您的当前位置:首页正文

一种可拉伸有机硅导热垫片及其制备方法[发明专利]

2024-03-18 来源:步旅网
(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 111961238 A(43)申请公布日 2020.11.20

(21)申请号 202010912612.3(22)申请日 2020.09.03

(71)申请人 浙江倪阮新材料有限公司

地址 311404 浙江省杭州市富阳区洞桥镇

贤德村叶家(72)发明人 何雷 

(74)专利代理机构 杭州研基专利代理事务所

(普通合伙) 33389

代理人 谢东(51)Int.Cl.

C08J 5/18(2006.01)C08L 1/02(2006.01)C08L 83/04(2006.01)C08K 3/22(2006.01)C08K 3/28(2006.01)

(54)发明名称

一种可拉伸有机硅导热垫片及其制备方法(57)摘要

本发明涉及一种可拉伸有机硅导热垫片及其制备方法。首先将纤维素纳米纤丝溶解于去离子水中,超声分散得到纤维素纳米纤丝的分散液,然后离心,将上清液旋涂在清洗干净的玻璃上,并在红外光下干燥;同时将184型聚二甲基硅氧烷中分批加入无机导热填料,机械搅拌,抽真空脱除气泡后旋涂到纤维素纳米纤丝的上层,脱气,热固化,后将玻璃板脱除,将膜片放入层压成型机中层压成型,即可获得一种可拉伸有机硅导热垫片。本发明采用天然原料纤维素纳米纤丝,其力学性能优异,生物可降解性能佳,制备工艺操作简便,制得的可拉伸硅胶垫片具有优异的导热性能,并且其拉伸强度均高于5.0MPa,断裂伸长率高达580%以上,其力学性能优异,能满足各种电子设备的散热领域。

C08K 3/34(2006.01)C08K 3/36(2006.01)C08K 3/38(2006.01)C09K 5/14(2006.01)D06M 15/643(2006.01)D06M 11/58(2006.01)D06M 11/77(2006.01)D06M 11/45(2006.01)D06M 11/80(2006.01)D06M 11/44(2006.01)D06M 11/79(2006.01)D06M 101/06(2006.01)

权利要求书1页 说明书5页

CN 111961238 ACN 111961238 A

权 利 要 求 书

1/1页

1.一种可拉伸有机硅导热垫片的制备方法,其特征在于:所述制备方法包括以下步骤:步骤一、将纤维素纳米纤丝溶解于去离子水中,置于超声清洗机中使其均匀分散得到纤维素纳米纤丝的分散液;

步骤二、超声结束后,将分散液置于离心机中离心,离心结束后,将上清液取出;步骤三、将纤维素纳米纤丝上清液旋涂在清洗干净的玻璃上,并在红外光下干燥;步骤四、将184型聚二甲基硅氧烷中加入氮化物或氧化物的无机导热填料,机械搅拌反应0.5h,抽真空脱除气泡、再次加入无机导热填料,再加入搅拌反应1h,抽真空脱去气泡后静置;

步骤五、184型聚二甲基硅氧烷溶液旋涂到纤维素纳米纤丝的上层,脱气,然后热固化,后将玻璃板小心脱除,然后将聚二甲基硅氧烷/纤维素纳米纤丝/无机填料的膜片放入层压成型机中层压成型,即可获得一种可拉伸有机硅导热垫片。

2.根据权利要求1所述的一种可拉伸有机硅导热垫片的制备方法,其特征在于:所述步骤一中纤维素纳米纤丝分散液的质量分数为0.1~0.5wt%,超声分散机的转速为200~300r/min,处理时间为8~15h。

3.根据权利要求1所述的一种可拉伸有机硅导热垫片的制备方法,其特征在于:所述步骤二中离心机的转速为400~800r/min,离心时间为5~10min。

4.根据权利要求1所述的一种可拉伸有机硅导热垫片的制备方法,其特征在于:所述步骤三中玻璃板采用去污剂、去离子水、异丙醇和丙酮分别清洗三次。

5.根据权利要求1所述的一种可拉伸有机硅导热垫片的制备方法,其特征在于:所述步骤三中旋涂的速度为200~300r/min,旋涂时间为5~10min。

6.根据权利要求1所述的一种可拉伸有机硅导热垫片的制备方法,其特征在于:所述步骤三中红外光干燥时间为10~20min。

7.根据权利要求1所述的一种可拉伸有机硅导热垫片的制备方法,其特征在于:所述步骤四中184型聚二甲基硅氧烷为商业化购买。

无机导热填料包括氮化物如氮化铝、氮化硼、氮化硅和氧化物如三氧化二铝、氧化镁、氧化锌、二氧化硅。

8.根据权利要求1所述的一种可拉伸有机硅导热垫片的制备方法,其特征在于:所述步骤四中无机填料在184型聚二甲基硅氧烷中的质量分数为50%,初次加入量为10wt%,第二次加入量为40wt%。

9.根据权利要求1所述的一种可拉伸有机硅导热垫片的制备方法,其特征在于:,所述步骤五中旋涂的速度为300~500r/min,旋涂时间为3~5min。

10.根据权利要求1所述的一种可拉伸有机硅导热垫片的制备方法,其特征在于:所述步骤五中热固化的温度为70~100℃,固化时间为8~15h。

11.根据权利要求1所述的一种可拉伸有机硅导热垫片的制备方法,其特征在于:所述步骤五中层压成型的温度为80~120℃,预压力为3~5MPa,预压时间约15~20min,在10min内将温度升至140~160℃,将压力逐步升至7~8MPa,保温75~90min,停止加热,开冷水冷却,冷却至50℃以下脱模,即可获得一种可拉伸有机硅导热垫片。

2

CN 111961238 A

说 明 书

一种可拉伸有机硅导热垫片及其制备方法

1/5页

技术领域

[0001]本发明公开了一种可拉伸有机硅导热垫片及其制备方法,属于导热材料制备技术领域。

背景技术

[0002]有机硅是常用的热界面材料之一,广泛的应用在电子电器、工业生产、航空航天等各个领域。有机硅导热垫片主要是由有机硅树脂和无机填料组成的,是一种理想的散热材料,同时还起到绝缘、减震、密封等作用,但是随着工业化水平的提高,人们对导热垫片也提出了新的要求,除导热性外,还希望赋予其较强的力学性能,目前有机硅导热垫片拉伸强度和韧性不足,导致其吸收热量后易自身破碎,不能达到持久的使用效果,赋予导热垫片可拉伸性能可满足其较高的韧性要求。

[0003]专利(CN108129838A)公开了一种导热硅胶垫片及其制备方法,按重量份,包括1600~1650份的导热填料,导热填料包括粒径范围为1~3μm的第一氧化铝颗粒、粒径范围为4~6μm的第二氧化铝颗粒、及粒径范围为60~80μm的第三氧化铝颗粒;提供6~8份的硅烷偶联剂,对所述基料依次进行压延处理和成型固化处理,得到导热效果佳的导热垫片。但是本发明所制得的硅胶导热垫片的拉伸强度仅达0.04MPa,断裂伸长率为53%,其力学性能较差,会造成垫片的使用周期受限。

[0004]专利(CN107286670A)公开了一种有机硅导热垫片的制备方法,先将去离子水、硅酸钠及硫酸铝混合预热后调节pH,再加入碳酸镁及十二烷基硫酸钠搅拌后静置陈化,经过滤洗涤后,将滤饼焙烧并与二氧化硅混合研磨,将研磨物与甲基乙烯基硅橡胶、聚乙烯混炼、硫化处理,并放入模具中成型,最后经脱模收集脱模物,即可得有机硅导热垫片。此方法中制备得到的有机硅导热垫片的拉伸强度和断裂伸长率都相对较高,但是其导热系数只能达到3以下,实际应用过程中,导热性能仍需提高。发明内容

[0005]针对上述问题,本发明提供一种导热性能优异,并且力学性能极佳的可拉伸有机硅导热垫片。纤维素是自然界含量丰富且环境友好的可再生高分子聚合物,纤维素纳米纤丝具有良好的生物可降解性,优秀的机械强度和机械柔韧性;聚二甲基硅氧烷具有优异柔韧性、电绝缘性能、耐候性、疏水性、导热性能,其其本身的导热系数可达0.134-0.159W/M*K;同时无机的导热填料具有较高的导热系数和良好的电绝缘性,并且价格相对较为便宜。将三者通过层压的方式制得导热的硅胶垫片,具有优异的导热性能、拉伸强度,同时其韧性优异,能够实现可拉伸。

[0006]本发明提供的一种可拉伸有机硅导热垫片,其包括以下步骤:[0007]步骤一、将纤维素纳米纤丝溶解于去离子水中,置于超声清洗机中使其均匀分散得到纤维素纳米纤丝的分散液,[0008]步骤二、超声结束后,将分散液置于离心机中离心,离心结束后,将上清液取出;

3

CN 111961238 A[0009]

说 明 书

2/5页

步骤三、将纤维素纳米纤丝上清液旋涂在清洗干净的玻璃上,并在红外光下干燥;

[0010]步骤四、将184型聚二甲基硅氧烷中加入无机导热填料,机械搅拌反应0.5h,抽真空脱除气泡、再次加入无机导热填料,再加入搅拌反应1h,抽真空脱去气泡后静置。[0011]步骤五、184型聚二甲基硅氧烷溶液旋涂到纤维素纳米纤丝的上层,脱气,然后热固化,后将玻璃板小心脱除,然后将聚二甲基硅氧烷/纤维素纳米纤丝/无机填料的膜片放入层压成型机中层压成型,即可获得一种可拉伸有机硅导热垫片。[0012]进一步地,所述步骤一中纤维素纳米纤丝分散液的质量分数为0.1~0.5wt%,超声分散机的转速为200~300r/min,处理时间为8~15h;[0013]进一步地,所述步骤二中离心机的转速为400~800r/min,离心时间为5~10min;[0014]进一步地,所述步骤三中玻璃板采用去污剂、去离子水、异丙醇和丙酮分别清洗三次;

[0015]进一步地,所述步骤三中旋涂的速度为200~300r/min,旋涂时间为5~10min;[0016]进一步地,所述步骤三中红外光干燥时间为10~20min;[0017]进一步地,所述步骤四中184聚二甲基硅氧烷为市购;无机导热填料包括氮化物如氮化铝、氮化硼、氮化硅和氧化物如三氧化二铝、氧化镁、氧化锌、二氧化硅;[0018]进一步地,所述步骤四中无机填料在184聚二甲基硅氧烷中的质量分数为50%,初次加入量为10wt%,第二次加入量为40wt%;[0019]进一步地,所述步骤五中旋涂的速度为300~500r/min,旋涂时间为3~5min[0020]进一步地,所述步骤五中热固化的温度为70~100℃,固化时间为8~15h[0021]进一步地,所述步骤五中层压成型的温度为80~120℃,预压力为3~5MPa,预压时间约15~20min,在10min内将温度升至140~160℃,将压力逐步升至7~8MPa,保温75~90min,停止加热,开冷水冷却,冷却至50℃以下脱模,即可获得一种可拉伸有机硅导热垫片。

[0022]与现有技术相比,本发明的有益效果如下:[0023](1)本发明采用天然原料纤维素纳米纤丝,纤维素是自然界含量丰富且环境友好的可再生高分子聚合物,具有良好的生物可降解性,优秀的机械强度和机械柔韧性其来源丰富,可再生,绿色环保。[0024](2)本发明采用旋涂与层压的方法制得可拉伸导热的硅胶垫片,制备工艺简单可行,同时制得的可拉伸硅胶垫片具有优异的导热性能,尤其是在平面方向的导热性能更佳。[0025](3)本发明采用的无机导热填料具有较高的导热系数和良好的电绝缘性,并且价格低廉。[0026](4)本发明制得的可拉伸硅胶垫片的拉伸强度均高于5.0MPa,断裂伸长率高达580%以上,其力学性能优异,能满足各种电子设备的散热领域。具体实施方式

[0027]下面将通过施例对本发明实的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

4

CN 111961238 A[0028]

说 明 书

3/5页

实施例1

[0029]步骤一、将纤维素纳米纤丝溶解于去离子水中,配置成质量分数为0.1wt%的分散液,将分散液置于转速为200r/min的超声清洗机处理15h,使其均匀分散得到纤维素纳米纤丝的分散液;[0030]步骤二、超声结束后,将纤维素纳米纤丝的分散液置于转速为400r/min离心机中离心10min,离心结束后,将上清液倒出;[0031]步骤三、将纤维素纳米纤丝上清液旋涂在经去污剂、去离子水、异丙醇和丙酮分别清洗三次的干净玻璃上,旋涂速度为200r/min,旋涂时间为10min,然后置于红外光下干燥20min;

[0032]步骤四、在市购184型聚二甲基硅氧烷中先加入10wt%的导热填料氮化铝,机械搅拌反应0.5h,抽真空脱除气泡、再次加入40wt%氮化铝,搅拌反应1h,抽真空脱去气泡后静置。

[0033]步骤五、将184型聚二甲基硅氧烷分散液以300r/min的转速,旋涂到纤维素纳米纤丝的上层,旋涂时间为5min,旋涂结束后脱气,然后放入温度为70℃的热固化机中,固化15h,后将玻璃板小心脱除,然后将聚二甲基硅氧烷/纤维素纳米纤丝/氮化铝的膜片放入层压成型机中层压成型,层压温度为80℃,预压力为3MPa,预压时间为20min,在10min内将温度升至140℃,将压力逐步升至7MPa,保温75min,停止加热,开冷水冷却,冷却至50℃以下脱模,即可获得一种可拉伸有机硅导热垫片。[0034]实施例2[0035]步骤一、将纤维素纳米纤丝溶解于去离子水中,配置成质量分数为0.3wt%的分散液,置于转速为230r/min的超声清洗机处理10h,使其均匀分散得到纤维素纳米纤丝的分散液;

[0036]步骤二、超声结束后,将纤维素纳米纤丝的分散液置于转速为450r/min离心机中离心8min,离心结束后,将上清液倒出;[0037]步骤三、将纤维素纳米纤丝上清液旋涂在经去污剂、去离子水、异丙醇和丙酮分别清洗三次的干净玻璃上,旋涂速度为250r/min,旋涂时间为5min,然后在红外光下干燥20min;

[0038]步骤四、在市购184聚二甲基硅氧烷中先加入10wt%的氮化硼,机械搅拌反应0.5h,抽真空脱除气泡、再次加入40wt%的氮化硼,再加入搅拌反应1h,抽真空脱去气泡后静置。

[0039]步骤五、184型聚二甲基硅氧烷溶液以500r/min的转速旋涂到纤维素纳米纤丝的上层,旋涂时间为5min,旋涂结束后脱气,然后放入温度为80℃的热固化机中,固化10h,后将玻璃板小心脱除,然后将聚二甲基硅氧烷/纤维素纳米纤丝/氮化硼的膜片放入层压成型机中层压成型,层压温度为100℃,预压力为4MPa的,预压时间约16min,在10min内将温度升至160℃,将压力逐步升至8MPa,保温80min,停止加热,开冷水冷却,冷却至50℃以下脱模,即可获得一种可拉伸有机硅导热垫片。[0040]实施例3[0041]步骤一、将纤维素纳米纤丝溶解于去离子水中,配置成质量分数为0.5wt%的分散液,置于转速为250r/min的超声清洗机处理10h,使其均匀分散得到纤维素纳米纤丝的分散

5

CN 111961238 A

说 明 书

4/5页

液;

步骤二、超声结束后,将分散液置于转速为600r/min离心机中离心10min,离心结

束后,将上清液取出;[0043]步骤三、将纤维素纳米纤丝上清液旋涂在经去污剂、去离子水、异丙醇和丙酮分别清洗三次的干净玻璃上,旋涂速度为250r/min,旋涂时间为10min,然后在红外光下干燥15min;

[0044]步骤四、在市购184型聚二甲基硅氧烷中加入10wt%氮化硅,机械搅拌反应0.5h,抽真空脱除气泡、再次加入40wt%的氮化硅,再加入搅拌反应1h,抽真空脱去气泡后静置。[0045]步骤五、在184型聚二甲基硅氧烷溶液以400r/min的转速旋涂到纤维素纳米纤丝的上层,旋涂时间为5min,旋涂结束后脱气,然后放入温度为100℃的热固化机中,固化10h,后将玻璃板小心脱除,然后将聚二甲基硅氧烷/纤维素纳米纤丝/Si3N4的膜片放入层压成型机中层压成型,层压温度为100℃,预压力为4MPa的,预压时间约20min,在10min内将温度升至150℃,将压力逐步升至7MPa,保温90min,停止加热,开冷水冷却,冷却至50℃以下脱模,即可获得一种可拉伸有机硅导热垫片。[0046]实施例4[0047]步骤一、将纤维素纳米纤丝溶解于去离子水中,配置成质量分数为0.4wt%,置于转速为300r/min的超声清洗机处理12h,使其均匀分散得到纤维素纳米纤丝的分散液;[0048]步骤二、超声结束后,将分散液置于转速为700r/min离心机中离心10min,离心结束后,将上清液取出;[0049]步骤三、将纤维素纳米纤丝上清液旋涂在经去污剂、去离子水、异丙醇和丙酮分别清洗三次的干净玻璃上,旋涂速度为280r/min,旋涂时间为8min,并在红外光下干燥18min;[0050]步骤四、在市购184型聚二甲基硅氧烷中加入10%三氧化二铝机械搅拌反应0.5h,抽真空脱除气泡、再次加入40wt%的三氧化二铝,再加入搅拌反应1h,抽真空脱去气泡后静置。

[0051]步骤五、在184型聚二甲基硅氧烷溶液以400r/min的转速,旋涂到纤维素纳米纤丝的上层,旋涂时间为5min,旋涂结束后脱气,然后放入温度为100℃的热固化机中,固化15h,后将玻璃板小心脱除,然后将聚二甲基硅氧烷/纤维素纳米纤丝/Al2O3的膜片放入层压成型机中层压成型,层压温度为100℃,预压力为4MPa的,预压时间约18min,在10min内将温度升至160℃,将压力逐步升至8MPa,保温85min,停止加热,开冷水管冷却,冷却至50℃以下脱模,即可获得一种可拉伸有机硅导热垫片。[0052]实施例5[0053]步骤一、将纤维素纳米纤丝溶解于去离子水中,配置成质量分数为0.5wt%,置于转速为300r/min的超声清洗机处理10h,使其均匀分散得到纤维素纳米纤丝的分散液;[0054]步骤二、超声结束后,将分散液置于转速为600r/min离心机中离心10min,离心结束后,将上清液取出;[0055]步骤三、将纤维素纳米纤丝上清液旋涂在经去污剂、去离子水、异丙醇和丙酮分别清洗三次的干净玻璃上,旋涂速度为280r/min,旋涂时间为8min,并在红外光下干燥15min;[0056]步骤四、将市购184型聚二甲基硅氧烷中加入10wt%氧化镁机械搅拌反应0.5h,抽真空脱除气泡、再次加入40wt%的氧化镁,再加入搅拌反应1h,抽真空脱去气泡后静置。

6

[0042]

CN 111961238 A[0057]

说 明 书

5/5页

步骤五、184型聚二甲基硅氧烷溶液以450r/min的转速,旋涂到纤维素纳米纤丝的

上层,旋涂时间为4.5min,旋涂结束后脱气,然后放入温度为95℃的热固化机中,固化10h,后将玻璃板小心脱除,然后将聚二甲基硅氧烷/纤维素纳米纤丝/无机填料的膜片放入层压成型机中层压成型,层压温度为100℃,预压力为5MPa的,预压时间约20min,在10min内将温度升至155℃,将压力逐步升至7.5MPa,保温85min,停止加热,开冷水冷却,冷却至50℃以下脱模,即可获得一种可拉伸有机硅导热垫片。层压成型机中层压成型,即可获得一种可拉伸有机硅导热垫片。

[0058]按照标准ISO.22007,采用湘潭湘仪仪器有限公司生产的DRL.III型导热系数测试仪对本发明所制得的导热硅胶垫片的导热系数进行测试,导热系数测试范围为0.005-400W/(m.K)测量时间为l0~150s。材料导热系数的大小可直接反应其导热性能,本发明所制备的导热硅胶垫片在平面方向的导热系数高达75W/(m.K)以上,并且垂直方向的导热系数也可达8.0W/(m.K)以上,表明其导热性能优异,可广泛应用于需散热的电子电器领域。[0059]拉伸强度和断裂伸长率测试根据GB/T1040.1-2018标准,采用美国Instron公司的高低温双立柱拉伸试验机进行测试,试样的尺寸为75×10×2mm3,每组测试5根样条。[0060]表1实施例1-5中可拉伸导热硅胶垫片的导热性能及力学性能

[0061]

由表1可以看出,实施例1-5中导热硅胶垫片在平面方向的导热系数远高于垂直方

向,总体来说,本发明所制备的可拉伸导热硅胶垫片的导热性能优异,同时其拉伸强度较高,断裂伸长率高达580%以上,其可拉伸性能优异。

[0062]

7

因篇幅问题不能全部显示,请点此查看更多更全内容