adjusted R-squared statistic standard error of the regression
@ssr sum of squared residuals @dw Durbin-Watson statistic @f F-statistic @logl
value of the log-likelihood function
@aic Akaike information criterion @sc @jstat
Schwarz information criterion
scalar containing the J-statistic (for GMM)
@regobs number of observations in regression @meandep mean of the dependent variable
@sddep standard deviation of the dependent variable @ncoef
total number of estimated coefficients
@coefs(i) coefficient i, where i is given by the order in which the
coefficients appear in the representations view
@stderrs(i)
standard error for coefficient i
@tstats(i) t-statistic value for coefficient i @cov(i,j) covariance of coefficients i and j Functions that return vector or matrix objects: @coefs @stderrs
vector of coefficient values
vector of standard errors for the coefficients
@tstats vector of ratios of coefficients to standard errors @cov matrix containing the coefficient covariance matrix For example: series y = eq1.@dw vector tstats = eq1.@tstats matrix mycov = eq1.@cov
scalar pvalue = 1-@cnorm(@abs(eq1.@tstats(4)))
scalar var1 = eq1.@covariance(1,1)
因篇幅问题不能全部显示,请点此查看更多更全内容