REVIEWS
TeaserAreviewofthecurrentmodels,animalmodels,usedinALSand
newmodelstodrugAtheofPascalineClerc1,ScottLipnick2andCatherineWillett1TheHumaneSocietyoftheUnitedStates,700ProfessionalDrive,Gaithersburg,MD20879,USA
MassachusettsGeneralHospital,HarvardMedicalSchool,DepartmentofMedicine,55FruitStreet,Boston,MA02114,USA
12Althoughamyotrophiclateralsclerosis(ALS),alsoreferredas‘LouGehrig’sDisease,’wasfirstdescribedin1869andthefirstdisease-associatedgenewasdiscoveredalmost20yearsago,thediseaseetiologyisstillnotfullyunderstoodandtreatmentoptionsarelimitedtoonedrugapprovedbytheUSFoodandDrugAdministration(FDA).Theslowtranslationalprogresssuggeststhatcurrentresearchmodelsarenotidealtostudysuchacomplicateddiseaseandneedtobere-examined.ProgresswillrequiregreaterinsightintohumangenesandbiologyinvolvedinALS
susceptibility,aswellasadeeperunderstandingofdiseasephenotypeatthehistologicalandmolecularlevels.Improvinghumandiseaseoutcomewillrequiredirectingfocustowardimprovedassessmenttechnologiesandinnovativeapproaches.
PascalineClerchasdedicatedherresearchtostudyingthemetabolismoftheliverandbrain,mostimportantlytheroleofmitochondriaincelldeathpathways.Astheseniordirectorofpolicyandadvocacyforanimal
researchissuesatTheHumaneSocietyoftheUnitedStates,sheiscurrentlyworkingwithscientistsandpolicymakersinindustry,academia,andGovernmentintheUSAandinternationally,tofacilitatethedevelopmentandimplementationofmethodsthatreduceorreplaceanimalsincosmeticsassessmentprocessesandinbiomedicalresearch.
Introduction
SincethefirstgeneassociatedwithALSwasidentifiedalmost20yearsago,researchershavereliedprimarilyonanimalmodelstostudythemechanismsofdiseaseprogressionandtoidentifytherapies.Thesestudies,fundedmainlybytheALSAssociationandtheNationalInstituteofHealth(http://report.nih.gov/categorical_spending.aspx),havecostnearlyUS$700millionoverthepast10yearsintheUSAalone.Oneofthemainfocuseshasbeenonrecapitulatingthehumandiseaseinanimalmodels,whichhasresultedintheidentificationofasingledrug,riluzole,whichwasapprovedbytheFDAforALStreatmentin1995.However,thebenefitsofriluzolearelimitedtoextendingthelifespanortimetotracheostomybyanaverageof3months.Overthepastdecade,investigationalnewdrug(IND)applicationsbasedondatacollectedusinganimalmodelsofALShaveresultedin11humanclinicaltrials,allofwhichfailedtodemonstrateefficacy[1].Infact,somedrugs,whicheffectivelysloweddiseaseprogressioninmice,resultedinacceleratingtheprogressioninhumans[2].TherepeatedfailureofdrugtranslationfromanimalmodelstohumansseenwithALSisdisappointingintermsoffinancialand,moreimportantly,humancosts.Here,wereviewthecurrentmodelsusedinALSresearchandsuggestare-examinationofthefieldtofocustheresearchonmorehuman-basedapproaches.
ScottLipnickreceivedaBScinphysicsand
economicsfromBrandeisUniversity.HethenobtainedaPhDin
biomedicalphysicsattheUniversityofCalifornia,LosAngeles.After
graduating,hebecamean
AmericanAssociationfortheAdvancementof
Science(AAAS)ScienceandTechnologyPolicyFellowattheNationalInstitutesofHealthCentrefor
RegenerativeMedicine.HethenbecametheDirectorofScientificProgramsattheNewYorkStemCellFoundationResearchInstitute.DrLipnickcurrentlyholdspositionsattheMassachusettsGeneralHospitalandHarvardUniversity,withresearchfocusingonbigdataandtranslationalusesofstemcells.
CatherineWillettbeganhercareerasa
developmentalbiologistusingzebrafishtoelucidatetheimmunesystemandlaterasamodelfor
preclinicaldrugscreening.Since2006,shehasfocusedonthescience,
policy,andregulatoryaspectsofreplacinganimalsasthebasisofchemicalsafetyassessmentandis
currentlytheDirectorofRegulatoryToxicology,RiskAssessmentandAlternativesattheHumaneSocietyoftheUnitedStatesandcoordinatoroftheHumanToxicologyProjectConsortium.Shehasnumerouspublicationsonnon-animalapproachesandadvisesinternationalcompaniesandgovernmentsontheregulatoryuseofsuchapproaches.
Correspondingauthor:.Clerc,P.(pclerc@humanesociety.org)
1359-6446/ß2016ElsevierLtd.Allrightsreserved.http://dx.doi.org/10.1016/j.drudis.2016.02.002
www.drugdiscoverytoday.com
Pleasecitethisarticleinpressas:Clerc,P.etal.AlookintothefutureofALSresearch,DrugDiscovToday(2016),http://dx.doi.org/10.1016/j.drudis.2016.02.002
1
ReviewsKEYNOTEREVIEWDRUDIS-1750;NoofPages11
REVIEWS
DrugDiscoveryTodayVolume00,Number00February2016
ALS
ALSisaprogressive,fatalneurodegenerativediseasecharacterizedbylossofmotorneuronsinthebrainandspinalcord.AccordingtotheNationalALSRegistry(http://www.cdc.gov/mmwr/preview/mmwrhtml/ss6307a1.htm),12,000peopleintheUSAhaveadefinitediagnosisofALS,foraprevalenceof3.9casesper100,000persons.Thediseaseismorecommonamongwhitemales,non-Hispanicsandpersonsaged60–69years.Between90%and95%oftheseindividualsdevelopasporadicformofALS(sALS),occurringwithoutknowngeneticriskfactors,andhavenofamilyhistoryofthedisease.Theremaining5–10%ofcasesareinheritedandclassifiedasfamilialALS(fALS),whichisassociatedwithmorethanadozengenes.BothrecessiveanddominantformsofALShavebeenidentified,butmostfALSispassedoninanautosomal-dominantmanner.
ALSisacomplexdisorderwithaspectrumofphenotypesthatcouldcompriseasinglediseaseorrepresentseveralcloselyrelateddisorderswithdifferentcausesbutsimilarclinicalmanifestations.Theclinicalprogressionisgenerallyrapid,beginningwithmusclelossfollowedbymuscledegeneration,paralysis,andrespiratoryproblems.Mostpatientssuccumbtothediseasewithin3–5yearsafterdiagnosisbecauseofrespiratoryorcardiacdeficits.Althoughmotorfunctiondeclines,sensory,cognitive,andemotionalcapa-bilitiesaregenerallyleftintact.AlthoughtheetiologyunderlyingALSprogressionisunknown,variouscellularpopulationsandprocessesareknowntobeinvolved.Keypathologicalfeaturesincludemotorneuronloss(lesions),retractionofmotorneuronaxonsfromneuromuscularjunctions,theappearanceofinclusionbodieswithinneuronsandastrocytes,ubiquitin-positiveproteinaggregatesinneurons,andblood–brainbarrierdisruption.Al-thoughmanygenemutationshavebeenshowntobeassociatedwiththedevelopmentoffALS,ageneticcontributiontosALSisstillunclear.RiskfactorsforsALSincludegender[3],exposuretotoxicchemicals[4,5],andtraumaexperiencedduringmilitaryservice[6].
ThefirststudyassociatingageneticassociationinALS,specifi-callyCu/Znsuperoxidedismutase(SOD1),waspublishedin1993[7].SOD1isaubiquitousproteinthoughttoberesponsibleforprotectingcellsfromoxidativestressbyneutralizingcytoplasmicfreeradicals.SOD1isasolubleproteinlocatedinthenucleus,cytosol,mitochondria,andperoxisomes,whereitconvertssuper-oxideradicalstooxygenandhydrogenperoxide.KnockoutandfunctionalstudiesindicatedthatmostmutationsinSOD1resultingainoftoxicfunctionbydestabilizingtheproteinandcausingittofoldintoanon-native,harmfulconformation[8].Currenttheoriessuggestthatthesemisfoldedproteinsproduceatoxicproteinaggregatebuildup[9],althoughthecompletemechanismsofdiseaseprogressionareunknown.MutationsinSOD1accountfor20%offALSand1–3%ofsALScases.DifferentmutationsinSOD1alsohavepenetrancethatcanvarydependingonfactorssuchasage,sex,orethnicity[10].
From2001to2011,mutationsassociatedwithfALSwerefoundinalmost20additionalgenes,mostofwhichwereassociatedwithonly1–5%offALScases,althoughC9ORF72,anewlyidentifiedgeneofunknownfunction,islinkedto30%offALS[11].ManyALS-associatedgeneswereidentifiedusinglinkageanalysisandcandidategenesequencingonDNAfromaffectedfamilies,al-thoughsomewerediscoveredthroughhistologicalassociations.
Forexample,theTDP-43proteinwasfoundtobepresentinmotorneuroninclusionbodiesinthebrainandspinalcordofmanypatientswithALS[12],suggestinggenedysregulation.MutationsintheTARDNA-BindingProtein(TARDBP)gene,responsibleforTDP-43proteinsynthesis,werelateridentifiedbygenesequencingofpatientDNA[13].Thewild-typeformofTDP-43interactswithanotherALS-associatedprotein,FUS,bothofwhichcanbindRNAandDNA,andareinvolvedintranscriptionalrepression,pre-mRNAsplicing,andtranslationregulation[14,15].However,thefunctionofFUSandTARDBPinpatientswithALScarryingthemutatedformofthegenesremainsunknown.
SoonafterthediscoveryofALS-associatedgenes,animalmodelsexpressingmutanthumanALS-associatedgenesweredevelopedandwidelyadoptedtostudythemechanismofactionbehindvariantsinvivo[16].GiventhatsALSandfALSareclinicallysimilarandbelievedtohavesimilarpathologicalmechanisms[17],mousemodelsoffALSwerethoughttorepresentgeneralALSpathologyintermsofidentificationofinterventionstosloworreversethediseaseprogression.Overthepast20years,althoughrodents,especiallymice,havebeenthemostcommonlyusedmodelsforALS[18],differentspecies,includingCaenorhabditiselegans[19],Drosophila[20],zebrafish[21,22],andevennonhumanprimates[23],havealsobeenusedasmodelorganisms.Here,wedescribethemostcommonnonhumananimalmodelsofALSanddiscussthecaveatsinfluencingtheirvalidityandtranslationalapplicabil-ity(Table1).Additionally,wesummarizecurrent,andsuggestpotentialadditional,alternativemethodsforstudyingALSpro-gressionandidentifyingtherapies,withafocusoninvitroandnon-animalapproachestoimprovetranslationalefficiencyandbenefitthepatients.
Currentuseofnonhumananimals
Variousspecies,fromvertebratestoinvertebrates,havebeenusedtodevelopedALSmodels.WehavebeenabletolearnaboutALSfromthosemodels,but,aswithanymodelsystem,therearelimitationsintheirabilitytorecapitulatethediseaseandintheknowledgegatheredfromtheiruse.The‘ideal’modelwouldreproducethehumandiseasesymptomsidenticallyandwiththesameprogression(‘face’validity)andneurobiologicalmecha-nismofaction(constructvalidity),whilealsoservingasaplatformfortheevaluationoftherapeuticinterventionsinhumans(pre-dictivevalidity).
Caninedegenerativemyelopathy
NospeciesotherthanhumansareknowntonaturallydevelopALS;however,dogscanexperienceasimilarneuromusculardiseasewithsomeALS-likeclinicalfeatures.Currently,twoSOD1mutations,E40KandT18S,havebeenidentifiedbygenome-wideassociationandsequencingstudieswithcaninedegenerativemyelopathy(DM)[24,25].DMandALSaresimilarinthatbothareage-related,fataldiseaseswithprogressivelossofbothupperandlowermotorneu-ronswithsubsequentmuscledegeneration.Thediseasesarealsosimilarhistologically:spinalcordsofdogswithDMandhumanswithALSexhibitlesions,ubiquitin-positiveinclusionbodies,signsofoxidativestress,andneuromusculardenervation[24,26].How-ever,therearesignificantdifferencesbetweenthetwodiseases.CanineDMbeginswithuppermotorneurondefects[24],whereashumanALSdysfunctionbeginsineitherupperorlowermotor
2
www.drugdiscoverytoday.com
Pleasecitethisarticleinpressas:Clerc,P.etal.AlookintothefutureofALSresearch,DrugDiscovToday(2016),http://dx.doi.org/10.1016/j.drudis.2016.02.002
DRUDIS-1750;NoofPages11
DrugDiscoveryTodayVolume00,Number00February2016
REVIEWS
TABLE1
AsummaryofALSresearchmethods
MethodsExamples
Features
Limitations
Refs
Invivo
CaenorhabditisCellularfocuswithoutsystemiccomplexityLacksspinalcordandlowermotorneurons[19,30,43]elegansaffectedbyALS
Drosophila
MorecomplexitythanC.elegans,butlessWild-typehumangeneexpressionistoxic;[20,35,44]thanvertebrates
relativelysimplisticcomparedwithhumanZebrafishCheap,quick,simplistic;vertebrate
Notmammalian;relativelynewmodels[21,31,36]Mouse
Manydifferentmodels;shortlifespanandOverexpressionartifacts;uniquebiological[18,37,38,80]
diseaselength
propertiesfromhumans(lifespan,metabolism,etc.)
RatLargersize;shortlifespananddiseaselengthDiseasephenotypedifferencesfrommouse[22,46,80,107]Dog
Naturallyoccurringdisease(DM)
DMsimilarto,butnotsameasALS[24,26,29]NonhumanBetterdiseasemimicthanotherspecies
Expensive,longlived,ethicalissues
[23]primates
Invitrocultures
Yeast
Simple,modelsproteinaggregationwellNotsystemic,neural,orevenhuman[36,86,87]
PatientdissociatedNaturaldiseasegeneexpression;easy,directFinitelifespan;difficulttotransfect
motorneuronsdrugapplication
NSC34
Immortalmotorneuron-likeline;human;Induceddiseasephenotype;nottruemotormanipulable
neuronline
Stemcells
Cantransplantordifferentiateforstudy/Notsystemic,transplantationstilltransplant
experimental
IPSCs
TissuesliceEasilymanipulated;moresystemicthancellSamerecapitulationissuesaswholeanimal;culture(animal)
cultures
distantconnectionssevered
Insilico
ComputermodelingHighthroughput,hypothesisdrivenRequiresaprioriknowledge;underdevelopedVirtualmice
Quick,cheap
Sameissuesasmousemodel
GeneticNGS
Identifiessequencemutations
Requirespreviouslinkage;requiresseveral[11,82,83]
affectedindividualswithsamemutationGWAS
IdentifiesSNPslinkedtodisease;canidentifyNeedlargesamplesize;genetic
severalSNPsatonce
heterogeneityinALSpopulation;remainingmutationscanberiskrelated
MolecularIdentifiesclinicaltargets;givesinsightsintoExpensiveathighthroughputlevels;directphenotyping
diseasepathogenesis
versusindirecttargetsofdiseaseunclear
Availabledata
Patientdata
Cheap,quick,easilyaccessible;largesampleReliesonpersonalreporting;limiteddataset[84,85]
sizes
breadth
Medicalrecords
Easytrendanalysis;lesssubjectivethanLimiteddatasetbreadth
personalreporting
neurons[27].MosthumanSOD1mutationsaredominant[27],withhumans,buthavesignificantdisadvantages,includingtime,whereasDMappearstoberecessivewithincompletepenetrancespace,funding,andethicalconcerns[23].
[24],suggestingthatSOD1functionsorrequirementsareuniqueinThezebrafishisauniqueorganisminthatithasaconserved,humans.Additionally,menaremoresusceptibletoALSthanwom-simplifiedvertebratenervoussystem,ashortlifespan,andisame-enandmostALSissporadic[3,28],whereasDMindogsisequalnabletogeneticmanipulationandtherapeuticscreening.Further-betweenthesexes,althoughthereisbreedsusceptibility,andgen-more,70%ofhumangeneshaveatleastonezebrafishortholog,anderallyoccursinafamilialpattern[29].
arecentstudyshowedthat82%ofgenesassociatedwithhumanThesimilaritiestoALSindicatethatinformationregardingthediseaseshaveazebrafishortholog.ResearchersstudyingALShavemechanismandprogressionofDMmayyieldinsightintoALS.foundthattheuseofzebrafishmodelsprovidesuniqueinsightsintoMosthistologicalresearchonALSisdoneontissuefromindivid-systemic,cellular,andmolecularpathwaysassociatedwithdifferentualswhodiedatlatestagesofdiseaseprogressionandlittleisgeneticvariants.Theflexibilityofthismodelandsimilaritytotheknownaboutthemanifestationsofearly-stageALS.However,dogshumangenomehaveinfluenceditsrisingpopularityinneurode-withDMareofteneuthanizedearlyindiseaseprogressionbecausegenerativeresearchandhasincreasedourunderstandingoftheofdeteriorationintheirqualityoflife[24]and,therefore,early-biologicalactivityofgenesassociatedwithhumandiseases.How-stageDMdiseasetissuesareavailable.
ever,despiteevolutionaryrelationsoranatomicalsimilaritiesbe-tweenzebrafishandhuman,biochemicalmechanismsorTransgenicanimals
physiologicalresponsesaredifferent,anddataaccumulatedusingRodentshavebeenpreferredtootherspeciesbecauseoftheirmorezebrafishareoftennotrelevanttohumans.Invertebratemodels,complexcentralnervoussystem(CNS),andbecausetheyareeasiersuchasC.elegansandDrosophila,havealsobeenusedtodescribethetohandleandhaveashorttimetomanifestdisease-likepheno-diseasephenotypeandprogressionatthecellularandmoleculartypes.Nonhumanprimatemodelshavealsobeendevelopedbasedlevelsinarelativelycell-autonomousmanner,despitetheirlackofontheirpresumedrelevancebecauseofphylogeneticsimilarity
lowermotorneurons.
www.drugdiscoverytoday.com
3
Pleasecitethisarticleinpressas:Clerc,P.etal.AlookintothefutureofALSresearch,DrugDiscovToday(2016),http://dx.doi.org/10.1016/j.drudis.2016.02.002
WEIVERETONYEKsweiveRDRUDIS-1750;NoofPages11
REVIEWS
DrugDiscoveryTodayVolume00,Number00February2016
SOD1transgenicanimals.SincethediscoveryofSOD1asanALS-associatedgenein1994,avarietyoftransgenicSOD1mutantanimalmodelshavebeencreated.Morethan150mutationsofSOD1havebeenidentifiedinfALSandover20rodentmodelshavebeengenerated,mostofwhichoverexpressamutantvariantofhumanSOD1.TheoldestandmostwidelyusemodelistheG93AhSOD1overexpressionmouse,whichatonepointwasusedinupto97%ofALSdrugstudies[18].Transgenicmutanthuman(h)SOD1overexpressionmodelsalsoexistinC.elegans(G93A,G85R,G37R,andA4V)[30],Drosophila(G85RandA4V)[20],andzebrafish(G93R,G37R,andA4V)[21,31].
TheSOD1modelswereinitiallydevelopedtobeageneralmodelforALS(SOD1-relatedandnon-SOD1-relatedfALS,aswellassALS).AlthoughSOD1mutationsarenotpresentinsALS,therearephenotypicsimilaritieswithfALS,andithasbeenassumedthatfamilialandsporadicformssharedthesameneuronaldegenera-tionpathwayandstudyingthefamilialformcouldprovideinsightintothesporadicform.However,thevalidityoftheseassumptionshasbeenquestioned.IthasbeenshownthattissuesfrompatientswithsALSandnon-SOD1fALSexhibitaggregatesofTDP-43inmotorneuronsandglia[32],yetpatientswithALSandSOD1mutationsdisplayTDP-43-negativeneuralaggregates[32].TheG93AhSOD1mousemimicsthehumanSOD1phenotypewithTDP-43-negativeaggregatestaining[33],indicatingthatmouseSOD1modelsmaybetterrepresentthephenotypeofpatientswithALSandhSOD1mutations,butnotthosewithsALSornon-SOD1fALSmutations,whichaccountfor98%ofALScases.
TARDBPtransgenicanimals.In2008,TARDBPwasidentifiedasanassociatedgenein3–5%offALScasesand2%ofsALScases[34].Sincethen,mutanthumanTARDBPhasbeenoverexpressedinbothC.elegansandDrosophila,whichexhibitsomehumanALScharacteristics,includinglossofmotilityandreducedlifespan[35].ThezebrafishTARDBPmodelisnotyetwellcharacterized,butdoesexhibitmotordefectsandaxondeficiencies[36].MouseandratoverexpressionmodelsappeartorecapitulateoverarchinghumanALSphenotypesinthattheyexhibitneuronalubiquitin-positiveinclusions,motorneurondegeneration,axondegenera-tion,motorloss,paralysis,anddeath[37,38].Givenconcernsaboutthelackofrelevanceofexpressingmodelsthatexhibitearlyparalysisanddeath,arecentmodelwasdevelopedexpressinglowerlevelsofTDP-43tomimicthehumanproteinexpressionlevel[39].Todate,onenonhumanprimateTDP-43modelhasbeendevelopedbyoverexpressingthehumanwild-typefromofTDP-43inthespinalcordsofcynomolgusmonkeytorecapitulatetheredistributionofTDP-43fromthenucleustothecytoplasm,whichwasnotobservedinratmodels[23].
MutantmodelsofTARDBPexpressionarestillrelativelynew,andlackcharacterizationinthecontextofthehumanTARDBPALSphenotype,butrecentpublicationshavereportedthat50TARDBPmutationsmightbeassociatedwithALS,whereasothersreportthatthosemutationsarestillrareinALS[40,41].FUStransgenicanimals.In2009,FUSwasidentifiedasanassoci-atedgenein5%offALScasesand1%ofsALScases[42].InclusionsofFUSinthecytoplasmhavebeenshowntoberecurrentinpatientswithALSandFUSmutations.Sincethen,ahandfulofmodelsoverexpressingthemutanthumanFUS(hFUS)havebeencreatedinC.elegans,Drosophila,zebrafish,andrat.BoththemutanthFUSoverexpressionDrosophilaandC.elegansmodels
exhibitadecreasednumberofneuromuscularjunctions,motorneurondamage,cytoplasmicFUS-positiveproteinaggregation,locomotorimpairment,andprematuredeath[43,44].Overexpres-sionofmutanthFUSinzebrafishisnotfullycharacterized,butdoesresultinmotorneurondefectsandmotordeficits[45].Inrodents,itlooksliketheoverexpressionofmutatedorwild-typeFUSinducesdifferentphenotypesdependingonthespecies.Themu-tanthFUSoverexpressionratmodelexhibitsproteinaggregates,neurodegeneration,andmuscleatrophy[46],whilerecentstudieshaveshownthatoverexpressionofwild-typeFUSinratsinducescognitivedefectsinagedanimalswithoutmotorphenotypeorspinalcordpathology.However,inmice,overexpressionofwild-typeFUSinducesmotorneurondegenerationwhensignificantamountsofproteinaccumulateinthecytoplasm[47].
ConcernsregardingtherelevanceofnonhumananimalstoALS
GiventheirabilitytorecapitulatesomekeyALSfeatures,animalmodelshavebeenusedtostudyALSforalmosttwodecades;however,thevalidityofanimalsasmodelsforhumandiseaseshasbeenchallengedandisgenerallydebated[18,48–51](http://dana.org/News/Details.aspx?id=42802).Often,theunderlyingmechanismsofactionandresultingclinicalmanifestationfoundinanimalmodelsnotonlydonotcorrelatewiththatinhumans,butalsoguideresearchersandresourcesalongfruitlessavenues.StudieshaveidentifiedtroublingdisparitiesbetweenhistologicalphenotypesofpopularALSanimalmodelsandhumanALS[32,33].Disparitiesalsoexistwithinresearchresultsinthesamemodelsatthesameordifferentinstitutions,indicatingalackofreproducibility[18].Additionally,someconcernshavebeenraisedregardingthedifferentformsofcelldeaththatmayexistbetweenhumansandmicemodelsofALS[52].Althoughanimalmodelshaveyieldedsignificantinformationregardingbiology,theiruseinmodelingcomplexhumandisordersislimited.
Overexpressionissues
Althoughmostbroaddiseaseclinicalcharacteristics,suchasmotorneurondegeneration,motorloss,anddeath,arereplicatedinsomeanimalALSmodels,thevalidityofoverexpressionmodelshasbeencalledintoquestion.ItisunknownwhetherALS-associ-atedgenesareupregulatedinpatientswithALS,yetmostanimalmodelsofALSutilizeoverexpressionofamutanthumanALS-associatedgene.Asdescribedabove,theoverexpressionofFUSusingdifferentpromotersandonsetofexpressionindifferentspecies(ratsandmice)andstrainsresultindifferentphenotypes[46,47].Modelsresultingfromgeneoverexpressionhaveseveraltohundredsofcopiesofthehumantransgeneandexpressionofthemutanthumangeneisseveral-foldhigherthanendogenousani-malgeneexpression[53].Inthemostpopularmousemodel(G93ASOD1),25copiesofthehumantransgenehavebeeninsertedandhSod1isexpressedatlevels13-foldhigherthanendogenousmSod1[53].Interestingly,overexpressionofwild-typegenesinmicecausessomeneuronaldefectsandvacuoleaccumulation,whicharenotobservedinhumans[47,54],likelyindicativeofmitochon-drialswellingfromtoxicproteinoverload.Consistentwithanoverloadhypothesis,theexogenousgenecopynumbersofeithermutantorwild-typegenesinmiceisstronglycorrelatedwithdiseasephenotypeseverity[55,56].Overexpressioneffectsarealso
4
www.drugdiscoverytoday.com
Pleasecitethisarticleinpressas:Clerc,P.etal.AlookintothefutureofALSresearch,DrugDiscovToday(2016),http://dx.doi.org/10.1016/j.drudis.2016.02.002
DRUDIS-1750;NoofPages11
DrugDiscoveryTodayVolume00,Number00February2016
REVIEWS
seeninDrosophila,wherewild-typehTARDBPoverexpressiontohumansbutnotanimals,asisthecasewiththalidomide.Expo-causesdose-dependentmotordefectsandseverereductionofsureofpregnantwomentothalidomideduringthe1970sresultedinlifespan[57].However,dependingontheleveloverexpressionseverefetaldevelopmentaldefects;however,thalidomidetestinginofproteinslinkedtoALS,non-ALS-relevantphenotypescanbeanimalshadshowninconsistentandspecies-and/orstrain-specificobserved,rangingfromphotoreceptordegenerationtodisruptionresponses[64,65].Speciesvariationsindrugtoxicologyresponsesofeyearchitectureandlarvallethality,highlightingthetoxicarelikelyduetodifferencesintheuptakeand/orexcretion,metab-effectsandlackofspecificityofthismodel.
olism,anddistributionofdrugs,aswellasimmuneresponsesOverall,thesestudiessuggestthatgeneoverexpressioncauses[66,67].Thesecriticaldifferencesindicatethatanimalsandanimaltoxiceffects,someofwhicharesimilartoanALS-likephenotypemodelsmaynotbeidealcandidatesforthetoxicologytestingthatisbutarenotrelatedtoALSdiseaseprogression,therebycomplicat-necessaryforestablishingthesafetyofnewdrugs.
ingdiseaserecapitulationandunderstanding.Animalmodelsarecreatedtounderstanddiseaseprogressionandpathogenesis,sup-Aging,environment,gender,andCNSphysiology
portthedevelopmentoftreatments,andcollectpreclinicaldata;ALSisstronglyageassociated,butthelackofage-relatedALS-likeartifactsofgeneoverexpressioncanconfoundresearchresults,diseasesoutsideofhumans(withthepossibleexceptionofdogs)misleadfuturestudies,and,therefore,delaytheavailabilityofnewsuggeststheneedtoappreciatethebiologicaldifferencesbetweendrugstopatients.
humansandotherspecies.Eachspecieshasauniquelifespan,tissue-specificcellularturnoverrates,oxidativestressresponses,Speciesbiologicaldifferencesimpacttranslationalpotential
andgene-expressionprofiles,allofwhichcontributetoaging,andAsmentionedabove,modelsofALSinC.elegansandDrosophilaarearelikelytocontributetodifferencesinaging-relateddiseasesimilartohumanALSinthatbothexhibitinclusionbodies,defectsprogression.
inneuromuscularjunctionsignaling,glialabnormalities,progres-AgingandALSarealsolinkedtolocalfactors,suchasenviron-sivemotordefects,andevendeath[20,30,35,43].However,thosement,diet,andstress[68,69];however,differentanimal-housingmodelsdonotexhibitmotorneurondeath[20,30],asobservedinfacilitiesandresearchgroupshavevaryinganimalcolonyman-humanswithALS,wholosebothupperandlowermotorneurons.agementmethods,whichaffectanimalstressandbehaviorThisdifferencecouldbeduetotheshortlifespanofthesespeciesor[70–72].Thesameanimalmodelstudiedattwodifferentfacilitiestothedifferencesbetweentheneuralcellphysiologyofvertebratesorbytwodifferentinvestigatorscanexhibitdifferentdiseasefea-andinvertebrates.ZebrafishG93RmutantsresembleALSinthattures,thusconfoundingresultsthroughoutthefield.Additionally,theyexhibitthemaindiseasecharacteristics,includingspinalgenderisariskfactorforALS,becausemenareslightlymorelikelytomotorneuronloss,muscledegeneration,motordeficits,neuro-developthediseasethanwomenandfemaleALS-modelmicetendmuscularjunctiondefects,paralysis,andearlydeath[31].Howev-tolivelongerthanmales[28,73];however,genderisnotalwayser,thetransgeniczebrafishmodelisrelativelynewandnotyettakenintoaccountinanimalstudies[18],whichcancontributetofullyunderstood,anddevelopingnewinterventionsforhumanpoorreproducibility.Additionally,althoughthehumangenomeisALSbasedonstudiesconductedonzebrafishisnotaguaranteeofapproximately97.5%similartothemousegenome,differencesinsuccess,despiteitsresemblancetothediseaseinhumans.
DNAmethylationorhistonemodificationcanbeverydifferentSimilartozebrafish,somerodentmodelsofALS,includingSOD1amongspecies,leadingtovariabilityingeneexpression.
models,alsoappeartorecapitulatemanyofthecharacteristicALSTheanatomyandphysiologyoftheorgansystemsaffectedbyphenotypes,includingneuromuscularjunctiondisruption,upperALS(CNSandskeletalmuscle)alsodifferbetweenspecies,whichandlowermotorneuronloss,muscledegeneration,respiratorylikelyinfluencesdifferencesindiseasephenotypeanddrugproblems,immuneabnormalities,blood–brainbarrierdisruptions,responses.Importantanatomicbraindifferencesexistbetweenandproteinaggregation[16,58–60].Transgenicmodels,suchasspecies[74,75],andevenbetweenstrainswithinasinglespeciesSOD1andTARDBPmodels,alsodemonstrateprogressivemotor[76].AccordingtoEisen,ALSandotherneurodegenerativediseasesdeclinethateventuallyleadstoparalysisanddeath.However,somearehuman-specificdiseases.Indeed,theevolutionofHomosapiensstrainsofG93ASOD1transgenicratshavemoreaggressivediseaseledtoneocorticalchanges,withthedevelopmentofnewcorticalphenotypesanddifferentmotorneurondegenerationpatternsareasandincreasedinterconnectionsthatarenotonlyresponsiblecomparedwiththeirmousecounterparts[22],indicatinguniquefortheacquisitionofbipedalismandopposablethumbs,butalsodiseasemanifestationsamongspecies.Giventhattransgenicani-thebrainregionstargetedbyALS[77].Spinalcordanatomymals,suchasG93ASOD1rodentsexhibitingsomesimilaritieswithbetweenspeciesisalsounique;thelengthofthehumanspinalALS,displayspecies-specificdiseasephenotypes,thissuggeststhatcordisseveraltimesthesizeofthecordinmostanimals.Specieseffectsobservedinanimalmodelscannotfullybetranslatedintoalsodifferatthemolecularlevel,becauserodentsandhumanshumansbecauseofcriticalbiologicaldifferences.
exhibituniquegeneexpressionpatternsinthebrain[78].TheseThesebiologicaldifferencescaninfluencediseasemanifesta-differencesinphysiology,complexity,andexpressionundoubt-tions,treatmentresponses,andtoxicologicalthresholds.Foredlyaffecttheabilityofanimalmodelstomimichumanneuralexample,administrationofcertainchemicals,suchasmethyldiseasephenotypes.
tert-butylether(MTBE),afueladditive,inmaleratsinducedendogenousa2u-globulinnephropathyandledtokidneytumors;Concernsaboutthemethodologiesusedtocreatehowever,humansdonotproducea2u-globulinand,therefore,animalmodelsofALS
responddifferently[61,62].Similarly,penicillinissafeinhumans,Giventhattransgenicanimalsaredevelopedusinginbredstrainsbuttoxictoguineapigs[63].Inotherinstances,drugsareharmful
thatarerelativelygeneticallyhomogenous,resultsusingthesame
www.drugdiscoverytoday.com
5
Pleasecitethisarticleinpressas:Clerc,P.etal.AlookintothefutureofALSresearch,DrugDiscovToday(2016),http://dx.doi.org/10.1016/j.drudis.2016.02.002
WEIVERETONYEKsweiveRDRUDIS-1750;NoofPages11
REVIEWS
DrugDiscoveryTodayVolume00,Number00February2016
transgeniclineshouldbereproduciblebydifferentresearchgroups.However,thishasoftennotbeenthecaseforALSanimalmodelsforseveralreasons.Asmentionedabove,somedifferencesresultfromanimalcolonymanagementprotocols.Inthesemod-els,diseaseprogressionisoftenassessedbasedonqualitativemeasures,suchasgripstrength,wirehanging,gaitanalysis,andneurologicalscoring[79].Thelackofstandardquantitativemea-suresmakesitdifficulttocompareresultsbetweenstudies.Inaddition,drugstudiesontransgenicmiceareoftenunderpowered,lackrandomizationofgroups,andoutcomeevaluationsarenotperformedblind[18,80].Infact,thelackofstandardizedmeth-odologyledtheEuropeanALS/MNDgrouptodevelopandpublishtheStandardOperatingProceduresforALSpreclinicalanimalresearch[79].However,itisstilltooearlytotellwhethertheseguidelineswillbeusedorimpactthereproducibilityofresults.
Humanstudiesandnon-animalapproachesGeneticstudiesinhumans
ALSgeneticsubpopulationscanhaveuniquediseaseprogressionmechanisms
Previously,geneticstudieshavebeeninstrumentalinidentifyingassociatedmutationsinALS.TheidentificationofC9ORF72throughnext-generationsequencing(NGS),whichhadpreviouslybeenlinkedtofALSusingagenome-wideassociationstudy(GWAS)[11,82],wasahugebreakthroughintheALSfield,becauseC9ORF72isanassociatedmutationresponsibleforupto24%offALSand4%sALScases[82].GiventhatthegeneticcausesofmostsALScasesarestillunknown,furtherGWASandNGSstudieswouldbeusefultoidentifyotherALS-associatedgenes.Further-more,geneticstudiescanimproveourunderstandingofALSprogressionandmechanisms.MolecularphenotypingstudieshaveidentifieduniquegeneexpressionprofilesofspinalcordneuronalpopulationsincontrolsversuspatientswithALS[83],implicatingcertainpathwaysinALSprogression.Futuremolecularphenotypingstudiescouldidentifyearlyversuslatemarkers,therebypotentiallyinformingcausalrelations.
Asmentionedabove,transgenicanimals,especiallyrodents,areestablishedininbredand,therefore,geneticallyhomogenouslines[18].However,patientswithALSareclinicallyandgeneti-callydiverse.Asaresult,drugstudiesinALSmousemodelsshowingsmallbutpositiveeffectshavenottranslatedtopositivefindingsinhumanclinicaltrials,likelybecausetheeffectsofthedrugsarebothsmallandspecifictouniquerodentgeneticbackgrounds.
AccordingtotheguidelinesforpreclinicaltestingandcolonymanagementwhenworkingwithALSmice,establishedbyTheJacksonLaboratoryandPrize4Life,mixedstrainsofALSanimalmodelshaveanadvantagebecausetheybettermimicthehetero-geneoushumanpopulation.However,mixingstrainsbetweenexperimentalgroupscouldrequireanincreasednumberofani-malstoreachstatisticalsignificancefromaheterogeneoussubjectpool.Theuseofinadequatenumbersofanimalscannegativelyimpactreproducibilityandresultinmisleadingdataandwastedresources.Geneticissuescanevenoccurwithinasinglestrain;G93AhSOD1mousecoloniescanspontaneouslylosecopiesofG93AhSOD1,resultinginmisleadingdatafromdelayeddiseaseonsetanddeath[56].ThevariablegeneticsofALSanimalmodelcoloniesisacomplicatingfactorthatcaneasilyaffecttheaccuracyandreproducibilityofresults,andlikelyhascontributedtotheconfusionwithintheALSfield.
Humandataandpopulationmonitoring
Foryears,researchershavecombedavailablepatientdataforcausativelinkstoALSfromseveralpatientregistries,includingALSregistries[NationalALSRegistry,DepartmentofVeteran’sAffairs(VA)ALSRegistry,andfALSConnect],whichcontaindatafromthousandsofpatientsaswellasmedicalrecords.Thesedatabasesareeasilyandquicklyaccessible,free,containdataonalargepatientpopulation,and,therefore,havebenefittedresearchers.RegistrydatacanbeusedtoidentifygeneticandenvironmentalALSriskfactors,predictdiseaseprogression,orevenimprovetreatment[84,85].
Additionally,monitoringpopulationssusceptibletothediseasecouldhelpidentifybiologicalorphysicalmarkers,whichwouldgiveusabetterunderstandingoftheprogressionofthediseaseand,therefore,identifyearlydiagnostics.
Cellandtissuemodels
Clinicaltrialdesign
Inmoststudies,potentialdrugsorcompoundsaretestedonanimalmodelsbeforetheonsetofsymptoms,whichisnotrelevantwhenitcomestoclinicaltrialsbecauseitisimpossibletostarttreatingpatientspresymptomatically.Additionally,Vin-santetal.proposedthatthediseaseonsetinSOD1mutantmicestarts2monthsbeforeitwasinitiallythought(postnatalday30insteadof90);therefore,theauthorsuggestedthattreatmentshouldbetestedatpostnatalday30[81].AccordingtotheGuidelinesforpreclinicaltestingandcolonymanagement,itisrecommendedtoconductpreclinicaltrialspre-onsetand,ifthedrugsshowsomeeffect,toconducttheexperimentsatorpost-onset;therefore,thereisnovalidreasontoconducttheexperimentspre-onsetonanimalsiftheywilleventuallybeconductedatorpost-onset.
Yeastshavebeenusedtostudymolecularinteractionsassociatedwithneurodegenerativediseases,suchasALS.Yeastsareamenabletogeneticmanipulation,growquickly,areeasytostudyatasingle-celllevel,andhavemanyofthebasiccellularmechanismsinvolvedinneurodegeneration,suchasmitochondrialdefects,proteinmisfolding,andproteintrafficking/degradationimpair-ments.Assuch,yeastcanbeusedtostudycellularresponsestoknownALSgeneticmutationstodeterminetheunderlyingmech-anismsofALSdiseasepathology.Forexample,yeaststudiesshowedthatTDP-43isnormallylocalizedtothenucleus,butTDP-43overexpressionresultedincytoplasmic,toxicproteinaggregates[86].OtherALSmutationsincreasedcellularstressandalsoresultedinaggregates[87].Ofcourse,ALSisacomplex,multicellulardiseaseand,thus,asasingle-celledorganism,yeastisnotcapableofrecapitulatingALSinitssystemicentirety.Itisalsoimpossiblewithyeasttointerrogatethecomplexinteractionswithotherproteinsorpathwayssolelyinhumancellsorinthepartic-ularcellofinterest,themotorneuron.However,yeastasamodelhasprovenusefulindelineatingtheALSdiseasepathwayatthemolecularandcellularlevels,whichisacriticalfoundationuponwhichtobuildunderstandingofthediseaseatthetissueandmultiorganlevels.
6
www.drugdiscoverytoday.com
Pleasecitethisarticleinpressas:Clerc,P.etal.AlookintothefutureofALSresearch,DrugDiscovToday(2016),http://dx.doi.org/10.1016/j.drudis.2016.02.002
DRUDIS-1750;NoofPages11
DrugDiscoveryTodayVolume00,Number00February2016
REVIEWS
Otherculturedcellsaresimilarlyusefulindelineatingthequalitativeandquantitativemethodtocomparetheresponseoffundamentalmoleculardiseasepathway.CulturescancomprisetissuesfromdifferentALSgenotypes.Additionally,useofmarkersprimaryanimaland/orhumancellsfromanytissue,immortalcouldhelpstandardizeresultsbetweenlaboratories.
nonstemcelllines,andevenembryonic,fetal,oradultstemcells.Therecentdiscoveryofinducedpluripotentstemcells(iPSC)holdsInvitromodelsusingiPSCs
greatpromisebecausetheycanbegeneratedfromthoseaffectedIPSCsrepresenttheopportunitytointegratethecomplexgenomicbyALS,maintainingthedonorgenotype,andprovideanunlim-landscapeseeninhumansaffectedbybothfALSandsALS.Humanitedsourceofcellsformodelingthedisease.IncaseofprimaryiPSCsarederivedfromadultsomaticcellsthroughepigeneticanimalcells,neuralsubtypesfromdifferentspeciescanbeused,modificationtoyieldpluripotentcellsthatproliferateindefinitelytherebyimprovingspeciesandcellularrelevancyforbothpatho-intheundifferentiatedstate,yetretaintheabilitytodifferentiategenesisstudiesanddrugscreenings[88].Forexample,motorintoorgan-specificcelltypes.Motorneuronsandotherrelevantneuronandmotorneuron-likecultures(suchasNSC34cells)celltypes,suchasastrocytes,arerecreatedfromiPSCsobtaineddisplaycellstress,aggregation,andcelldeathinresponsetofromhumanswithALSandhealthycontrolscanbegeneratedtoALSmutations[36,87].Additionally,cellculturescangenerateevaluategeneticfactorsrelatedtothediseaseaswellasexposuretocellpopulationsfortransplantationtherapies;everythingfromvarioustoxins.Thedifferentiatedcellsarecharacterizedandcom-embryonicstemcellstoadultneuroblastscanbeleftundifferenti-paredinthehopeofidentifyingcellularphenotypesthatrecapit-ated,inducedtodifferentiate,oralteredandthenimplanted[89].ulatekeyaspectsofthedisease.
Cellculturemodelsareevenbeginningtosupplement,andatAlthoughthesecellsarenotfreeofcaveats,suchasthedifficultytimesreplace,animaltestingfortoxicologicalstudiesbecausetheytoaccuratelydefinethestateofthecells,maturethecells,orarequicker,cheaper,moreeffective,andmoreethical[90].
obtaintherightcells,theyholdgreatpromiseforALSresearch,butSimilartoyeast,cellculturesarelimitedwithrespecttounder-effectiveintegrationiscontingentuponaccesstolargenumbersofstandingsystemicfunctionsanddefects;however,culturemodelsaffectedcelllinesandreproduciblepanelsoftheirdifferentiatedareusefulforidentifyingcell-specificdefectsandmechanisms.progeny.ThefirststudydemonstratingtheabilitytogenerateWhilegroups,suchastheorgan-on-a-chipprogramfundedbyiPSCsfroman82-year-oldwomanwithALSanddifferentiatethemDARPA,NIH,andFDA,arebeginningtodevelopcomplexengi-intomotorneuronswaspublishedin2008[94].Morerecentneeringplatformscapableofmodelinginteractionsbetweenmul-studieshaveevaluatedvariouscellularphenotypesrelatedtotipleorgansystems,theyarestillimmatureandhavenotshowntheprogressionofALS[95,96].Ifcellularphenotypesaresuccess-muchutility(http://www.ncats.nih.gov/research/reengineering/fullyidentified,theiPSC-basedmodelcanthenbeusedtoscreentissue-chip/tissue-chip.html).However,inthefuture,itispossibledrugsthatcorrectthephenotype,therebygeneratingamodelofthattheseplatformswillenablecellculturesystemstobetterhumanefficacyusinghumancells.Recently,researcherscon-modelcomplexinvivoenvironments.
ductedascreenofsmallmoleculesonmouseembryonicstemTissuesliceculturesaddcomplexityand,therefore,relevancecellsdifferentiatedintomotorneuronsandidentifiedonemole-relativetosinglecell-typecultures.Culturedtissuesmaintainlocalcule,kenpaullone,whichwasfoundtoprolongthesurvivalofenvironmentsandconnectivity,butallowrelativelyeasyaccesstobothwild-typeandSOD1mutantmotorneurons.Theauthorsalsomolecularandenvironmentalmanipulations.Assuch,slicecul-found,bytestingkenpaulloneonhumanmotoneuronsderivedturesareidealforunderstandingcellularandlocalsystempath-fromhumanembryonicstemcellsoriPSCs,thatthecompoundwaysunderlyingALSdiseaseprogressionandmechanisms.showedpromisingpreclinicalresults.Theirstudyalsodemonstrat-Althoughtheystillrequireanimalsasasourceofthetissue,edthatdexpramipexoleandolesoxime,twocompoundsthatareexperimentswithculturedtissuesusefeweranimalsperexperi-activeinALSmousemodelsandthatfailedinPhaseIIIclinicalment,allowmultipletestingperanimal,andarealsoquicker,trials,hadnoortoosmallaneffectonhuman-derivedmotorcheaper,andmoreamenabletotreatmentstargetinggeneexpres-neurons[97].Inamorerecentstudy,researcherswereabletosion.Forexample,tissuesliceculturescanbetransfectedusingrecapitulateaclinicalphenotype,specificallyincreasedexcitabil-virusesorparticle-mediateddelivery[91,92],whichcanbeusedtoityofmotorneurons,measuredfrompatientsusingiPSC-derivedeitherincreaseorknockdowntargetgeneexpression.Further-motorneuronsinadish.Throughthescreeningofdrugsknowntomore,thistechniquehasrecentlyshownpromisingdatainreduceneuronalexcitabilitypreviouslyapprovedfortreatmentofSOD1micemodels[93].Unfortunately,sliceculturesalsohaveepilepsy,theyshowedthatonedrug,retigabine,reversedtheseveraldisadvantages.Theyrequirelivingtissues,whicharenotcellularphenotype[98].Thisworkisnowthebasisforaclinicalwidelyavailablefromhumans.ALSmousemodeltissueshavetrialsupportedbyGlaxo-SmithKlineandrepresentsthefirstdrugquestionablevalidity,aspreviouslynotedfortransgenicanimals.identifiedusingiPSC-derivedtissueasadiseasemodel.
Additionally,ALSisanage-relateddisease,butsliceculturesarenotrecommendedfortissuesfromolderanimalsbecauseofpoorInsilicomodels
survivalresponsestomechanicaltraumainducedduringtheAscomputermodelingbecomesmoresophisticated,softwarecanpreparation.
beusedtomakepredictions,whichcouldinfluencethedirectionForallofthesetissuecultureapproaches,drug-screeningstudiesofinvivoandinvitroALSstudies.Insilicomodelingprogramscanwouldstronglybenefitfromtheidentificationofcellularmarkersbeusedtomakeavarietyofpredictions,whichcansavetime,ofdiseaseprogressionandhealth.Markerlevelscouldbeusedmoney,andlivesofbothhumansandanimals.Forexample,toquicklydeterminetreatmentefficacyandeventoxicityinasoftwarecangaugethefunctionalvariabilitybetweennormalspecies-specificmanner.Thiswouldalsoprovideanimportant
andmutantproteinsandcansuggestwhethermutationsresult
www.drugdiscoverytoday.com
7
Pleasecitethisarticleinpressas:Clerc,P.etal.AlookintothefutureofALSresearch,DrugDiscovToday(2016),http://dx.doi.org/10.1016/j.drudis.2016.02.002
WEIVERETONYEKsweiveRDRUDIS-1750;NoofPages11
REVIEWS
DrugDiscoveryTodayVolume00,Number00February2016
inagainorlossoffunction.MostknownALSgenemutationsresultinproteinswithatoxicgaininfunction;however,recentsoftwarepredictionsindicatedthatmutationsinthenovelALSgene,SQSTM1,resultinalossoffunction[99].SoftwareprogramsalsopredictedmechanismsofdiseasedevelopmentinSOD1mutants[100,101].Additionally,virtualmicearebeingcreatedfromwell-characterizedmousemodels[102,103],andcanbetestedfordrugefficacyand,perhapsmoreimportantly,studiedforspecies-specificdifferencesindiseasemanifestation[102,104].Thesepredictionprogramswillbecriticaltounderstandingdiseasepathogenesisandtargetsfortreatment,bothinthegeneralALSpopulationandinindividualswithuniquemutations.However,predictionsoftwarerequiresaprioriknowledgeofassociativegenesandtheirmutations.
Predictiveoutcomepathways
Inthechemicalfield,theOrganizationforEconomicCooperationandDevelopment(OECD),theUSEnvironmentalProtectionAgency,andtheEuropeanUnionJointResearchCentrearecol-laboratingtodevelopthenecessaryinfrastructuretohostaunified‘knowledgebase’ofadverseoutcomepathways(AOPs)thatcoversthebroadspectrumofbiologicalpathwaysthatarelikelytobeinvolvedinhumanhealthandecologicalriskassessment:theAdverseOutcomePathwayKnowledgeBase(AOPKB)
(http://ihcp.jrc.ec.europa.eu/our_activities/alt-animal-testing-safety-assessment-chemicals/improved_safety_assessment_chemicals/first-release-of-aop-wiki;http://www.epa.gov/research/priorities/docs/aop-wiki.pdf;http://aopkb.org/aopwiki/index.php/Main_Page;http://www.epa.gov/ncct/download_files/chemical_prioritization/AOPWikiTutorial%20v2.pdf).Buildingontheexist-ingAOPKB,wecoulddevelopanewpathwayknowledgebasefordifferentfordiseasemodelstounderstandthediseaseandidentifynewtherapeuticstargetsinamoreefficientmanner.
ALSisacomplexdiseasewithaspectrumofphenotypesthatcouldrepresentseveralcloselyrelateddisorderswithdifferentcausesbutsimilarphenotypes.Predictiveoutcomeofdiseasemodelswouldbenefitfromtheuseofdiseasepathwayapproaches,similartoAOPsusedintoxicology[105].ScientistsandclinicianshavealreadygatheredmuchinformationonALSpathways,someofwhichareintegratedinaKEGGpathwaymap(http://www.genome.jp/dbget-bin/www_bget?pathway:map05014).However,weneedtofocusonintegratingthisinformationinacommonandaccessibledatabasewheresequencesofmolecularchangeswithinthecellsleadingtothedevelopmentoftheclinicalcon-ditionscouldbelisted,asdescribedinFig.1.ThisapproachwouldallowfornewinformationtobeaddedasitisdiscoveredtogetabroaderunderstandingofadiseasesuchasALS,orofspecificpopulations,andtoidentifynewtherapeutictargets[106].
(a) ToxicantMolecularinteractionCellular responseOrgan responseOrganism responsePopulation responseChemical propertyReceptor/ligandDNA bindingProtein oxidationGene activationProtein productionAltered stagingAltered physiologyDisrupted homeostasis Altered development/functionLethalityImpaired developmentImpaired reproductionAltered sex ratioExtinctionMolecular initiating eventMechanism of action, toxicity pathwayAdverse outcomeAdverse outcome pathway(b) Initiating eventMolecularinitiating eventCellular responseOrgan responseBrain and spinal cordOrganism responseGene mutations:SOD1, TARDBP, FUS,…SOD1 protein destabilization Inhibition of TDP43/FUS binding to DNA and RNAPrevents transcriptional repression, pre-mRNA splicing, and translation regulationUbiquitin-positive protein aggregates in neuronesOxidative stressLoss of motor neurones in brain and spinal cordBlood–brain barrier disruptionMuscleMuscle degeneration, paralysis, and respiratory and cardiac deficitsDeathDrug Discovery Today FIGURE1
Adverseoutcomepathway.(a)Theadverseoutcomepathwayisabiologicalmapfromthemolecularinitiatingeventthroughtotheresultingadverseoutcomethatencompassesbothmechanismandmodeofaction.(b)Adaptationofthepathway-basedapproachtotheamyotrophiclateralsclerosis(ALS)modelsdescribingthekeyeventsleadingtotheadverseoutcomeattheorganismlevel.Adaptedfrom[105](a).
8
www.drugdiscoverytoday.com
Pleasecitethisarticleinpressas:Clerc,P.etal.AlookintothefutureofALSresearch,DrugDiscovToday(2016),http://dx.doi.org/10.1016/j.drudis.2016.02.002
DRUDIS-1750;NoofPages11
DrugDiscoveryTodayVolume00,Number00February2016
REVIEWS
Similarly,itwouldbepossibletomapandunderstandtheuniquediseasephenotypes,therapyresponses,andtoxicitydiseaseprocessofeachofthedifferentformsofALSbyusingthresholds.Advancesinmolecularbiology,humandiseasebio-computertechnology,genetic,andepidemiologydatabases.Thismonitoring,andcomputersciencecouldbeleveragedtodrivewouldenablescientiststodeveloptargetedandeffectivemanage-investmentsindevelopingnew,potentiallymorerelevantandmentdrugsandcures.Lessonscanalsobelearnedfromdataeffectiveresearchmethods,includinginsilico,diseasepathwaygeneratedduringclinicaltrials.Understandingwhyaclinicaltrialapproach-andhuman-basedstudies.Redirectingfundingtowardfailedisinthebestinterestofpatientsandrepresentsanimportantthesemodelswouldconsiderablyimprovetheirefficacy,validity,pieceofthediseasepathwaysmap.
andubiquity,aswellasaddingtoourunderstandingofhumanbiology,diseaseprogression,anddrugfunctions.Importantly,Concludingremarks
usingavarietyofalternativeswillimprovedatavalidityandThelackofclinicaltranslationfromanimalstohumansafter30deepenourunderstandingofbasicscience.Alternativetechni-yearsofresearchsuggeststhatanimalmodelsarenotanidealquesarenotonlyethicallysuperior,butalsooffermoredirect,systemforstudyingALSorfordevelopingdrugtherapies.Therobustinsightsintohumanbiologyanddisease,therebyacceler-diseasemechanismdatafromanimalmodelstudiesarenotco-atingthetransitionfrombenchtobedside.GiventhattheUShesiveandthepreclinicaldrugstudieshavenottranslatedwellCongressisre-examiningthewayinwhichdrugsarediscovered,intosuccessfulhumanclinicaltrials.Giventhatanimalsdonotdeveloped,anddeliveredthroughthe21stCenturyCuresAct,andnaturallydevelopALS,thecurrentmodelsareanimalssubjectedastheALSassociationhasreceivedmorethanUS$100milliontoartificialgeneexpressionanddiseaseconstruction.However,throughthe‘IceBucketChallenge,’alargeinvestmentisbeingtheseconstructedmodelshavephenotypesdistinctfromhumanmadedirectlytohelpthefamiliesofpatientswithALS.ThetimeisALS,therebylimitingmodelvalidityandmuddyingtheanalysesripeforre-examiningourapproachtoALSintervention;itisclearofanalreadycomplexdisease.Inaddition,therelevanceofthatweneedtoadoptanewapproachtobiomedicalresearchanimalsasmodelsingeneralisbeingquestioned.Criticalbiolog-basedonhumanbiologyandtheuseofnewandadvancedicaldifferencesexistbetweenanimalsandhumans,resultingin
technologies.
References
1Vincent,A.M.etal.(2008)Strategicapproachestodevelopingdrugtreatmentsfor18Benatar,M.(2007)Lostintranslation:treatmenttrialsintheSOD1mouseandin
ALS.DrugDiscov.Today13,67–72
humanALS.Neurobiol.Dis.26,1–13
2Zhu,S.etal.(2002)Minocyclineinhibitscytochromecreleaseanddelays19Culetto,E.andSattelle,D.B.(2000)AroleforCaenorhabditiselegansin
progressionofamyotrophiclateralsclerosisinmice.Nature417,74–78
understandingthefunctionandinteractionsofhumandiseasegenes.Hum.Mol.3Sejvar,J.J.etal.(2005)AmyotrophiclateralsclerosismortalityintheUnitedStates,Genet.9,869–877
1979–2001.Neuroepidemiology25,144–152
20Watson,M.R.etal.(2008)Adrosophilamodelforamyotrophiclateral
4Kamel,F.etal.(2012)Pesticideexposureandamyotrophiclateralsclerosis.sclerosisrevealsmotorneurondamagebyhumanSOD1.J.Biol.Chem.283,Neurotoxicology33,457–462
24972–24981
5Sutedja,N.A.etal.(2009)Exposuretochemicalsandmetalsandriskof
21Lemmens,R.etal.(2007)Overexpressionofmutantsuperoxidedismutase1causes
amyotrophiclateralsclerosis:asystematicreview.Amyotroph.LateralScler.10,amotoraxonopathyinthezebrafish.Hum.Mol.Genet.16,2359–2365
302–309
22Llado
´,J.etal.(2006)DegenerationofrespiratorymotorneuronsintheSOD1G93A6Haley,R.W.(2003)ExcessincidenceofALSinyoungGulfWarveterans.NeurologytransgenicratmodelofALS.Neurobiol.Dis.21,110–118
61,750–756
23Uchida,A.etal.(2012)Non-humanprimatemodelofamyotrophiclateralsclerosis
7Rosen,D.R.etal.(1993)MutationsinCu/ZnsuperoxidedismutasegenearewithcytoplasmicmislocalizationofTDP-43.Brain135,833–846
associatedwithfamilialamyotrophiclateralsclerosis.Nature362,59–62
24Awano,T.etal.(2009)Genome-wideassociationanalysisrevealsaSOD1mutation
8Borchelt,D.R.etal.(1994)Superoxidedismutase1withmutationslinkedtoincaninedegenerativemyelopathythatresemblesamyotrophiclateralsclerosis.familialamyotrophiclateralsclerosispossessessignificantactivity.Proc.Natl.Acad.Proc.Natl.Acad.Sci.U.S.A.106,2794–2799
Sci.U.S.A.91,8292–8296
25Crisp,M.J.etal.(2013)Caninedegenerativemyelopathy:biochemical
9Redler,R.L.andDokholyan,N.V.(2012)Thecomplexmolecularbiologycharacterizationofsuperoxidedismutase1inthefirstnaturallyoccurringnon-ofamyotrophiclateralsclerosis(ALS).Progr.Mol.Biol.Transl.Sci.107,humanamyotrophiclateralsclerosismodel.Exp.Neurol.248,1–9
215–262
26Ogawa,M.etal.(2011)Immunohistochemicalobservationofcaninedegenerative
10Murakami,T.etal.(2001)AnovelSOD1genemutationinfamilialALSwithlow
myelopathyintwoPembrokeWelshCorgidogs.J.Vet.Med.Sci.73,1275–1279penetranceinfemales.J.Neurol.Sci.189,45–47
27Kinsley,L.andSiddique,T.(1993)Amyotrophiclateralsclerosisoverview.Gene
11Renton,A.E.etal.(2011)AhexanucleotiderepeatexpansioninC9ORF72isthe
Rev
causeofchromosome9p21-linkedALS-FTD.Neuron72,257–268
28McCombe,P.A.andHenderson,R.D.(2010)Effectsofgenderinamyotrophic
12Neumann,M.etal.(2006)UbiquitinatedTDP-43infrontotemporallobar
lateralsclerosis.GenderMed.7,557–570
degenerationandamyotrophiclateralsclerosis.Science314,130–133
29Coates,J.R.etal.(2007)Clinicalcharacterizationofafamilialdegenerative
13Kabashi,E.etal.(2008)TARDBPmutationsinindividualswithsporadicand
myelopathyinPembrokeWelshCorgidogs.J.Vet.Intern.Med.21,1323–1331familialamyotrophiclateralsclerosis.Nat.Genet.40,572–574
30Wang,J.etal.(2009)AnALS-linkedmutantSOD1producesalocomotordefect
14Freibaum,B.D.etal.(2010)GlobalanalysisofTDP-43interactingproteinsreveals
associatedwithaggregationandsynapticdysfunctionwhenexpressedinneuronsstrongassociationwithRNAsplicingandtranslationmachinery.J.ProteomeRes.9,ofCaenorhabditiselegans.PLoSGenet.5,e1000350
1104–1120
31Ramesh,T.etal.(2010)Ageneticmodelofamyotrophiclateralsclerosisin
15Zinszner,H.etal.(1997)TLS(FUS)bindsRNAinvivoandengagesinnucleo-zebrafishdisplaysphenotypichallmarksofmotoneurondisease.Dis.ModelsMech.cytoplasmicshuttling.J.CellSci.110,1741–1750
3,652–662
16Gurney,M.E.etal.(1994)Motorneurondegenerationinmicethatexpressa
32Mackenzie,I.R.A.etal.(2007)PathologicalTDP-43distinguishessporadic
humanCu,Znsuperoxidedismutasemutation.Science264,1772–1775amyotrophiclateralsclerosisfromamyotrophiclateralsclerosiswithSOD117Bosco,D.A.etal.(2010)Wild-typeandmutantSOD1shareanaberrant
mutations.Ann.Neurol.61,427–434
conformationandacommonpathogenicpathwayinALS.Nat.Neurosci.13,33Turner,B.J.etal.(2008)TDP-43expressioninmousemodelsofamyotrophic
1396–1403
lateralsclerosisandspinalmuscularatrophy.BMCNeurosci.9,104
www.drugdiscoverytoday.com
9
Pleasecitethisarticleinpressas:Clerc,P.etal.AlookintothefutureofALSresearch,DrugDiscovToday(2016),http://dx.doi.org/10.1016/j.drudis.2016.02.002
WEIVERETONYEKsweiveRDRUDIS-1750;NoofPages11
REVIEWS
DrugDiscoveryTodayVolume00,Number00February2016
34Lagier-Tourenne,C.andCleveland,D.W.(2009)RethinkingALS:theFUSabout
TDP-43.Cell136,1001–1004
35Elden,A.C.etal.(2010)Ataxin-2intermediate-lengthpolyglutamineexpansions
areassociatedwithincreasedriskforALS.Nature466,1069–1075
36Kabashi,E.etal.(2010)GainandlossoffunctionofALS-relatedmutationsof
TARDBP(TDP-43)causemotordeficitsinvivo.Hum.Mol.Genet.19,671–68337Wegorzewska,I.etal.(2009)TDP-43mutanttransgenicmicedevelopfeaturesof
ALSandfrontotemporallobardegeneration.Proc.Natl.Acad.Sci.U.S.A.106,18809–18814
38Stallings,N.R.etal.(2010)Progressivemotorweaknessintransgenicmice
expressinghumanTDP-43.Neurobiol.Dis.40,404–414
39Swarup,V.etal.(2011)Pathologicalhallmarksofamyotrophiclateralsclerosis/
frontotemporallobardegenerationintransgenicmiceproducedwithTDP-43genomicfragments.Brain134,2610–2626
40Gendron,T.F.etal.(2013)TARDBPmutationanalysisinTDP-43proteinopathies
anddecipheringthetoxicityofmutantTDP-43.J.Alzheim.Dis.33(Suppl.1),S35–S45
41Mackenzie,I.R.etal.(2010)TDP-43andFUSinamyotrophiclateralsclerosisand
frontotemporaldementia.LancetNeurol.9,995–1007
42Kwiatkowski,T.J.etal.(2009)MutationsintheFUS/TLSgeneonchromosome16
causefamilialamyotrophiclateralsclerosis.Science323,1205–1208
43Murakami,T.etal.(2012)ALSmutationsinFUScauseneuronaldysfunctionand
deathinCaenorhabditiselegansbyadominantgain-of-functionmechanism.Hum.Mol.Genet.21,1–9
44Chen,Y.etal.(2011)ExpressionofhumanFUSproteininDrosophilaleadsto
progressiveneurodegeneration.ProteinCell2,477–486
45Kabashi,E.etal.(2011)FUSandTARDBPbutnotSOD1interactingeneticmodels
ofamyotrophiclateralsclerosis.PLoSGenet.7,e1002214
46Huang,C.etal.(2011)FUStransgenicratsdevelopthephenotypesofamyotrophic
lateralsclerosisandfrontotemporallobardegeneration.PLoSGenet.7,e100201147Mitchell,J.C.etal.(2013)Overexpressionofhumanwild-typeFUScauses
progressivemotorneurondegenerationinanage-anddose-dependentfashion.ActaNeuropathol.125,273–288
48Schnabel,J.(2008)Neuroscience:standardmodel.Nature454,682–685
49Langley,G.R.(2014)ConsideringanewparadigmforAlzheimer’sdiseaseresearch.
DrugDiscov.Today19,1114–1124
50Buckland,G.L.(2011)Harnessingopportunitiesinnon-animalasthmaresearch
fora21st-centuryscience.DrugDiscov.Today16,914–927
51Muotri,A.R.(2015)Thehumanmodel:changingfocusonautismresearch.Biol.
Psychiatryhttp://dx.doi.org/10.1016/j.biopsych.2015.03.012
52Martin,L.J.etal.(2007)Motorneurondegenerationinamyotrophiclateral
sclerosismutantsuperoxidedismutase-1transgenicmice:mechanismsofmitochondriopathyandcelldeath.J.Comp.Neurol.500,20–46
53Shibata,N.(2001)Transgenicmousemodelforfamilialamyotrophiclateral
sclerosiswithsuperoxidedismutase-1mutation.Neuropathology21,82–92
54DalCanto,M.C.andGurney,M.E.(1995)Neuropathologicalchangesintwolines
ofmicecarryingatransgeneformutanthumanCu,ZnSOD,andinmice
overexpressingwildtypehumanSOD:amodeloffamilialamyotrophiclateralsclerosis(FALS).BrainRes.676,25–40
55Henriques,A.etal.(2010)CharacterizationofanovelSOD-1(G93A)transgenic
mouselinewithverydecelerateddiseasedevelopment.PLoSOne5,e15445
56Alexander,G.M.etal.(2004)Effectoftransgenecopynumberonsurvivalinthe
G93ASOD1transgenicmousemodelofALS.BrainRes.Mol.BrainRes.130,7–1557Hanson,K.A.etal.(2010)UbiquilinmodifiesTDP-43toxicityinaDrosophila
modelofamyotrophiclateralsclerosis(ALS).J.Biol.Chem.285,11068–1107258Tankersley,C.G.etal.(2007)Respiratoryimpairmentinamousemodelof
amyotrophiclateralsclerosis.J.Appl.Physiol.102,926–932
59Stieber,A.etal.(2000)AggregationofubiquitinandamutantALS-linkedSOD1
proteincorrelatewithdiseaseprogressionandfragmentationoftheGolgiapparatus.J.Neurol.Sci.173,53–62
60Watanabe,M.etal.(2001)Histologicalevidenceofproteinaggregationinmutant
SOD1transgenicmiceandinamyotrophiclateralsclerosisneuraltissues.Neurobiol.Dis.8,933–941
61Prescott-Mathews,J.S.etal.(1997)Methyltert-butylethercausesalpha2u-globulin
nephropathyandenhancedrenalcellproliferationinmaleFischer-344rats.Toxicol.Appl.Pharmacol.143,301–314
62Dietrich,D.R.andSwenberg,J.A.(1991)Thepresenceofalpha2u-globulinis
necessaryford-limonenepromotionofmaleratkidneytumors.CancerRes.51,3512–3521
63Stuart,P.andSlavin,G.(1951)Toxicityofpenicillintoguineapigs.Nature167,
319–320
64Fratta,I.D.etal.(1965)Teratogeniceffectsofthalidomideinrabbits,rats,
hamsters,andmice.Toxicol.Appl.Pharmacol.7,268–286
65Schumacher,H.etal.(1968)Acomparisonoftheteratogenicactivityof
thalidomideinrabbitsandrats.J.Pharmacol.Exp.Ther.160,189–200
66Martignoni,M.etal.(2006)Speciesdifferencesbetweenmouse,rat,dog,monkey
andhumanCYP-mediateddrugmetabolism,inhibitionandinduction.ExpertOpin.DrugMetab.Toxicol.2,875–894
67Knight,A.(2007)Systematicreviewsofanimalexperimentsdemonstratepoor
humanclinicalandtoxicologicalutility.Altern.Lab.Anim.35,641–659
68Fang,F.etal.(2008)Lossofachildandtheriskofamyotrophiclateralsclerosis.
Am.J.Epidemiol.167,203–210
69Wang,H.etal.(2011)VitaminEintakeandriskofamyotrophiclateralsclerosis:a
pooledanalysisofdatafrom5prospectivecohortstudies.Am.J.Epidemiol.173,595–602
70Godbey,T.etal.(2011)Cage-changeintervalpreferenceinmice.LabAnim.40,
225–230
71Milligan,S.R.etal.(1993)Soundlevelsinroomshousinglaboratoryanimals:an
uncontrolleddailyvariable.Physiol.Behav.53,1067–1076
72Olsson,I.A.andDahlborn,K.(2002)Improvinghousingconditionsforlaboratory
mice:areviewof‘environmentalenrichment’.LabAnim.36,243–270
73Alves,C.J.etal.(2011)Earlymotorandelectrophysiologicalchangesintransgenic
mousemodelofamyotrophiclateralsclerosisandgenderdifferencesonclinicaloutcome.BrainRes.1394,90–104
74Zeiss,C.J.(2005)Neuroanatomicalphenotypinginthemouse:thedopaminergic
system.Vet.Pathol.42,753–773
75Moon,L.andBunge,M.B.(2005)Fromanimalmodelstohumans:strategiesfor
promotingCNSaxonregenerationandrecoveryoflimbfunctionafterspinalcordinjury.J.Neurol.Phys.Ther.29,55–69
76Chen,X.J.etal.(2006)Neuroanatomicaldifferencesbetweenmousestrainsas
shownbyhigh-resolution3DMRI.Neuroimage29,99–105
77Eisen,A.(2009)Amyotrophiclateralsclerosis–evolutionaryandother
perspectives.MuscleNerve40,297–304
78Stansberg,C.etal.(2011)Geneexpressionintheratbrain:highsimilaritybut
uniquedifferencesbetweenfrontomedial-,temporal-andoccipitalcortex.BMCNeurosci.12,15
79Ludolph,A.C.etal.(2010)GuidelinesforpreclinicalanimalresearchinALS/MND:
aconsensusmeeting.Amyotroph.LateralScler.11,38–45
80VanDenBosch,L.(2011)Geneticrodentmodelsofamyotrophiclateralsclerosis.J.
Biomed.Biotechnol.2011,348765
81Vinsant,S.etal.(2013)CharacterizationofearlypathogenesisintheSOD1(G93A)
mousemodelofALS:partII,resultsanddiscussion.BrainBehav.3,431–45782DeJesus-Hernandez,M.etal.(2011)ExpandedGGGGCChexanucleotiderepeatin
noncodingregionofC9ORF72causeschromosome9p-linkedFTDandALS.Neuron72,245–256
83Dangond,F.etal.(2004)Molecularsignatureoflate-stagehumanALSrevealedby
expressionprofilingofpostmortemspinalcordgraymatter.Physiol.Genomics16,229–239
84Pupillo,E.etal.(2012)Traumaandamyotrophiclateralsclerosis:acase–control
studyfromapopulation-basedregistry.Eur.J.Neurol.19,1509–1517
85Beghi,E.etal.(2011)TheepidemiologyandtreatmentofALS:focusonthe
heterogeneityofthediseaseandcriticalappraisaloftherapeutictrials.Amyotroph.LateralScler.12,1–10
86Johnson,B.S.etal.(2008)AyeastTDP-43proteinopathymodel:exploringthe
moleculardeterminantsofTDP-43aggregationandcellulartoxicity.Proc.Natl.Acad.Sci.U.S.A.105,6439–6444
87Suzuki,H.etal.(2009)ALS-linkedP56S-VAPB,anaggregatedloss-of-function
mutantofVAPB,predisposesmotorneuronstoERstress-relateddeathbyinducingaggregationofco-expressedwild-typeVAPB.J.Neurochem.108,973–985
88Wang,J.etal.(2011)Protectiveeffectsofresveratrolthroughtheup-regulationof
SIRT1expressioninthemutanthSOD1-G93A-bearingmotorneuron-likecellculturemodelofamyotrophiclateralsclerosis.Neurosci.Lett.503,250–255
89Boulis,N.M.etal.(2011)Translationalstemcelltherapyforamyotrophiclateral
sclerosis.Nat.Rev.Neurol.8,172–176
90Long,M.E.(2007)Predictingcarcinogenicityinhumans:theneedtosupplement
animal-basedtoxicology.Altern.Anim.Test.Exp.14,553–559
91Thomas,A.etal.(1998)Quantitativeanalysisofgeneexpressioninorganotypic
slice-explantculturesbyparticle-mediatedgenetransfer.J.Neurosci.Methods84,181–191
92Stokes,C.E.etal.(2003)Dynamicsofatransgeneexpressioninacuteratbrain
slicestransfectedwithadenoviralvectors.Exp.Physiol.88,459–466
93Foust,K.D.etal.(2013)TherapeuticAAV9-mediatedsuppressionofmutantSOD1
slowsdiseaseprogressionandextendssurvivalinmodelsofinheritedALS.Mol.Ther.21,2148–2159
94Dimos,J.T.etal.(2008)Inducedpluripotentstemcellsgeneratedfrompatients
withALScanbedifferentiatedintomotorneurons.Science321,1218–1221
10
www.drugdiscoverytoday.com
Pleasecitethisarticleinpressas:Clerc,P.etal.AlookintothefutureofALSresearch,DrugDiscovToday(2016),http://dx.doi.org/10.1016/j.drudis.2016.02.002
DRUDIS-1750;NoofPages11
DrugDiscoveryTodayVolume00,Number00February2016
REVIEWS
95Kiskinis,E.etal.(2014)PathwaysdisruptedinhumanALSmotorneurons
101Origone,P.etal.(2012)FastcourseALSpresentingwithvocalcordparalysis:
identifiedthroughgeneticcorrectionofmutantSOD1.CellStemCell14,clinicalfeatures,bioinformaticandmodellinganalysisofthenovelSOD1781–795
Gly147Sermutation.Amyotroph.LateralScler.13,144–148
96Egawa,N.etal.(2012)DrugscreeningforALSusingpatient-specificinduced
102Zheng,Y.etal.(2007)ThevirtualNODmouse:applyingpredictivebiosimulation
pluripotentstemcells.Sci.Transl.Med.4,145ra104
toresearchintype1diabetes.Ann.N.Y.Acad.Sci.1103,45–62
97Yang,Y.M.etal.(2013)Asmallmoleculescreeninstem-cell-derivedmotor
103Shoda,L.etal.(2010)TheType1DiabetesPhysioLabPlatform:avalidated
neuronsidentifiesakinaseinhibitorasacandidatetherapeuticforALS.CellStemphysiologicallybasedmathematicalmodelofpathogenesisinthenon-obeseCell12,713–726
diabeticmouse.Clin.Exp.Immunol.161,250–267
98Wainger,B.J.etal.(2014)Intrinsicmembranehyperexcitability
104Mamchak,A.A.etal.(2012)Preexistingautoantibodiespredictefficacyoforalinsulin
ofamyotrophiclateralsclerosispatient-derivedmotorneurons.CellRep.7,tocureautoimmunediabetesincombinationwithanti-CD3.Diabetes61,1490–14991–11
105Ankley,G.T.etal.(2010)Adverseoutcomepathways:aconceptualframeworkto
99Fecto,F.etal.(2011)SQSTM1mutationsinfamilialandsporadicamyotrophic
supportecotoxicologyresearchandriskassessment.Environ.Toxicol.Chem.29,lateralsclerosis.Arch.Neurol.68,1440–1446
730–741
100Elbasiouny,S.M.etal.(2010)Evidencefromcomputersimulationsforalterations
106delSol,A.etal.(2010)Diseasesasnetworkperturbations.Curr.Opin.Biotechnol.21,
inthemembranebiophysicalpropertiesanddendriticprocessingofsynaptic566–571
inputsinmutantsuperoxidedismutase-1motoneurons.J.Neurosci.30,107Zhou,H.etal.(2010)Transgenicratmodelofneurodegenerationcausedby
5544–5558
mutationintheTDPgene.PLoSGenet.6,e1000887
www.drugdiscoverytoday.com
11
Pleasecitethisarticleinpressas:Clerc,P.etal.AlookintothefutureofALSresearch,DrugDiscovToday(2016),http://dx.doi.org/10.1016/j.drudis.2016.02.002
WEIVERETONYEKsweiveR
因篇幅问题不能全部显示,请点此查看更多更全内容