可视化分析:大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单。
数据挖掘算法:大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种 统计方法,才能深入数据内部,挖掘出公道的价值,另外一个方面也是y因为有这些数据挖掘的算法才能更快的处理大数据。
预测性分析能力:大数据分析最重要的应用领域之一就是预测性分析,从大数据种挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
语义引擎:大数据分析广泛应用于网络数据挖掘,可从用户的检索关键词,标签关键词或其他输入语义,分析,判断用户需求。从而实现更好的用户体验和广告匹配。
数据质量和数据管理:大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。大数据分析的基础就是以上5个方面。