现象解释:
可能很多同学都有这种经历,在寝室里4台电脑开着,电扇开着、日光灯开着都可以正常运行,没有任何问题,但是什么电器都不开,就插了一个小小的电热杯,电表就跳闸了。为什么会出现这种现象呢?电脑的电源都是250W~300W的,4台电脑功率之和绝对在一个电热杯之上,但为什么可以带4台电脑同时工作但不能接入一个300W的电热杯呢?两者有什么不同呢?下面我们就来研究一下。
我们平时使用的最多的加热装置就是热得快、电热杯或者电饭锅,它们的工作原理就是电流流过电阻丝,电阻丝发热来烧水。对于220V电网来说,这类负载相当于一个纯电阻接到电网里,学过电路的同学都知道,交流220V加到电阻上,其两端的电压波形和流过电阻的电流波形是同相的,也就是说,两者相位差是0。这类负载我们称之为纯电阻性负载。
计算机相当于什么负载呢?我们知道我们的电脑机箱的后上方,有一个方块状的铁盒子,那就是计算机的电源。这个电源对于电网来说,就是电网的一个负载。计算机的电源是开关电源(注意,这可不是有开关的电源哦),属于非线性负载(也叫整流性负载)。开关电源的原理是先把220V@50hz交流电整流为高压直流,再把高压直流逆变为高压高频交流,再通过高频变压器降为低压高频交流,然后再转为低压直流输出,这种电源的效率要比传统稳压器高得多。把计算机的开关电源当做220V电网的一个负载,这种负载在220V市电输入端看来等效于一个容性负载,虽然它的电压波形还是正弦波,但是它的电流波形已经畸变了,不再是规则的正弦波,而是接近脉冲波的波形(其实这种非线性负载才是对电网有危害的恶性负载,会给电网带来高次谐波)。
那么电表如何识别这两种负载呢?方法有很多种,但都是通过单片机+AD转换器,对
220V输出端的电压电流的波形实时采样,然后编制相应的程序,通过算法,判断这两种负载的功率各占多大的比例,仅仅限制纯电阻性负载的接入。
“识别器”限制的不是用电总功率,而是瞬间的阶跃功率,如果阶跃功率大于事先的设定,系统将自动切断负载电路,在间隔一段时间后,系统自动尝试性恢复供电,经过识别判断没有大功率阻性电热负载接入电路,从而继续正常供电。
给宿舍安装“智能负载识别器”的目的是很明确的,就是为了限制违章电器的使用,消除隐患,保障广大师生的生命财产安全。
识别的原理是:通过电表测量出增加那部分负载的功率和功率因数,因为电热杯之类的阻性负载的功率因数较高,达到0.99以上,再通过判断增加的功率,二者即识别出恶性负载实行断电控制。目前我所能做到的识别是:功率因数大于0.9999998,最小增量负载大于20W。即可实现断电。之后由管理员来实现送电。达到安全用电的目的,以保护学生朋友们的人身和财产安全
注:
功率因数:在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S.
理论解释:
1线性负载的定义和特征
在我国UPS的国标GB/T7260-3中对线性负载有明确的定义:“3.2.6 线性负载
linear load 当施加可变正弦电压时,其负载阻抗参数(Z)恒定为常数的那种负载。”
在交流电路中,负载元件有电阻R、电感L和电容C三种,它们在电路中所造成的结果是不相同的。
在纯电阻电路中,正弦电压U施加在一个电阻R上,则产生电流I也是正弦性的,电流I与电压U相位是相同的。
如:电压u=Umsinωt,则i=Imsinωt;电流的有效值I=U/R。电流通过电阻发热,电能转换为热能,即P=UI=I2R。
在纯电感电路中,正弦电压施加在一个电感线圈L上,因电流是交变的,造成在线圈中产生感应电势,使得电流虽然仍然是正弦的,但相位上却滞后电压90°(电角度为π/2)。
如电压u=Umsinωt,则i=Imsin(ωt-π/2)。电流的有效值I=U/(2πf L)=U/XL;XL=2πf L称之为感抗。电流在电路中流动,将电源的电能带到线圈中,转换为磁能,然后又把磁能转换为电能返回电源。所以在电路中没有功率消耗,平均功率为零。无功功率Q=UI=I2XL。
在纯电容电路中,正弦电压施加在一个电容量为C的电容器上,因电流携带电荷积累在电容的极板上产生电容电压,使得电流虽然仍然是正弦的,但相位上却超前电压90°(电角度为π/2)。
如电压u=Umsinωt,则i=Imsin(ωt+π/2);电流有效值
I=2πfCU=U/XC;XC=1/(2πfC)。称之为容抗。电流在电路中流动,将电源的电能带到电容器中,转换为电场能量,然后又把电场能量转换为电能返回电源。所以在电路中没有功率消耗,
平均功率为零。无功功率Q=UI=I2XC。一般将感抗和容抗统称为电抗。
在一般具有电阻R和电感L、电容C的线性负载上(RLC线性电路),施加正弦性电压,则电流仍然是正弦性的,但是电流与电压之间的相位关系,既不是同相也不是相差90°,而是相差一个φ角。
如电压u=Umsinωt,则i=Imsin(ωt±φ)。电流有效值I=U/Z。Z即为阻抗,它与电阻、电抗的关系是:Z2=R2+X2。电抗为感抗XL和容抗XC的综合值。相位差φ角是由负载中的R、L、C参数决定的。在呈现为感性时φ为正,容性时φ为负。tgφ=X/R。阻抗Z、电抗X和电阻R三者构成阻抗直角三角形。负载上的视在功率S=UI,有功功率P=UIcosφ,无功功率Q=UIsinφ,S2=P2+Q2,三者构成功率三角形。
在这里要说明一点,决定负载特征的不仅是负载阻抗的大小,还有功率因数的大小。综合来讲,在线性负载中,有纯阻性(功率因数为1)和感性(功率因数小于1)、容性(功率因数小于1),以及纯感性和纯容性(功率因数均为0)。上述这些负载都属于线性负载,不能认为只有功率因数为1的纯阻性负载是线性的,功率因数不为1的其他负载就不是线性的。这是本文所要特别强调的。
2 非线性负载的定义和特征
在我国UPS的国标GB/T7260-3中对非线性负载也有明确的定义:“3.2.7 非线性负载 non-linear load 负载阻抗参数(Z)不总为恒定常数,随诸如电压或时间等其它参数而变化的那种负载。”
非线性负载的种类繁多,在UPS供电的负载中多是整流滤波型,UPS的输入也是整流滤
波型。因此,IEC标准中便制定了一个基准非线性负载(Reference non-linear load),做为标准的附录列入标准中。用这个基准非线性负载检验UPS带非线性负载的能力。在UPS国标GB/T7260-3中,也在附录E中给出了这个基准非线性负载电路,如图1所示。
这个电路之所以是非线性负载,就是因为在输入端施加正弦电压u时,当电压瞬时值大于电容上的直流电压,则电源给负载R1供电,并向电容充电。当电压瞬时值小于电容上直流电压时,因二极管的阻断作用,电源不再供电,而由电容放电使负载保持电流的连续性。所以这个负载对于电源呈现的阻抗是随电压瞬时值的大小而改变的。
非线性负载的一个重要特点就是当对负载施加正弦形电压时,电流并不是正弦形的。图1的负载电路交流电流是间断的、尖峰的。而图2是这种非线性负载的电压和电流的波形图,由此可以看出,电流是一个尖峰形的。
分析和计算非线性电路中的电流和功率,使用的方法是用傅立叶函数分析的方法,用等效的正弦量代替非正弦量。在这个具体电路中:电源输入电压u=u1+u3+u5+u7+…,此处
u1是基波电压分量,因为交流输入电源可以认为是正弦形的,所以没有高次谐波分量,则u=u1。此处交流电流i=i1+i3+i5+i7+i9+i11……。
每一次谐波电流都是正弦形的,它们都有自己的幅值、有效值(I1、I3、I5……)以及电流与同频率电压之间的相位差(φ1、φ3、φ5、φ7……)。
以等效的正弦形电流替代非正弦电流,其有效值的平方等于各谐波分量有效值的平方和,即:I2=I12+I32+I52+I72+……。在这个电路中,瞬时功率值
p=ui=u1(i1+i3+i5+i7+i9+i11…)。平均功率P=U1I1cosφ1=UI1cosφ1,亦称之为有功功率。与线性电路相同,令电路中的视在功率为S,S=UI。同样无功功率为Q,三个功率之间的关系仍为S2=P2+Q2。有功功率与视在功率的比值为电路中的功率因
数 :PF=P/S=UI1cosφ1/UI=I1cosφ1/I=λcosφ1。 系数λ=I1/I<1。功率因数PF值比基波的相位差的功率因数cosφ1还要小一些。谐波中高次谐波占的比例越大,则λ越小,功率因数也就越小。这样就可以把一个非线性的负载化为线性负载进行计算和分析。
在诸多负载中,非线性负载很复杂,电流波形种类很多。有尖峰的、有双峰的等等,仅仅用其电流大小来说明还是不够的。为了说明非线性与线性电流差别的程度,用一个参数来表示,这就是峰值因数。在GB/T7260-3标准中是这样说的:“3.3.29 峰值因数peak factor周期量的峰值对方均根值之比。
注:术语“尖峰因数”(crest factor)与此同义。其中方均根值就是平常所说的有效值。
一般最大峰值因数的负载是个人计算机,峰值因数约为2.7。一个计算机系统的电流峰值因数约为2.3左右。正弦电流的峰值因数则是1.4。所以一般UPS都把能带非线性负载的峰值因数定为3,完全能满足负载的需要。特别是大型UPS的峰值因数为3,就更没有问题
因篇幅问题不能全部显示,请点此查看更多更全内容