器通常根据具体项目的测量结果采用标准元件组合而成,这样可以保障以合理的投资获得最佳的无功功率补偿和谐波滤波效果。 3.1.2 滤波器与供电系统的连接
滤波器一次回路与主配电母线或分配电母线经带断路器或熔断器的馈线相并联。如图4所示(忽略,详见本期杂志)。
3.1.3 滤波器的控制方式。见图5(忽略,详见本期杂志)。 (1)与常见的补偿电容器组一样,它可以由一台功率因数调整器、控制电容器专用接触器、投入和切除;
(2)可以根据中性线中的电流,由外部的电流继电器控制其投入和切除;
(3)滤波器与负荷控制同步。 3.1.4 滤波器的保护方式
(1)利用滤波器进线前的带复式脱扣功能的断流器; (2)利用滤波器进线前的熔断器;
(3)滤波器柜内的过电压、过负荷继电保护; (4)低压金属化全膜电容器的内附熔丝保护。 3.1.5 确定滤波器所需要的数据
(1)中性线或相线中的三次谐波电流;
(2)滤波器接入点的电压畸变(相对中性线); (3)需要的无功补偿功率;
(4)变压器的容量(S/kVA)及短路阻抗百分比(Zk%); (5)安装地点(主配电柜或分配电柜)。 3.2 被动式串联型的滤波器 3.2.1 滤波器的构成
滤波器由电容器并联电抗器构成,然后串联在供电系统的中性线上。如图6所示(忽略,详见本期杂志)。
电容器电容与电抗器电感值的选择:
(1)对50Hz工频形成很低阻抗的串联谐振,以利于三相不平衡负荷引起的负序工频电流在中性线和串接的滤波器中无障碍流通;
(2)对150Hz三次谐波形成很高阻抗的串联谐振,以阻碍单相非线性负荷产生的电流源性质的三次谐波电流在中性线上流通,其结果是绝大部分的三次谐波电流被阻断。
3.2.2 滤波器与供电系统的连接
滤波器一次回路与配电系统的中性线相串连。 3.2.3 滤波器的控制方式
通过旁路开关和旁路接触器手动投入或切除。 3.2.4 滤波器的保护方式
利用综合的检测与保护通过旁路开关以实现下列要求: (1)防止不平衡工频电流在滤波器两端引起的过电压; (2)防止三次谐波电流过载; (3)供电系统内部故障; (4)滤波器故障。
3.2.5 确定滤波器所需要的数据
(1)中性线或相线中的三次谐波电流; (2)中性线中的最大工频电流; (3)变压器的容量(S/kVA)及短路阻抗百分比(Zk%); (4)配电系统的接线方式; (5)安装位置的环境要求。
3.3 三相四线式的并联型有源滤波器。见图7(忽略,详见本期杂志)。
并联型有源滤波器实质上是一个受控的快速反应的谐波电流源,与非线性负荷并联,自动检测非线性负荷产生的谐波电流及滤波器与系统连接点的电压畸变。经DSP产生的控制信号控制IGBT高速开关器件,既将储能的直流电容器上的直流电压转换成一系列的方波再经过输出电抗器输出与负荷产生的谐波电流大小相等、相位相反的谐波电流,起到补偿谐波的作用,同时又控制直流电容器上的充电电压。其结果是系统只向负荷提供基波电流。 每一种并联型有源滤波器均有三相三线和三相四线可供选择,带中性线的设备必须使用三相四线式,且用户应注意中性线上的电流是1倍、2倍还是3倍的相线电流。
4. 目前适用的三次谐波滤波方式的对比 4.1 被动式并联型三次滤波器 4.1.1 特点
(1)可以补偿无功功率(功率因数),同时可以滤波; (2)可以降低谐波电流和谐波电压,减少非线性负荷之间及
与线性负荷之间的相互干扰,降低对上级电网的影响;
(3)只需考虑无功功率和谐波滤波,不受滤波器外部供电系统故障及其他不确定因素的影响,系统接线简单,运行安全可靠;
(4)可以对单个非线性负荷、集中非线性负荷、变压器总供电系统进行补偿,安装位置灵活多样;
(5)控制方式灵活多样,投切不影响供电系统的安全性; (6)滤波器元件的运行参数范围明确,内部故障保护方式成熟、可靠、简单,不影响供电系统正常运行;
(7)可以和其他被动式滤波器和有源型滤波器配合使用。 4.1.2 适用范围
带中性线的低压供电系统的三次谐波滤波和功率因数补偿 4.2 被动式串联型三次滤波器 4.2.1 特点
(1)可以对谐波电流进行滤波;
(2)可以降低谐波电流,降低对上级电网的影响理。论分析和现场测试均证明串联型滤波器增大了低压母线上的谐波电压,因此增大了非线性负荷之间及与线性负荷之间的相互干扰。同时由于谐波电流的阻断和谐波电压的升高,对于绝大多数产生三次谐波电流的谐波电流源性质的非线性负荷,会影响其正常工作;
(3)不但要考虑谐波、滤波,还要考虑中性线上的不平衡工频电流受滤波器外部供电系统故障及其他不确定因素的影响,由于增加了中性线的阻抗引起配电系统接地故障保护装置的灵敏度下降,中性线的安全直接涉及到供电系统的安全性。系统接线简单,但运行安全可靠性低,属于被动式三次谐波滤波器初始的方案;
(4)可以对集中的非线性负荷、变压器总的供电系统进行补偿,安装位置不灵活;
(5)控制方式不灵活,投切影响供电系统的安全性;
(6)滤波器元件的运行参数范围由于并联振荡不明确,内部故障保护方式可靠性差,影响供电系统正常运行;
(7)可以和其他被动式滤波器和有源型滤波器配合使用。 4.2.2 适用范围
理论和测试数据充分证明了其安全可靠性和负面影响,在工程中慎重考虑其大量使用。
4.3 三相四线式并联型有源滤波器(三相三线式不可使用) 4.3.1 特点
(1)自适应滤波,同时补偿无功功率(功率因数);
(2)可以降低谐波电流和谐波电压,减少非线性负荷之间及与线性负荷之间的相互干扰,降低对上级电网的影响;
(3)只需考虑无功功率和谐波滤波,不受滤波器外部供电系统参数的影响,运行安全可靠;
(4)可以对单个非线性负荷、集中非线性负荷、变压器总供电系统进行补偿,安装位置灵活多样;
(5)控制方式自适应,投切不影响供电系统的安全性; (6)内部保护安全可靠,不因谐波过载而退出运行、扩展容
易;
(7)可以和被动式滤波器配合使用。 4.3.2 适用范围
对补偿效果要求非常高,而负荷产生的谐波无论是频率、幅值还是相位均有较大的随机性;
低压供电系统的三次及其他特征、非特征、间谐波滤波和功率因数补偿。与被动式滤波器的配合使用能够发挥各自优势,达到补偿效果和经济性的完美结合。
5 结论
根据对以上处理三次谐波问题的各种方法分析比较,结论如下:
(1)使用并联型三次谐波滤波器可有效降低三次谐波电流,同时降低三次谐波电压; (2)使用串联型三次谐波滤波器虽可降低中性线三次谐波电流,但却增大了三次谐波电压; (3)使用三相四线式的并联型有源滤波器可有效滤除中性线的三次谐波电流,降低三次谐波电压; (4)使用三相三线式的并联型有源滤波器根本无法滤除中性线的谐波电流,不可使用;
(5)使用改变变压器绕组接法只能降低高压侧的三次谐波,但要求三相负荷必须完全相同,条件高、较难实现。同时谐波电流流经变压器,增加了变压器的负担,加大了变压器的损耗,即使各种条件符合,在低压侧仍然存在大量的三次谐波电流,危害依然存在。
因篇幅问题不能全部显示,请点此查看更多更全内容