Jump to: navigation, search 磁性材料
magnetic material
可由磁场感生或改变磁化强度的物质。按照磁性的强弱,物质可以分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性等几类。铁磁性和亚铁磁性物质为强磁性物质,其余为弱磁性物质。现代工程上实用的磁性材料多属强磁性物质,通常所说的磁性材料即指强磁性材料。
磁性材料的用途广泛。主要是利用其各种磁特性和特殊效应制成元件或器件;用于存储、传输和转换电磁能量与信息,或在特定空间产生一定强度和分布的磁场;有时也以材料的自然形态而直接利用(如磁性液体)。磁性材料在电子技术领域和其他科学技术领域中都有重要的作用。
简史 中国是世界上最先发现物质磁性现象和应用磁性材料的国家。早在战国时期就有关于天然磁性材料(如磁铁矿)的记载。11世纪就发明了制造人工永磁材料的方 法。1086年《梦溪笔谈》记载了指南针的制作和使用。1099~1102年有指南针用于航海的记述,同时还发现了地磁偏角的现象。 近代,电力工业的发展促进了金属磁性材料──硅钢片(Si-Fe合金)的研制。永磁金属从 19世纪的碳钢发展到后来的稀土永磁合金,性能提高二百多倍。随着通信技术的发展,软磁金属材料从片状改为丝状再改为粉状,仍满足不了频率扩展的要求。 20世纪40年代,荷兰J.L.斯诺伊克发明电阻率高、高频特性好的铁氧体软磁材料,接着又出现了价格低廉的永磁铁氧体。50年代初,随着电子计算机的发 展,美籍华人王安首先使用矩磁合金元件作为计算机的内存储器,不久被矩磁铁氧体记忆磁芯取代,后者在60~70年代曾对计算机的发展起过重要的作用。50 年代初人们发现铁氧体具有独特的微波特性,制成一系列微波铁氧体器件。压磁材料在第一次世界大战时即已用于声纳技术,但由于压电陶瓷的出现,使用有所减少。后来又出现了强压磁性的稀土
1 / 17
合金。非晶态(无定形)磁性材料是近代磁学研究的成果,在发明快速淬火技术后,1967年解决了制带工艺,正向实用化过渡。
分类 磁性材料按磁性功能分,有永磁、软磁,矩磁、旋磁和压磁材料;按化学成分分,有金属磁和铁氧体;按结构分,有单晶、多晶和非晶磁体;按形态分,有磁性薄膜、塑性磁体、磁性液体和磁性块体。磁性材料通常是按功能分类的。
永磁材料 一经外磁场磁化以后,即使在相当大的反向磁场作用下,仍能保持一部或大部原磁化方向的磁性。对这类材料的要求是剩余磁感应强度Br高,矫顽力BHC(即抗退磁能力)强,磁能积(BH)max (即给空间提供的磁场能量)大。相对于软磁材料而言,它亦称为硬磁材料。
永磁材料有合金、铁氧体和金属间化合物三类。①合金类:包括铸造、烧结和可加工合金。铸造合金的主要品种有:AlNi(Co)、 FeCr(Co)、FeCrMo、FeAlC、FeCo(V)(W);烧结合金有:Re-Co(Re代表稀土元素)、Re-Fe以及AlNi(Co)、 FeCrCo等;可加工合金有:FeCrCo、PtCo、MnAlC、CuNiFe和AlMnAg等,后两种中BHC较低者亦称半永磁材料。②铁氧体类: 主要成分为MO·6Fe2O3,M代表Ba、Sr、Pb或SrCa、LaCa等复合组分。③金属间化合物类:主要以MnBi为代表。
永磁材料有多种用途。①基于电磁力作用原理的应用主要有:扬声器、话筒、电表、按键、电机、继电器、传感器、开关等。②基于磁电作用原理的应用主要有:磁控管和行波管等微波电子管、显像管、钛泵、微波铁氧体器件、磁阻器件、霍尔器件等。③基于磁力作用原理的应用主要有:磁轴承、选矿机、磁力分离器、磁性吸盘、磁密封、磁黑板、玩具、标牌、密码锁、复印机、控温计等。其他方面的应用还有:磁疗、磁化水、磁麻醉等。
根据使用的需要,永磁材料可有不同的结构和形态。有些材料还有各向同性和各向异性之别。
软磁材料 它的功能主要是导磁、电磁能量的转换与传输。因此,对这类材料要求有较高的磁导率和磁感应强度,同时磁滞回线的面积或磁损耗要小。与永磁材料相反,其Br和BHC越小越好,但饱和磁感应强度Bs则越大越好。 软磁材料大体上可分为四类。①合金薄带或薄片:FeNi(Mo)、FeSi、FeAl等。②非晶态合金薄带:Fe基、Co基、FeNi基或FeNiCo基等配以适当的Si、B、P和其他掺杂元素,又称磁性玻璃。③磁介质(铁粉芯):FeNi(Mo)、FeSiAl、羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。④铁氧
体:包括尖晶石型──M++ O·Fe (M++
2O3 代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁铅石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。
软磁材料的应用甚广,主要用于磁性天线、电感器、变压器、磁头、耳机、继电器、振动子、电视偏转轭、电缆、延迟线、传感器、微波吸收材料、电磁铁、加速器高频加速腔、磁场探头、磁性基片、磁场屏蔽、高频淬火聚能、电磁吸盘、磁敏元件(如磁热材料作开关)等。
矩磁材料和磁记录材料 主要用作信息记录、无接点开关、逻辑操作和信息放大。这种材料的特点是磁滞回线呈矩形。
旋磁材料 具有独特的微波磁性,如导磁率的张量特性、法拉第旋转、共振吸收、场移、相移、双折射和自旋波等效应。据此设计的器件主要用作微波能量的传输和转换,常 用的有隔离器、环行器、滤波器(固定式或电调式)、衰减器、相移器、调制器、开关、限幅器及延迟线等,还有尚在发展中的磁表面波和静磁波器件(见微波铁氧 体器件)。常用的材料已形成系列,有Ni系、Mg系、Li系、YlG系和BiCaV系等铁氧体材料;并可按器件的需要制成单晶、多晶、非晶或薄膜等不同的 结构和形态。
压磁材料 这类材料的特点是在外加磁场作用下会发生机械形变,故又称磁致伸缩材料,它的功能是作磁声或磁力能量的转换。常用于超声波发生器的振动头、通信机的机械 滤波器和电脉冲信号延迟线等,与微波技术结合则可制作微声(或旋声)器件。由于合金材料的机械强度高,抗振而不炸裂,故振动头多用Ni系和NiCo系合 金;在小信号下使用则多用Ni系和NiCo系铁
2 / 17
氧体。非晶态合金中新出现的有较强压磁性的品种,适宜于制作延迟线。压磁材料的生产和应用远不及前面四种材 料。 展望 磁电共存这一基本规律导致了磁性材料必然与电子技术相互促进而发展,例如光电子技术促进了光磁材料和磁光材料的研制。磁性半导体材料和磁敏材料和器件可 以应用于遥感、遥则技术和机器人。人们正在研究新的非晶态和稀土磁性材料(如FeNa合金)。磁性液体已进入实用阶段。某些新的物理和化学效应的发现(如 拓扑效应)也给新材料的研制和应用(如磁声和磁热效应的应用)提供了条件。 参考书目
戴礼智编著:《金属磁性材料》,上海人民出版社,上海, 1973。 周志刚等编著:《铁氧体磁性材料》,科学出版社,北京,1981。
李荫远、李国栋编著:《铁氧体物理学》第二版,科学出版社,北京,1983。
具有铁磁性能的材料。电工技术中常用的磁性材料可分为高磁导率、低矫顽力、低剩磁的软磁材料和高矫顽力、高剩磁的永磁材料两大类。永磁材料又称硬磁材料。
磁性是物质的一种基本属性。物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和 亚铁磁性物质为强磁性物质,其他均为弱磁性物质。磁性材料有各向同性和各向异
性之分。各向异性材料的磁性能依方向不同而异。因此,在使用各向异性材料时, 必须注意其磁性能的方向。电工领域中常用的磁性材料都属于强磁性物质。反映磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。 磁化曲线和磁滞回线 反映磁性材料磁化特性的曲线。可以用于确定磁性材料的一些基本特性参量如磁导率μ、饱和磁通密度Bs、剩余磁场强度即矫顽力Hc、剩余磁通密度即剩磁Br,以及磁滞损耗P等。 基本磁化曲线是铁磁物质以磁中性状态为出发点,在反复磁化过程中B 随H 变化规律的曲线,简称磁化曲线(图1)。它是确定软磁材料工作点的依据。B 和H 的关系如下: B=μ0(H+M )
式中μ0为真空磁导率(又称磁常数),在国际单位制(SI)中,其值为
μ=4π×10-7
0亨/米;H为磁场强度,单位为安/米(A/m);M 为磁化强度,单位为安/米(A/m)。图中磁化到饱和时的B值称为饱和磁通密度Bs,相应的磁场强度为 Hs。通常,要求磁性材料有高的Bs值。
磁化曲线上任一点的B 与H 之比就是磁导率μ,即对于各向同性的导磁
物质μ=B/H, 常用的是相对磁导率μr
=μ/μ0,它是无量纲的纯数,用以表
示物质的磁化能力。因此,按μr的大小,把各类物质划分为:μr
<1的抗磁性
物质,μr>1的顺磁性物质,μr
»1的强磁性物质。根据B-H 曲线可以描绘出μ-H
3 / 17
曲线,图中μm和μi分别称为最大磁导率和初始磁导率。μi是在低磁场下使用软磁材料的一个重要参量。
图2表示外磁场H 变化一周时B 随H变化而形成的闭合曲线。
由于B 的变化滞后于H,这个现象称为磁滞。闭合曲线称为磁滞回线。图中可见,当Hs降为零时,B 并不回到零,而仅到b点,此值(Br)称为剩余磁通密度,简称剩磁。若要使Br降到零,需加一反磁场,这个反磁场强度的绝对值称为
磁感应矫顽力,简称矫顽力Hrr
c。B与Bs之比称为剩磁比或称开关矩形比(B/Bs),它表征矩磁材料磁滞回线接近矩形的程度。磁滞回线的形状和面积直接表征磁性材料的主要磁特性。
软磁材料的磁滞回线窄,故矫顽力低,磁滞损耗也低(图3a),常用于电机、变压器、继电器的铁心磁路。若磁滞回线窄而接近于矩形(称为矩磁材
料)(图3c),则这种软磁材料不仅矫顽力低而且Br
/Bs值也高,适宜作记忆元件
和开关元件。永磁材料其磁滞回线面积宽大(图3b),Br
和Hc都大,经饱和磁化后,储存的磁场能量大。常用作发电机、电动机的永磁磁极和测量仪表、扬声器中的永磁体等。
磁损耗 单位重量的磁性材料在交变磁场中磁化,从变化磁场中吸收并以热的形式耗散的功率称为磁损耗或铁损耗P。 它主要由磁滞损耗和涡流损耗引起。其中由磁滞现象引起的能量损耗称为磁滞损耗,它与磁滞回线所包围的面积成正比。磁滞损耗功率Ph可由下式计算 Ph=кhƒBmnV
式中ƒ为频率(Hz);Bm为最大磁通密度(T);指数 n为经验参数,和Bm大小有关;V为磁性材料的体积;кh为与铁磁物质性质有关的系数。在交变磁场中导电物质(包括铁磁物质)将感应出涡流,由涡流产生的电阻损耗称为涡流损耗。涡流损耗的功率Pe可由下式计算 P2
e=кeƒBmnV
式中кe为与材料的电阻率、截面大小、形状有关的系数。Ph和Pe是衡量电工设备、仪表产品质量好坏的重要参数。
具有强磁性的材料。这类材料微观特征是相邻原子或离子磁矩呈有序排列,从而显示出铁磁性或亚铁磁性。宏观特征是在外磁场作用下具有明显的磁化强度。 4 / 17
按化学成分分类 基本上可分为金属磁性材料与铁氧体两大类。 ①金属磁性材料。主要是铁、镍、钴元素及其合金,如铁硅合金、铁镍合金、铁钴合金、钐钴合金、铂钴合金、锰铝合金等等。它们具有金属的导电性能,通常呈现铁磁性,具有较高的饱和磁化强度,较高的居里温度,较低的温度系数,在交变电磁场中具有较大的涡流损耗与趋肤效应, 因此金属软磁材料通常适用于低频、大功率的电力、电子工业。例如硅钢片的饱和磁感应强度约为2T(特斯拉),比一般铁氧体大5倍,广泛用作电力变压器。金 属永磁材料目前磁能积很高,用它可以制成体积小,重量轻的永磁器件,尤宜用于宇航等空间科技领域,其缺点是镍、钴以及稀土金属价格贵,材料来源少。 ②铁氧体。是指以氧化铁为主要成分的磁性氧化物,早期曾译名为“铁淦氧磁物“,简称“铁淦氧”,因其制备工艺沿袭了陶瓷和粉末冶金的工艺,有时也称为磁性瓷。大多数为亚铁磁性,从而饱和磁化强度较低,其电阻率却比
金属磁性材料高106
倍以上,在交变电磁场中损耗较低,在高频、微波、光频段应用时更显出其独特的优点,从晶体结构考虑,铁氧体主要分为:尖晶石型(与天然MgAl2O4尖晶石同晶型),例如锰锌铁氧体、镍锌铁氧体等;石榴石型〔与天然的(Fe,Mn)3Al2(SiO4)3石榴石同晶型〕,例如钇铁石榴石型铁氧体(Y3Fe5O12))等;六角晶系铁氧体,例如与天然Pb(Fe7.5)Mn3.5Al0.5Ti0.5)O19磁铅石同晶型的钡
铁氧体(BaFe)O2+
1219),易磁化轴处于六角平面内的Y型铁氧体(Ba2MeFe12)O22)等。 按应用情况分类 大体上可分为 6类(由于磁性材料的种类繁多,应用广泛,实际上决非此6类所能完全概括)。
①永磁材料又名硬磁材料。具有高矫顽力与剩磁值。通常以最大磁能积(BH)m衡量永磁材料的优值。例如:铝镍钴系合金、钐钴系合金、锰铝系合金、铁铬钴系合金以及钡铁氧体、锶铁氧体等。
②软磁材料。具有较低的矫顽力,较窄的磁滞回线。通常以初始磁导率,
饱和磁感应强度以及交流损耗等值的大小标志其主要性能。材料主要有 纯铁、铁硅合金系、铁镍合金系、锰锌铁氧体、镍锌铁氧体等。软磁材料是磁性材料中种类最多、应用最广泛的一类,在电力工业中主要是用作变压器、电动机与
发 电机的磁性材料,在电子工业中制成各种磁性元件,广泛地应用于电视、广播、通信等领域。
③矩磁材料。磁滞回线呈矩形,而矫顽力较小的一种软磁材料,通常以剩磁Br与最大磁感应强度Bm之比的矩形比Br/Bm值标志其静态特性。材料主要有锂锰铁氧体,锰镁铁氧体等。用在电子计算机,自动控制等技术中常作为记忆元件、开关和逻辑元件等的材料。
④旋磁材料。利用旋磁效应的磁性材料,通常用于微波频段,以复张量磁导率、饱和磁化强度等标志其主要性能。常用的材料为石榴石型铁氧 体、锂铁氧体等。可制作各种类型的微波器件,如隔离器、环流器、相移器等。自1952年以来,铁氧体在微波领域的应用,促使微波技术发生革命性的变革。利 用铁氧体的张量磁导率的特性才能制造出一系列非互易性微波器件;利用铁氧体的非线性效应,可设计出一系列有源器件,如倍频器、振荡器等。 ⑤压磁材料。利用磁致伸缩效应的磁性材料,以磁致伸缩系数标志其主要性能,通常用于机械能与电能的相互转换。例如可制成各种超声器件、滤波器、磁扭线存储器、振动测量器等。常用的材料为镍片、镍铁氧体等。目前正在深入研究磁声耦合效应,以期开拓新的应用领域。
⑥磁记录材料。主要包括磁头材料与磁记录介质两类,前者属于软磁材料,后者属于永磁材料,由于其应用的重要性与性能上的特殊要求而另列 一类。磁头材料除了应具有软磁材料的一般特性外,常要求高记录密度,低磨损。常用的有热压多晶铁氧体、单晶铁氧体、铝硅铁合金、硬叵姆合金等。磁记录介质 要求有较大的剩磁值,适当高的矫顽力值
,以便将电的信息通过磁头而在
磁带上以一定的剩磁迹记录下来。常用的材料为γ-三氧化二铁。高记录密度的材料有二氧化铬金属薄膜等。目前磁记录已普遍应用于各个领域,例如录音、录码、录像等,因此,近年来磁记录材料的产量急剧增长。从广义来说,磁泡材料也属于这一类。
5 / 17
磁性材料正在不断发展。例如非晶态磁性材料,磁性半导体等,都是当前极为活跃的研究领域。磁性材料的用途亦越趋广泛。
参考书目
李荫远、李国栋编:《铁氧体物理学》,修订版,科学出版社,北京,1978。 郭贻诚著:《铁磁学》,高等教育出版社,北京,1965。 R.S.特贝尔、D.J.克雷克著,北京冶金研究所译:《磁性材料》,科学出版社,北京,1979。(R.S.Tebble and D.J.Craik, magnetic materials, Wiley Inters cience,London,1969.)
具有磁有序的强磁性物质,广义还包括可应用其磁性和磁效应的弱磁性及反铁磁性物质。磁性是物质的一种基本属性。物质按照其内部结构及其在外 磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质。磁性材料按性 质分为金属和非金属两类,前者主要有电工钢、镍基合金和稀土合金等,后者主要是铁氧体材料 。按使用又分为软磁材料、永磁材料和功能磁性材料。功能磁性材料主要有磁致伸缩材料、磁记录材料、[[磁电阻材料]、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反应磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。
磁石
单位质量的磁性材料在交变磁场中磁化,从变化磁场中吸收并以热的形式耗散的功率称为磁损耗,或称铁损耗,它包括磁滞损耗和涡流损耗。其中由 磁滞现象引起的能量损耗为磁滞损耗,与磁滞回线所包围的面积成正比。在交变磁场中导电物质将感应出涡
流,由涡流产生的电阻损耗称涡流损耗。
磁性材料是生产、生活、国防科学技术中广泛使用的材料。如制造电力技术中的各种电机、变压器,电子技术中的各种磁性元件和微波电子管,通 信技术中的滤波器和增感器,国防技术中的磁性水雷、电磁炮,各种家用电器等。此外 ,磁性材料在地矿探测、海洋探测以及信息、能源、生物、空间新技术中也获得了广泛的应用。 补充
1. 磁性材料的磁化曲线
磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数
饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs
矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
6 / 17
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ 降低,
磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为:
总功率耗散(mW)/表面积(cm2)
3. 软磁材料的磁性参数与器件的电气参数之间的转换
在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。
磁性材料是一种重要的电子材料。早期的磁性材料主要采用金属及合金系统,随着生产的发展,在电力工业、电讯工程及高频无线电技术等方面,迫切要求提供一种具有很高电阻率的高效能磁性材料。在重新研究磁铁矿及其他具有磁性的氧化物的基础上,研制出了一种新型磁性材料——铁氧体。铁氧体属于氧化物系统的磁性材料,是以氧化铁和其他铁族元素或稀土元素氧化物为主要成分的复合氧化物,可用于制造能量转换、传输和信息存储的各种功能器件。 铁氧体磁性材料按其晶体结构可分为:尖晶石型(MFe2O4);石榴石型
(R3Fe5O12);磁铅石型(MFe12O19);钙钛矿型(MFeO3)。其中M指离子
半径与Fe2+相近的二价金属离子,R为稀土元素。按铁氧体的用途不同,又可分为软磁、硬磁、矩磁和压磁等几类。
软磁材料是指在较弱的磁场下,易磁化也易退磁的一种铁氧体材料。有实用价值的软磁铁氧体主要是锰锌铁氧体Mn-ZnFe2O4和镍锌铁氧体Ni-ZnFeO4。软磁铁氧体的晶体结构一般都是立方晶系尖晶石型,这是目前各种铁氧体中用途较广,数量较大,品种较多,产值较高的一种材料。主要用作各种电感元件,如滤波器、变压器及天线的磁性和磁带录音、录像的磁头。
硬磁材料是指磁化后不易退磁而能长期保留磁性的一种铁氧体材料,也称为永磁材料或恒磁材料。硬磁铁氧体的晶体结构大致是六角晶系磁铅石型,其典型代表是钡铁氧体BaFe12O19。这种材料性能较好,成本较低,不仅可用作电讯器件如录音器、电话机及各种仪表的磁铁,而已在医学、生物和印刷显示等方面也得到了应用。
镁锰铁氧体Mg-MnFe3O4,镍钢铁氧体Ni-CuFe2O4及稀土石榴型铁氧体3Me2O3•5Fe2O3(Me为三价稀土金属离子,如Y3+、Sm3+、Gd3+等)是主要的旋磁铁氧体材料。磁性材料的旋磁性是指在两个互相垂直的直流磁场和电磁波磁场的作用下,电磁波在材料内部按一定方向的传播过程中,其偏振面会不断绕传播方向旋转的现象。旋磁现象实际应用在微波波段,因此,旋磁铁氧体材料也称为微波铁氧体。主要用于雷达、通讯、导航、遥测、遥控等电子设备中。
重要的矩磁材料有锰锌铁氧体和温度特性稳定的Li-Ni-Zn铁氧体、Li-Mn-Zn铁氧体。矩磁材料具有辨别物理状态的特性,如电子计算机的“1”和“0”两种状态,各种开关和控制系统的“开”和“关”两种状态及逻辑系统的“是”和“否”两种状态等。几乎所有的电子计算机都使用矩磁铁氧体组成高速存贮器。另一种新近发展的磁性材料是磁泡材料。这是因为某些石榴石型磁性材料的薄膜在磁场加到一定大小时,磁畴会形成圆柱状的泡畴,貌似浮在水面上的水泡,泡的“有”和“无”可用来表示信息的“1”和“0”两种状态。由电路和磁场来控制磁泡的产生、消失、传输、分裂以及磁泡间的相互作用,即可实现信息的存储记录和逻辑运算等功能,在电子计算机、自动控制等科学技术中有着重要的应用。
7 / 17
压磁材料是指磁化时能在磁场方向作机械伸长或缩短的铁氧体材料。目前应用最多的是镍锌铁氧体,镍铜铁氧体和镍镁铁氧体等。压磁材料主要用于电磁能和机械能相互转换的超声器件、磁声器件及电讯器件、电子计算机、自动控制器件等。
能显示出铁磁性和亚铁磁性的材料。分软磁性材料和硬磁性材料两大类,且有各向同性和各向异性之分。各向异性的磁性材料在使用时必须注意其磁性的方向。广泛应用在电工、电子、机械、运输、医疗等方面。
取自\"http://www.wiki.cn/wiki/%E7%A3%81%E6%80%A7%E6%9D%90%E6%96%99\"
维客版权
磁测量仪器
magnetic measuring instruments
对宏观磁场和磁性材料进行磁学量测量的仪器。通常按测量对象不同分为两大类。
第一类仪器用于测量磁场强度、磁通密度、磁通量、磁矩等表征磁场特征的物理量。典型仪器有磁通计、磁强计(见力矩磁强计)、磁位计(见磁场测量)等。这类仪器的工作原理可分三种。第一种是利用磁的力效应,用于测量地磁场强度和检验磁性材料;第二种根据法拉第的电磁感应定律,由感应电动势求出磁通的变化,再导出各种待求的磁场量;第三种利用磁致物理效应(如霍耳效应等)来测量磁通密度,对静止的或变动的磁场量均适用。这类仪器的准确度可达10-3~10-4 量级。
第二类仪器用于测量磁导率、磁化强度、磁化曲线、磁滞回线、交流损耗等磁性材料的特性,例如磁导计、爱泼斯坦仪等。这类仪器所依据的原理与第一类相似,但所能达到的准确度受到材料样品的几何尺寸及磁特性的一致性等因素的影响,约为10-2~10-3量级。由于磁性材料的应用极为广泛,第二类仪器的使用比第一类更为普遍。
20世纪60年代以来,磁测量仪器有了飞速发展。核磁共振、超导量子干涉效应、磁光效应等各种新的物理效应的应用,使磁通密度的测量误 差可达到10-6~10-7量级,量限则扩展到10-15~10特,最灵敏的仪器已可探测到人体的心磁场、脑磁场等所产生的生物磁效应,为生物科学的发展 提供了新的手段。量限最高的可测量超导磁体产生的十几特的强磁场。随着电子技术及计算机技术的应用,磁测量仪器的自动化程度也大为提高,并具备数据处理功 能,可直接用于监测生产中的动态过程,控制产品质量。 磁通计
8 / 17
fluxmeter
测量磁通(量)的一种磁测量仪器。用于空间磁场的测量和材料的磁性研究。常用的有磁电式、电子式和数字积分式磁通计。
磁电式磁通计 一种没有反抗力矩的磁电系检流计。其可动部分所带动的指针可停留在标尺上的任意位置,并且工作在极度过阻尼状态。使用时,将其动圈与外接磁通探测线圈相联。当探测线圈所链合的磁通量有变化时,线圈中产生感应电动势,使磁通计的指针由原来的位置α1偏转到新的位置α2,两位置的差值(Δα=α2-α1) 与感应电动势的时间积分成比例,从而也与磁通量的变化Δφ成比例。磁电式磁通计按毫韦伯分度,又称毫韦伯计。其上装有调整机构,可在读数前将指针调到零点 或其他便于读数的位置。但其灵敏度较低,仅为 0.1毫韦伯/分度。如要求更高的灵敏度,须使用冲击检流计或使用电子式、数字积分式磁通计。
电子式磁通计 由电子式积分器与指示仪表组成(见图)。
积分器用集成放大器加阻容反馈构成;指示电表可以是机械式指示电表,也可以是数字电压表。当探测线圈中所链合的磁通变化Δφ时,线圈中感应出电动势e,此时,积分器的输出电压e0=-nΔφ/RC(n为探测线圈的匝数,R为电
阻,C 为积分电容),从指示电表上即可读出与探测线圈相链合的磁通的变化量。
20世纪80年代的电子式磁通计的灵敏度大约可达10-3
毫韦伯/分度,远高于磁电式磁通计,但仍低于冲击检流计。
数字积分式磁通计 由电压-频率变换器与计数器构成。探测线圈中的磁通变化Δφ所感生的电压e,由电压-频率变换器转换为脉冲链,其重复频率与不同时刻的e值成正比。计数器对脉冲链作总计数,总计数N与Δφ成正比,从而获得磁通的变化量。 磁导计 permeameter
磁化开磁路材料试样(即试样本身未形成闭合磁路)的装置。用以配合其他磁测量仪器测量材料的磁特性。分中场磁导计和强场磁导计两种。 中场磁导计 用于磁化开磁路软磁材料试样。又称软磁磁导计。其结构见图1。
材料试样夹在两U状磁轭之间,并穿过均匀分布的磁化线圈。磁轭由硅钢片叠制而成。用中场磁导计代替爱泼斯坦仪测量硅钢片等的磁特性和铁损,无需剪裁,可节省大量试样材料,并能方便地装入和取出试样。较简单的中场磁导计只使用一个U状磁轭,试样可采用更小尺寸的切片(见硅钢片磁特性测量)。
9 / 17
强场磁导计 用于磁化永磁材料(即硬磁材料)试样。又称永磁磁导计。由于永磁材料在测量与磁化时要求有很强而集中的磁场,且永磁材料试样多是开路形式,故专门制造了这种磁导计。强场磁导计由磁极、磁轭、磁化线圈等构成(图2),
试样夹在可动磁极与固定磁极之间。为使磁化磁场集中在试样上,须使磁轭消耗的磁化安匝尽量少,因此磁轭通常采用磁导率高的材料,并且截面较大,制作时要求有较高的工艺水平。磁化线圈由直流电源供电,其容量可满足产生足
够大的饱和磁场强度Hcj
m的需要。Hm一般取被测材料内禀矫顽力H的3~5倍,电源的稳定度应保证在1分钟内变化不超过0.1%。
为快速检验和分选永磁材料,常采用对称双轭磁导计结构。它的两个U状磁轭完全对称,4个磁化线圈完全相同,并串联在一起。未放入试样时,左右两气隙内的磁通相等,中间气隙内的磁通为零。在一边气隙中放入试样后,磁路平衡被破坏,中间气隙内存在有正比于试样磁化强度的磁通。作用于试样
的磁场强度,可在另一边气隙内测得。如在一边气隙内放入标准试样,则可对放在另一边气隙中的试样进行分选。
爱泼斯坦仪 Epstein square
用于测量硅钢片低频磁特性的专用磁测量仪器。又称爱泼斯坦方圈。1900年由德国工程师J.爱泼斯坦发明。
爱泼斯坦仪由 4个结构完全相同的矩形截面螺线管组成。每个螺线管上均匀缠绕两个线圈,里层线圈为次级,外层线圈为初级。4个初级线圈和4个次级线圈分别串联。爱泼斯坦 仪有0.25m和0.50m两种,分别适用于重量为1kg和10kg的两种试样。以10kg的试样为例,每个螺管线圈的初级与次级的总匝数都是600,被 测试样取自大张硅钢片,单个样条的尺寸为0.5x0.03m,取数条共重10kg的试样,其中一半沿硅钢片的辗轧方向取制,另一半沿垂直辗轧方向取制。试 样叠成如图所示的方圈状,
四角处采
用对接方式。测量时,接入交流电流表A、平均值电压表V、功率表W及频率表
10 / 17
Hz。功率表的电压圈与电压表均接到次级。这样,功率表的读数中不包括初级线圈的铜损。若测量试样的交流磁化曲线(即磁通密度-磁场强度曲线),由电流表读数I、初级线圈匝数N1及试样磁路长度L,可计算出磁场强度值H,H=N1I/L。如I为有效值,则H也是有效值;如I为最大值,则H 也是最大值。由平均值电压表读数尃,频率值ƒ及试样等效截面积S,可计算出试样的最大磁通密度值Bm,Bm=尃/4ƒN2S。将电源的电压调到不同数值,可得到不同的磁场强度及相应的磁通密度值,由此可画出试样的交流磁化曲线。而不同磁通密度下的铁损值,可由功率表的读数扣除电压表和功率表电压圈的损耗后得到。由此所测得的材料磁特性,是材料的平均性能。
霍尔器件 Hall element
利用霍尔效应的固态电子器件。E.H.霍尔于1879年发现:一块矩形导体或半导体材料在磁感应强度为Bz的磁场中,在垂直于磁场的方向有电流Ix通过试件(图1),在既垂直于磁场Bz、又垂直于电流Ix的方向将产生电场Ey,这就是霍尔效应。这个电场在电极3和4之间产生电动势UH,称为霍尔电动势 UH=-RHBzIx/d
式中Ix为从电极1到电极2的电流;d为试件厚度;RH为比例系数(称霍尔系数)。霍尔系数与试件中载流子浓度有关
式中n为试件中导电载流子浓度;q为电子的电荷。霍尔系数的符号决定于试件中载流子是带正电荷或负电荷。
11 / 17
霍尔器件除矩形外,还有十字形、方形、四叶苜蓿叶形和其他更复杂的形状(图2)。形状不同,试件中电势分布也不同。霍尔电极的焊点占一定面积,也影响电势分布。为此引进一个形状因子K UH=-KRHIxBz/d
已知试件的尺寸、磁场强度和电流,测量霍尔电动势即可求得试件的载流子浓度。载流子浓度是半导体材料的一个重要参量。在不同温度下测量 霍尔系数可以得到试件中载流子浓度和温度的关系。这是了解半导体材料的基本性质的一个重要方法。在给定的电流强度下,产生的霍尔电动势与磁场强度成正比。 可以利用这一原理来测量磁场强度。
在图1的电极1,2间加恒定电压Ui,霍尔电动势的表达式可变换成 UH=(UiμB)(Kw/l)
式中 Ui为两个电流电极之间的电压;μ为试件中载流子迁移率;w和l分别为试件的宽度和长度。恒定电压下电极3和4之间的电压也与磁场强度成正比。 实际上,用霍尔器件测量磁场强度时,是用恒定电流法还是用恒定电压法,要考虑多方面的因素,如磁场强度和霍尔电压间的线性误差、灵敏度的温度系数、同样工艺条件制造的器件的性能分散程度等。
用霍尔器件测量磁场强度的特点是:器件很小很扁(可以放在窄缝中),有很高的准确度、灵敏度和稳定性,还有很宽的工作温度范围。
如果磁场由电磁铁产生(图3),磁场强度与电流强度IB成他电路做在一个硅片上,可以缩小尺寸、提高灵敏度、减小失调电压,便于大量生产。 补充
比例,在磁场中的霍尔
器件产生的霍尔电压与两个电流的乘积IxIB成比例,因此可以利用霍尔效应制成乘法器。乘法器有许多用途,除进行乘法运算外,还可以用作调制器、除法器、功率计等。
图4是利用霍尔器件测量几千安培以上的大电流的方法。图中1 是通过大电流导体的截面,2是两块磁性材料,在两个空气隙中放有霍尔器件3。用霍尔器件测量磁性材料中的磁感应强度。此法特别适用于测量大直流电流强度。 用永久磁铁作为不消耗能源的“发射机”,用霍尔器件作为“接收机”。将它们分别粘在两个物体上,则可测量两个物体的相对位置。 还可以利用霍尔效应制作旋转器、单向器和环行器。这类器件使信号沿单一方向传输,而不能沿相反的方向传输。
制造霍尔器件的半导体材料主要是锗、硅、砷化镓、砷化铟、锑化铟等。一般用N型材料,因为电子迁移率比空穴的大得多,器件可以有较高的 灵敏度。有的材料的禁带宽度很窄,工作的温度范围小。除了用整块半导体材料做霍尔器件外,还可以用薄膜制作霍尔器件。在绝缘衬底上淀积薄膜或用外延或离子 注入等方法在高电阻率的半导体衬底上制造一层厚度为微米量级的薄膜。用离子注入或处延法制造的砷化镓霍尔器件在很宽的磁场强度范围内有很好的线性关系,并 且能在很宽的温度范围内稳定地工作。用硅外延或离子注入方法制作的薄膜霍尔器件可以和集成电路工艺相容。将霍尔器件和差分放大器及其
12 / 17
在轿车电路上经常可以看到“霍尔”(Hall)这个名称,例如桑塔纳2000点火系统就有一只霍尔传感器,专门给发动机电控单元(ECU)提供电压信号。那么霍尔器件起到什么作用呢? 这里涉及一个“霍尔效应”的问题,霍尔效应在应用技术中特别重要。霍尔发现,如果对位于磁场(B)中的导体(d)施加一个电压(Iv),该磁场的方向垂直于所施加电压的方向,那么则在既与磁场垂直又和所施加电流方向垂直的方向上会产生另一个电压(UH),人们将这个电压叫做霍尔电压,产生这种现象被称为霍尔效应。根据霍尔效应做成的霍尔器件,就是以磁场为工作媒体,将物体的运动参量转变为数字电压的形式输出,使之具备传感和开关的功能。 讫今为止,已在现代汽车上广泛应用的霍尔器件有:在分电器上作信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器、各种开关,等等。 例如汽车点火系统,设计者将霍尔传感器放在分电器内取代机械断电器,用作点火脉冲发生器。这种霍尔式点火脉冲发生器随着转速变化的磁场在带电的半导体层内产生脉冲电压,控制电控单元(ECU)的初级电流。相对于机械断电器而言,霍尔式点火脉冲发生器无磨损免维护,能够适应恶劣的工作环境,还能精确地控制点火正时,能够较大幅度提高发动机的性能,具有明显的优势。 用作汽车开关电路上的功率霍尔电路,具有抑制电磁干扰的作用。许多人都知道,轿车的自动化程度越高,微电子电路越多,就越怕电磁干扰。而在汽车上有许多灯具和电器件,尤其是功率较大的前照灯、空调电机和雨刮器电机在开关时会产生浪涌电流,使机械式开关触点产生电弧,产生较大的电磁干扰信号。采用功率霍尔开关电路可以减小这些现象。 霍尔器件通过检测磁场变化,转变为电信号输出,可用于监视和测量汽车各部件运行参数的变化。例如位置、位移、角度、角速度、转速等等,并可将这些变量进行二次变换;可测量压力、质量、液位、流速、流量等。霍尔器件输出量直接与电控单元接口,可实现自动检测。目前的霍尔器件都可承受一定的振动,可在零下40摄氏度到零上150摄氏度范围内工作,全部密封不受水油污染,完全能够适应汽车的恶劣工作环境。
磁筹
一、磁测仪器、设备
常用的磁测仪器有:磁通计、特斯拉计(又称为高斯计)、磁测仪。磁通计用於测量磁感应通量,特斯拉计用於测量表面磁场强度或气隙磁场强度,磁测仪用於测量综合磁性能。所有仪器使用之前应仔细阅读说明书,根据说明书的要求预热,预热之后按照说明书的要求进行操作。 二、应用特斯拉计(高斯计)测量
特斯拉计一般可用於测量磁性材料的表面磁场强度,具体而言就是测量表面中心部位的场强。
测量之前应根据说明书的要求进行预热,然后检查、调整零点,使得非测量状态下的示值为\"0\"。注意:在使用过程中一般不应调整霍尔电流。更换探头时应根据探头的说明在仪器热态下调整霍尔电流,并在适当的部位标识霍尔电流参数值。可以经常检查电流值,应为规定的数值。
测量表场的方法无法准确获得全面的磁参数(如剩磁、矫顽力、磁能积),通常以上下限标样的中心场资料作为参考资料来进行合格判别。此种方法对N、M系列可用,对H以上系列准确度要差一些。一般而言可以按照下述公式计算不同尺寸(圆柱或圆片)的中心场:
H=Br*K/√(1+5.28*K*K) (Gs) 式中:Br---标称剩磁
K---圆柱、圆片的长径比或方块磁化方向与另二个方向中较短边长之比。对於长宽相差较大的产品K=取 向长度/SQR(长*宽) 更准确的计算公式:
H=Br*K/√(1+(4+32/L)*K*K) (Gs)
13 / 17
L---方块磁化方向的长度
32---探头的测试系数参数(0.5*64)
特斯拉计探头内霍尔片位置的确定:一般而言,霍尔片只有大约1*1~2*3平方毫米左右大小的面积,厚度约0.3~0.5毫米,且不在探头的最前部,有时需要确定霍尔片的位置,可以采用如下的方法来判断霍尔片的位置:将探头在充磁产品的表面,此时特斯拉计示值不为零,探头一直向外侧延伸探出,当特斯拉计示值为零时即为霍尔片的前边部,用铅笔或记号笔沿产品的外边界线标记记号;将探头向相反方向延伸(此时探头只有一小部分接触在磁体上),当特斯拉计示值为零时在做记号,两个记号的中位置即为霍尔片的实际位置。确定霍尔片位置时应用直径大於10~15毫米的产品。
特斯拉计的优点是可以测试大方块不同位置的表场大小、小圆柱或圆片两个端面的磁场大小,确定一块(个)产品磁性能的一致性。 一、 应用磁通计测量
磁通计一般是直接测量探头线圈的磁感应通量,使用较多的是配以霍姆赫兹线圈,此种方法多是与标准样品进行比较,进而进行产品的合格性判定。 磁通计使用之前,一定要按照要求进行预热,使用中要调整好积分漂移,使漂移量在规定的范围之内。每次测量之前要重定清零,释放掉积分电容的残留电荷或漂移积分电荷。
当磁体的磁路闭合时,可以使用磁通计测量、计算剩磁,具体计算方法是:
Br=Φ/N/S
式中: Φ---磁通量 N---线圈匝数
S---磁体横截面积
应用磁通计进行产品的合格性检验时,被测样品和线圈的相对位置一定要与\"标准样品的和线圈的相对位置\"相同。如果产品的性能范围有严格的要求,应保存上限性能的产品、下限性能的产品,以进行检验定标、检验。 二、 应用磁测仪测量
磁测仪测量的磁学资料相对较全,可以测量、记录退磁曲线,获得较为齐全的磁学参数。详细请参照设备的说明书,请恕这里不做赘述。
异形产品的测量,有时需要制作特殊的工装,测量时要进行特殊的计算,避免造成测量错误。具体参照磁测仪的说明或有关磁学的资料。 三、 具有不同使用温度要求产品的测量
当产品有使用温度要求的用户,有磁测仪的可以采用先饱和充磁,再在规定的温度之下烘烤或水煮、油煮,然后直接测试、记录退磁曲线。当参数要求更多时可以由供应商提供产品测试曲线或通过第三方进行测试获取有关参数,不建议用户购置\"温度特性磁测仪\"(因其价格较高,也不可能经常使用)。 四、 磁测量的有关特别说明
(1)、由於钕铁硼磁性材料固有的不可逆损失的存在,重复测试的结果一般要比首次测试的性能可能偏低一些;
(2)、成品测试之后,很难用施加反向磁场的方法彻底退磁,对於有些产品而言,充磁之后对产品的安装可能带来不便;
(3)、被测样品无法采用磁场的方式退磁,只能进行时效退磁,其他方法的热退磁有可能对材料造成不良影响;热退磁对涂层也有极为有害的影响;
14 / 17
(4)、镀镍的产品,由於镍是铁磁性物质,对原产品的外在性能有降低作用,请客户在产品的涂层选择、性能选择时加以考量。
(5)、无论磁通计、特斯拉计都无法获得完整的磁性能参数;
(6)、测试时样品及环境温度应在23~25℃的范围内,且测试报告应注明测试时的环境温度。
(7)、一般而言较薄的产品无论电镀与否均较难直接测量各片的磁性能参数,但可采用前面介绍的方法用磁通计测量来测量剩磁,配合特斯拉计测量中心场可以较为可靠地判定N、M系列产品的性能。 五、 关於充磁
在磁体长度接近充磁线圈的情况下充磁时,磁体的垂直中心位置应与充磁线圈的垂直中心位置重合,这样才能保证磁体两端磁场强度相等,保证充磁的对称性减小由於充磁方法的原因造成磁体两端表面磁场强度相等。
理论证明,充磁线圈两端磁场强度是线圈的中心点的磁场强度是的1/2,在磁体接近充磁线圈的长度时,对於H、SH以上系列的产品有可能无法饱和充磁,当磁场强度不是足够大时,即使时M、N系列的产品也无法饱和充磁。在一般情况下,充磁磁体的长度最好小於充磁线圈的2/3。 六、 关於磁体的易磁化方向(取向方向)的判定
对於正方形方块、垂直轴向取向的圆柱都存在取向(易磁化方向)的识别问题,可以采用已充磁的产品或借用仪器进行识别,具体方法如下:
1)、用已充磁的产品进行识别:对於正方形方块,由於材料的各向异性,磁筹是按取向方向排列,因而取向方向易於磁化,磁化之后异极相吸吸力较大,而非取向方向的吸力则小,以次来识别判定取向方向;检测用的磁铁应稍大一些,过磁体小时吸力大小差异不易判别;对於垂直轴向取向的圆柱,一般只能
用已充磁的磁体进行检测:用磁铁吸圆柱表面,将圆柱吸起,与地面垂直的方向即为取向充磁方向;
2)、利用磁通计进行识别:可以在正方形材料上吸一块磁铁,磁铁的方向与磁通线圈垂直,磁通值相对较大的一面为取向面,与此面垂直的方向为取向方向。 磁感应强度 magnetic induction 见磁通密度。
又称磁通(量)密度。描写磁场强弱、方向的物理量。它是一个矢量,用符号B表示。通常通过磁场对运动电荷或电流所施的力来定义。 点电荷q在磁场中运动时将受到力F的作用,力的大小和方向与电荷q及其运动速度v以及磁场的大小和方向有关,可表示为 F=qv×B, (1)
式中B即描述磁场强弱和方向的磁感应强度。此式表明:当电荷运动的方向与磁场方向相同或相反时,运动电荷所受的力为零,当电荷运动的方向与磁场的方向垂直时,运动电荷所受的力最大,为Fm=|q|vB。比值
是一个与电荷q无关的量,反映了磁场本身的性质,
因此,可用它来定义磁感应强度的大小。而磁感应强度的方向,定义为:由正电荷所受最大力Fm的方向转向电荷运动方向时,右手螺旋前进的方向。定义了B之后的式(1)即洛伦兹力公式,根据它可以确定运动电荷在磁场中所受的力。
15 / 17
电流元Idl在磁场中所受的安培力公式为 d F=Id l×B, (2)
也可以用它来定义磁感应强度B。
在国际单位制(SI)中,磁感应强度的单位是特斯拉(T)。在高斯单位制中,
磁感应强度的单位是高斯 (Gs)。1T=104
Gs。
描述磁场强弱和方向的基本物理量。是矢量,常用符号B表示。
点电荷q以速度v在磁场中运动时受到力f的作用 。在磁场给定的条件下,f的大小与电荷运动的方向有关 。当v 沿某个特殊方向或与之反向时 ,受力为零;当v与此 特殊方向垂直时受力最大,为fm。fm与|q|及v成正比,比值 与运动电荷无关,反映磁场本身的性质,定义为磁感应强度的大小,即。B的方向定义 为:由正电荷 所受最大力fm的方向转向电荷运动方向 v 时 ,右手螺旋前进的方向 。定义了B之后,运动电荷 在磁场 B 中所受的 力可表为 f = qv×B,此即洛伦兹力公式。
除利用洛伦兹力定义B外,也可以根据电流元Idl在磁场中所受安培力df=Idl×B来定义B,或根据磁矩m在磁场中所受力矩M=m×B来定义B,三种定义,方法雷同,完全等价。
在国际单位制(SI)中,磁感应强度的单位是特斯拉 ,简称特(T)。在高斯单 位制中,磁感应强度的 单位是高斯(Gs ),1T=10 4 Gs。由于历史 的原因,与电场强度 E 对应的描述磁场的基本物理量被称为磁感应强度B,而另一 辅助量却被称为磁场强度H,名实不符,容 易混淆。通常所谓磁场,均指的是B。 补充
磁感应强度
描述磁场强弱和方向的基本物理量。是矢量,常用符号B表示。
点电荷q以速度v在磁场中运动时受到力f 的作用。在磁场给定的条件下,f的大小与电荷运动的方向有关 。当v 沿某个特殊方向或与之反向时,受力为零;当v与此 特殊方向垂直时受力最大,为fm。fm与|q|及v成正比,比值 与运动电荷无关,反映磁场本身的性质,定义为磁感应强度的大小,即。B的方向定义为:由正电荷所受最大力fm的方向转向电荷运动方向 v 时 ,右手螺旋前进的方向 。定义了B之后,运动电荷在磁场 B 中所受的力可表为 f = qv×B,此即洛伦兹力公式。
除利用洛伦兹力定义B外,也可以根据电流元Idl在磁场中所受安培力df=Idl×B来定义B,或根据磁矩m在磁场中所受力矩M=m×B来定义B,三种定义,方法雷同,完全等价。
在国际单位制(SI)中,磁感应强度的单位是特斯拉,简称特(T)。在高斯单位制中,磁感应强度的单位是高斯(Gs ),1T=104Gs。由于历史的原因,与电场强度E对应的描述磁场的基本物理量被称为磁感应强度B,而另一辅助量却被称为磁场强度H,名实不符,容易混淆。通常所谓磁场,均指的是B。
简称“磁感强度”。描述磁场对电流有作用力这一基本性质的物理量。是矢量。常用符号b表示。大小等于b=fil。式中l为载流导体的长度,i为电流强度,f为载流导体垂直于磁场放置时受到的磁场力。磁场中某处b矢量的方向就是该处的磁场方向。单位为特斯拉。 磁通密度
magnetic flux density
表征磁场的一个物理量。又称磁感应强度。它是矢量,可由磁场中作用于电流元I┡dl┡上的力dF(即安培力)来定义。若以B代表磁通密度,则有 dF=Idl×B
16 / 17
由公式可见,电流元所受之力垂直于Idl与B所在的平面,其方向按右手螺旋规则确定,即由Idl沿小于π的角度转至B时右手螺旋前进的方 向。力的大小为ㄧIdlㄧㄧBㄧ·sin(B,Idl)。这样就可以由载流导线在磁场中受到的力确定磁场中的B。B在国际单位制中的单位为特 [斯拉],在CGS制中为高[斯]。
1特相当于104
高斯。
H.A.洛伦兹在1895年提出:以速度υ运动的电荷q在磁场中受力与电流元的受力相仿,有 F=qυ×B
这个力称为洛伦兹力,理论上亦可作为B的定义公式。
如果产生磁场的电流是已知的,则真空中各处的磁通密度可由毕奥-萨伐尔定律给出.
式中l为电流I的路径,r0
为自电流元指向观察点的单
位矢量,r为二者之间的距离,μ0为真空磁导率。 穿过一面S 的磁通为Φ
式中α 是B与dS的夹角。在国际单位制中,
磁通的单位为韦伯(Wb)。 补充
磁通密度---单位面积上所通过的磁通大小叫磁通密度,以字母B表示,磁通
密度和磁场感应强度在数值上是相等的。
磁选
magnetic separation
利用各种矿石或物料的磁性差异,在磁力及其他力作用下进行选别的过程。 通常将待选矿物按比磁化系数x的大小分为四类: ①强磁性矿物,x>3000×10-9m3/kg,主要有磁铁矿、钛磁铁矿和磁黄铁矿等; ②中等磁性矿 物,x=(600~3000)×10-9m3/kg,有钛铁矿、假像和半假象赤铁矿等;
③弱磁性矿物,x=(15~600)×10-9m3/kg,主要有 赤铁矿、镜铁矿、菱铁矿、褐铁矿、软锰矿、硬锰矿和黑钨矿等;
④非磁性矿物,x<15×10-9m3/kg,有白钨矿、石英、长石、方铅矿、金和萤石等。
原理 待选别的物料给入磁选机的分选空间后,受到磁力和其他机械力(如重力、离心力、摩擦力、介质阻力等)的共同作用。磁性矿物颗粒所受磁力的大小与矿物本身磁 性有关;非磁性矿物颗粒主要受机械力的作用。因之,各沿不同路径运动,得到分选。一般说来磁性颗粒在磁场中所受比磁力的大小与磁场强度和梯度成正比。
磁选机 种类繁多,通常按磁场强弱、聚磁介质类型、工作介质以及结构特点等分类和命名。最基本的是按磁场强弱分类,有三类:①弱磁场磁选机,工作间隙的磁场强度为 (0.6~1.6)×105A/m,用来选别强磁性矿物;②中磁场磁选机,工作间隙的磁场强度为(1.6~4.8)×105A/m,用来选别中等磁性矿 物;③强磁场磁选机,工作间隙的磁场强度为(4.8~20.8)×105A/m用来选别弱磁性矿物。70年代以来出现超导磁选机,磁场强度可达 (28~40)×105A/m,可以选别磁性更弱的矿物。按工作介质,磁选机有干式(空气)及湿式(水)之分。磁选机结构与要选别的矿物磁性强弱以及粒度 有关。除磁滑轮用于选别块状物料外,一般可处理的物料粒度由几毫米至几微米。
简史 磁选专利权已有近 200年的历史。直到1890年,美国博尔(C.M.Boll)等人发明了电磁磁系的圆筒式磁选机(见图),才开始用它进
17 / 17
行选矿。其后相继出现了多种结构的选别强磁性矿物的干式和湿式弱磁场磁选机。50年代前所有的磁选机都是电磁磁系的;50年代中期,开始出现了以铝镍钴合金(见铝合金)作为磁系的永磁磁选机,后来又逐渐以价格低廉、原料来源广的铁氧体永久磁铁代替铝镍钴合金。不仅节省电能,而且便于维护和检修。1965年,中国采用自己生产的锶铁氧体磁铁构成磁系,设计、制造了永磁圆筒式磁选机,并在其后的几年普遍推广。
中磁场和强磁场磁选机出现得较晚,到20世纪20年代才开始应用。20~60年代,先后出现了盘式、带式、环式及感应辊式等多种类型的中、强磁场磁选 机,其中以感应辊式磁选机应用最为普遍。由于当时强磁场磁选机单位机重的处理能力较低,因此一般仅用于有色及稀有金属矿物的选矿。
60年代初期,琼斯(G.H.Jones)提出“多层感应磁极”原理,在强磁场磁选机的设计、制造方面出现了突破。按此原理设计的磁选机发展迅速,使 磁选技术可应用于弱磁性的赤铁矿矿石。70年代以来,根据马斯顿(P.G.Marston)等人提出的新型磁路结构和科尔姆(H.H.Kolm)把纤维状 导磁不锈钢材料作为聚磁介质而设计的高梯度磁选机取得了重大进展,出现了周期式和连续作业式的高梯度磁选机。聚磁介质的磁场梯度相当于常规磁选机的 10~100倍。这类介质的体积只占磁场空间的5~10%,因此使磁选机的处理能力大为提高。近年来超导磁选机的研制也取得了重大进展。
磁选应用 磁选是一种应用广泛的选矿方法。所有贫磁铁矿矿石都由弱磁场磁选处理。通常应用永磁圆筒磁选机进行二段选别;第一段在粗磨下丢弃一部分脉石矿物,所得粗精 矿再磨再选。经破碎后的磁铁矿矿石,也可用磁滑轮预选排除块状脉石和采矿时混入的围岩。弱磁性的赤铁矿矿石,可直接用强磁场磁选机选别;或经磁化焙烧后, 用弱磁场磁选机选别。大多数的锰矿物以及黑钨矿都可用强磁场磁选机选别。
近年来,随着多层感应磁极磁选机、高梯度磁选机以及超导磁选机的相继出现,不仅为细粒级和微细粒级弱磁性矿物选矿提供了有效手段,而且使磁选法逐渐摆 脱原有的局限性,在更多的领域中得到应用。目前,高梯度磁选技术除已用于高岭土工业外,也用于赤铁矿选别、煤粉脱硫、非金属除杂、污水处理等方面。
因篇幅问题不能全部显示,请点此查看更多更全内容